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Introduction

The Second Grand-Challenge and Workshop on Multimodal Language (Challenge-HML) offers a unique
opportunity for interdisciplinary researchers to study and model interactions between modalities of
language, vision, and acoustic. This is the continuation of the Challenge-HML at ACL 2018. Modeling
multimodal language is a growing research area in NLP. This research area pushes the boundaries of
multimodal learning and requires advanced neural modeling of all three constituent modalities. Advances
in this research area allow the field of NLP to take the leap towards better generalization to real-world
communication (as opposed to limitation to textual applications), and better downstream performance in
Conversational AI, Virtual Reality, Robotics, HCI, Healthcare, and Education.
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Abstract

Understanding expressed sentiment and emo-
tions are two crucial factors in human mul-
timodal language. This paper describes a
Transformer-based joint-encoding (TBJE) for
the task of Emotion Recognition and Senti-
ment Analysis. In addition to use the Trans-
former architecture, our approach relies on a
modular co-attention and a glimpse layer to
jointly encode one or more modalities. The
proposed solution has also been submitted
to the ACL20: Second Grand-Challenge on
Multimodal Language to be evaluated on the
CMU-MOSEI dataset. The code to replicate
the presented experiments is open-source 1.

1 Introduction

Predicting affective states from multimedia is a
challenging task. Emotion recognition task has
existed working on different types of signals,
typically audio, video and text. Deep Learning
techniques allow the development of novel
paradigms to use these different signals in one
model to leverage joint information extraction
from different sources. This paper aims to bring a
solution based on ideas taken from Machine Trans-
lation (Transformers, Vaswani et al. (2017)) and
Visual Question Answering (Modular co-attention,
Yu et al. (2019)). Our contribution is not only
very computationally efficient, it is also a viable
solution for Sentiment Analysis and Emotion
Recognition. Our results can compare with, and
sometimes surpass, the current state-of-the-art for
both tasks on the CMU-MOSEI dataset (Zadeh
et al., 2018b).

This paper is structured as follows: first, in sec-
tion 2, we quickly go over the related work that
have been evaluated on the MOSEI dataset, we

1https://github.com/jbdel/MOSEI_UMONS

then proceed to describe our model in Section 3,
we then explain how we extract our modality fea-
tures from raw videos in Section 4 and finally, we
present the dataset used for our experiments and
their respective results in section 5 and 6.

2 Related work

Over the years, many creative solutions have been
proposed by the research community in the field of
Sentiment Analysis and Emotion Recognition. In
this section, we proceed to describe different mod-
els that have been evaluated on the CMU-MOSEI
dataset. To the best of our knowledge, none of
these ideas uses a Tansformer-based solution.

The Memory Fusion Network (MFN, Zadeh
et al. (2018a)) synchronizes multimodal sequences
using a multi-view gated memory that stores
intraview and cross-view interactions through
time.

Graph-MFN (Zadeh et al., 2018b) consists of a
Dynamic Fusion Graph (DFG) built upon MFN.
DFG is a fusion technique that tackles the nature
of cross-modal dynamics in multimodal language.
The fusion is a network that learns to models the
n-modal interactions and can dynamically alter its
structure to choose the proper fusion graph based
on the importance of each n-modal dynamics
during inference.

Sahay et al. (2018) use Tensor Fusion Network
(TFN), i.e. an outer product of the modalities.
This operation can be performed either on a whole
sequence or frame by frame. The first one lead
to an exponential increase of the feature space
when modalities are added that is computationally
ex-pensive. The second approach was thus
preferred. They showed an improvement over an

1
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early fusion baseline.

Recently, Shenoy and Sardana (2020) pro-
pose a solution based on a context-aware RNN,
Multilogue-Net, for Multi-modal Emotion Detec-
tion and Sentiment Analysis in conversation.

3 Model

This section aims to describe the two model
variants evaluated in our experiment: a monomodal
variant and a multimodal variant. The monomodal
variant is used to classify emotions and sentiments
based solely on L (Linguistic), on V (Visual) or on
A (Acoustic). The multimodal version is used for
any combination of modalities.

Our model is based on the Transformer model
(Vaswani et al., 2017), a new encoding architecture
that fully eschews recurrence for sequence
encoding and instead relies entirely on an attention
mechanism and Feed-Forward Neural Networks
(FFN) to draw global dependencies between
input and output. The Transformer allows for
significantly more parallelization compared to the
Recurrent Neural Network (RNN) that generates
a sequence of hidden states ht, as a function of
the previous hidden state ht−1 and the input for
position t.

3.1 Monomodal Transformer Encoding

The monomodal encoder is composed of a stack of
B identical blocks but with their own set of training
parameters. Each block has two sub-layers. There
is a residual connection around each of the two sub-
layers, followed by layer normalization (Ba et al.,
2016). The output of each sub-layer can be written
like this:

LayerNorm(x+ Sublayer(x)) (1)

where Sublayer(x) is the function implemented by
the sub-layer itself. In traditional Transformers,
the two sub-layers are respectively a multi-head
self-attention mechanism and a simple Multi-Layer
Perceptron (MLP).

The attention mechanism consists of a Key K
and Query Q that interacts together to output a
attention map applied to Context C:

Attention(Q,K,C) = softmax(
QK>√

k
)C (2)

In the case of self-attention, K, Q and C are the
same input. If this input is of size N × k, the op-
eration QK> results in a squared attention matrix
containing the affinity between each row N . Ex-
pression

√
k is a scaling factor. The multi-head

attention (MHA) is the idea of stacking several self-
attention attending the information from different
representation sub-spaces at different positions:

MHA(Q,K,C) = Concat(head1, ..., headh)Wo

where headi = Attention(QWQ
i ,KW

K
i , CW

C
i )
(3)

A subspace is defined as slice of the feature di-
mension k. In the case of four heads, a slice would
be of size k

4 . The idea is to produce different sets of
attention weights for different feature sub-spaces.
After encoding through the blocks, output x̃ can be
used by a projection layer for classification. In Fig-
ure 1, x can be any modality feature as described
in Section 4.

x

×B

Multi-Head A.

Add & Norm

MLP

Add & Norm

x̃

Figure 1: Monomodal Transformer encoder.

3.2 Multimodal Transformer Encoding

The idea of a multimodal transformer consists
in adding a dedicated transformer (section 3.1)
for each modality we work with. While our
contribution follows this procedure, we also
propose three ideas to enhance it: a joint-encoding,
a modular co-attention (Yu et al., 2019) and a
glimpse layer at the end of each block.

The modular co-attention consists of modulating
the self-attention of a modality, let’s call it y, by a
primary modality x. To do so, we switch the key
K and context C of the self-attention from y to
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x. The operation QK> results in an attention map
that acts like an affinity matrix between the rows of
modality matrix x and y. This computed alignment
is applied over the context C (now x) and finally
we add the residual connection y. The following
equation describes the new attention sub-layer:

y = LayerNorm(y + MHA(y, x, x)) (4)

In this scenario, for the operation QK> to work
as well as the residual connection (the addition),
the feature sizes of x and y must be equal. This can
be adjusted with the different transformation matri-
ces of the MHA module. Because the encoding is
joint, each modality is encoded at the same time
(i.e. we don’t unroll the encoding blocks for one
modality before moving on to another modality).
This way, the MHA attention of modality y for
block b is done by the representation of x at block b.

Finally, we add a last layer at the end of each
modality block, called the glimpse layer, where the
modality is projected in a new space of representa-
tion. A glimpse layer consists of stacking G soft
attention layers and stacking their outputs. Each
soft attention is seen as a glimpse. Formally, we
define the soft attention (SoA) i with input matrix
M ∈ RN×k by a MLP and a weighted sum:

ai = softmax(vai
>(WmM))

SoAi(M) = mi =

N∑

j=0

aijMj

(5)

whereWm if a transformation matrix of size 2k×k,
vai is of size 1×2k and mi a vector of size k. Then
we can define the glimpse mechanism for matrixM
of glimpse size Gm as the stacking of all glimpses:

GM = Stacking(m1, . . . ,mGm)

Note that before the parameter Wm, whose role
is to embed the matrix M in a higher dimension,
is shared between all glimpses (this operation is
therefore only computed once) while the set of
vectors {vai } computing the attention weights from
this bigger space is dedicated for each glimpse.
In our contribution, we always chose Gm = N
so the sizes allow us to perform a final residual
connections M = LayerNorm(M + GM ).

x

×B

Multi-Head A.

Add & Norm

MLP

Add & Norm

Glimpse

Add & Norm

x̃

y

×B

Multi-Head A.

Add & Norm

MLP

Add & Norm

Glimpse

Add & Norm

ỹ

Figure 2: Multimodal Transformer Encoder for two
modalities with joint-encoding.

The Figure 2 depicts the encoding for two
features where modality x is modulating the
modality y. This encoding can be ported to
any number of modalities by duplicating the
architecture. In our case, it is always the linguistic
modality that modulates the others.

3.3 Classification layer

After all the Transformer blocks were computed, a
modality goes into a final glimpse layer of size 1.
The result is therefore only one vector. The vectors
of each modality are summed element-wise, let’s
call the results of this sum s, and are then projected
over possible answers according to the following
equation:

y ∼ p =Wa(LayerNorm(s)) (6)

If there is only one modality, the sum operation
is omitted.

4 Feature extractions

This section aims to explain how we pre-compute
the features for each modality. These features are
the inputs of the Transformer blocks. Note that the
features extraction is done independently for each
example of the dataset.

4.1 Linguistic

Each utterance is tokenized and lowercase. We also
remove special characters and punctuation. We
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build our vocabulary against the train-set and end
up with a glossary of 14.176 unique words. We
embed each word in a vector of 300 dimensions
using GloVe (Pennington et al., 2014). If a word
from the validation or test-set is not in present our
vocabulary, we replace it with the unknown token
”unk”.

4.2 Acoustic

The acoustic part of the signal of the video contains
a lot of speech. Speech is used in conversations
to communicate information with words but also
contains a lot of information that are non linguistic
such as nonverbal expressions (laughs, breaths,
sighs) and prosody features (intonation, speaking
rate). These are important data in an emotion
recognition task.

Acoustic features widely use in the speech
processing field such as F0, formants, MFCCs,
spectral slopes consist of handcrafted sets of
high-level features that are useful when an
interpretation is needed, but generally discard a lot
of information. Instead, we decide to use low-level
features for speech recognition and synthesis, the
mel-spectrograms. Since the breakthrough of
deep learning systems, the mel-spectrograms have
become a suitable choice.

The spectrum of a signal is obtained with
Fourier analysis that decompose a signal in a sum
of sinusoids. The amplitudes of the sinusoids
constitute the amplitude spectrum. A spectrogram
is the concatenation over time of spectra of
windows of the signal. Mel-spectrogram is
a compressed version of spectrograms, using
the fact the human ear is more sensitive to
low frequencies than high frequencies. This
representation thus attributes more resolution
for low frequencies than high frequencies using
mel filter banks. A mel-spectrogram is typically
used as an intermediate step for text-to-speech
synthesis (Tachibana et al., 2018) in state-of-the-art
systems as audio representation, so we believe it is
a good compromise between dimensionality and
representation capacity.

Our mel-spectrograms were extracted with the
same procedure as in (Tachibana et al., 2018) with
librosa (McFee et al., 2015) library with 80 filter
banks (the embedding size is therefore 80). A tem-

poral reduction by selecting one frame every 16
frames was the applied.

4.3 Visual

Inspired by the success of convolutional neural
networks (CNNs) in different tasks, we chose to
extract visual features with a pre-trained CNN.
Current models for video classification use CNNs
with 3D convolutional kernels to process the
temporal information of the video together with
spatial information (Tran et al., 2015). The 3D
CNNs learn spatio-temporal features but are
much more expensive than 2D CNNs and prone
to overfitting. To reduce complexity, Tran et al.
(2018) explicitly factorizes 3D convolution into
two separate and successive operations, a 2D
spatial convolution and a 1D temporal convolution.
We chose this model, named R(2+1)D-152, to
extract video features for the emotion recognition
task. The model is pretrained on Sports-1M and
Kinetics.

The model takes as input a clip of 32 RGB
frames of the video. Each frame is scaled to the
size of 128 x 171 and then cropped a window
of size 112 x 112. The features are extracted by
taking the output of the spatiotemporal pooling.
The feature vector for the entire video is obtained
by sliding a window of 32 RGB frames with a
stride of 8 frames.

We chose not to crop out the face region of the
video and keep the entire image as input to the
network. Indeed, the video is already centered on
the person and we expect that the movement of the
body such as the hands can be a good indicator
for the emotion recognition and sentiment analysis
tasks.

5 Dataset

We test our joint-encoding solution on a novel
dataset for multimodal sentiment and emotion
recognition called CMU-Multimodal Opinion
Sentiment and Emotion Intensity (CMU-MOSEI,
Zadeh et al. (2018b)). It consists of 23,453
annotated sentences from 1000 distinct speakers.
Each sentence is annotated for sentiment on a
[-3,3] scale from highly negative (-3) to highly
positive (+3) and for emotion by 6 classes :
happiness, sadness, anger, fear, disgust, surprise.
In the scope of our experiment, the emotions are

4



Test set Sentiment Emotions
2-class 7-class Happy Sad Angry Fear Disgust Surprise
A A A F1 A F1 A F1 A F1 A F1 A F1

L+ A + V 81.5 44.4 65.0 64.0 72.0 67.9 81.6 74.7 89.1 84.0 85.9 83.6 90.5 86.1
L + A 82.4 45.5 66.0 65.5 73.9 67.9 81.9 76.0 89.2 87.2 86.5 84.5 90.6 86.1
L 81.9 44.2 64.5 63.4 72.9 65.8 81.4 75.3 89.1 84.0 86.6 84.5 90.5 81.4
Mu-Net 82.1 - - 68.4 - 74.5 - 80.9 - 87.0 - 87.3 - 80.9
G-MFN 76.9 45.0 - 66.3 - 66.9 - 72.8 - 89.9 - 76.6 - 85.5

Table 1: Results on the test-set. Note that the F1-scores for emotions are weighted to be consistent with the previous
state-of-the-art. Also, we do not compare accuracies for emotions, as previous works use a weighted variant while
we use standard accuracy. G-MFN is the Graph-MFN model and Mu-Net is the Multilogue-Net model.

either present or not present (binary classification),
but two emotions can be present at the same time,
making it a multi-label problem.

Figure 3: MOSEI statistics, taken from the author’s pa-
per.

The Figure 3 shows the distribution of sentiment
and emotions in CMU-MOSEI dataset. The dis-
tribution shows a natural skew towards more fre-
quently used emotions. The most common cate-
gory is happiness with more than 12,000 positive
sample points. The least prevalent emotion is fear
with almost 1900 positive sample. It also shows a
slight shift in favor of positive sentiment.

6 Experiments

In this section, we report the results of our model
variants described in Section 3. We first explain
our experimental setting.

6.1 Experimental settings

We train our models using the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
1e− 4 and a mini-batch size of 32. If the accuracy
score on the validation set does not increase for
a given epoch, we apply a learning-rate decay
of factor 0.2. We decay our learning rate up to
2 times. Afterwards, we use an early-stop of 3
epochs. Results presented in this paper are from

the averaged predictions of 5 models.

Unless stated otherwise, we use 6 Transformer
blocks of hidden-size 512, regardless of the
modality encoded. The self-attention has 4
multi-heads and the MLP has one hidden layer of
1024. We apply dropout of 0.1 on the output of
each block (equation 4) and of 0.5 on the input of
the classification layer (s in equation 6).

Figure 4: Temporal dimension (i.e. rows in our feature
matrices) for the acoustic and visual modality.

For the acoustic and visual features, we truncate
the features for spatial dimensions above 40. We
also use that number for the number of glimpses.
This choice is made base on Figure 4

6.2 Results

The Table 1 show the scores of our different
modality combinations. We do not compare
accuracies for emotions with previous works as
they used a weighted accuracy variant while we
use standard accuracy.

We notice that our L+A (linguistic + acoustic) is
the best model. Unfortunately, adding the visual
input did not increase the results, showing that
it is still the most difficult modality to integrate
into a multimodal pipeline. For the sentiment
task, the improvement is more tangible for the
7-class, showing that our L+A model learns better

5



representations for more complex classification
problems compared to our monomodal model L
using only the linguistic input. We also surpass
the previous state-of-the-art for this task. For the
emotions, we can see that Multilogue-Net gives
better prediction for some classes, such as happy,
sad, angry and disgust. We postulate that this is
because Multilogue is a context-aware method
while our model does not take into account the
previous or next sentence to predict the current
utterance. This might affect our accuracy and
f1-score on the emotion task.

The following Table 2 depicts the results of our
solution sent to the Second Grand-Challenge on
Multimodal Language. It has been evaluated on
the private test-fold released for the challenge and
can serve as a baseline for future research. Note
that in this table, the F1-scores are unweighted, as
should be future results for a fair comparison and
interpretation of the results.

Sentiment 7-class
L + A (A) 40.20

Emotion Happy Sad Angry
L + A (A) 67.07 82.66 81.65
L + A (F1) 78.08 31.42 28.38

Emotion Fear Disgust Surprise
L + A (A) 88.19 79.14 90.45
L + A (F1) 26.66 25.49 15.82

Table 2: Results on the private test-fold for 7-class sen-
timent problem and for each emotion. Accuracy is de-
noted byA. In this table, the F1-scores are unweighted,
unlike Table 1.

7 Discussions

We presented a computationally efficient and
robust model for Sentiment Analysis and Emotion
Recognition evaluated on CMU-MOSEI. Though
we showed strong results on accuracy, we can see
that there is still a lot of room for improvement on
the F1-scores, especially for the emotion classes
that are less present in the dataset. To the best
of our knowledge, the results presented by our
transformer-based joint-encoding are the strongest
scores for the sentiment task on the dataset.

The following list identifies other features we

Figure 5: 7-class sentiment accuracy according to the
number of blocks per Transformer.

computed as input for our model that lead to weaker
performances:

• We tried the OpenFace 2.0 features (Baltru-
saitis et al., 2018). This strategy computes
facial landmark, the features are specialized
for facial behavior analysis;

• We tried a simple 2D CNN named DenseNet
(Huang et al., 2017). For each frame of the
video, a feature vector is extracted by taking
the output of the average pooling layer;

• We tried different values for the number of
mel filter bank (512 and 1024) and temporal
reduction (1, 2, 4 and 8 frames), we also tried
to use the full spectrogram;

• We tried not using the GloVe embedding.
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pour la Formation à la Recherche dans l’Industrie
et l’Agriculture, Belgium).

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and
Louis-Philippe Morency. 2018. Openface 2.0: Fa-
cial behavior analysis toolkit. In 13th IEEE Inter-
national Conference on Automatic Face & Gesture
Recognition, pages 59–66. IEEE.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. 2017. Densely connected con-
volutional networks. In Proceedings of the IEEE

6



Conference on Computer Vision and Pattern Recog-
nition, pages 4700–4708.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW
Ellis, Matt McVicar, Eric Battenberg, and Oriol Ni-
eto. 2015. librosa: Audio and music signal analysis
in python. In Proceedings of the 14th python in sci-
ence conference, pages 18–25.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Saurav Sahay, Shachi H Kumar, Rui Xia, Jonathan
Huang, and Lama Nachman. 2018. Multimodal
relational tensor network for sentiment and emo-
tion classification. In Proceedings of Grand Chal-
lenge and Workshop on Human Multimodal Lan-
guage (Challenge-HML), pages 20–27, Melbourne,
Australia. Association for Computational Linguis-
tics.

Aman Shenoy and Ashish Sardana. 2020. Multilogue-
net: A context aware rnn for multi-modal emotion
detection and sentiment analysis in conversation.

Hideyuki Tachibana, Katsuya Uenoyama, and Shun-
suke Aihara. 2018. Efficiently trainable text-to-
speech system based on deep convolutional net-
works with guided attention. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4784–4788. IEEE.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Tor-
resani, and Manohar Paluri. 2015. Learning spa-
tiotemporal features with 3d convolutional networks.
In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 4489–4497.

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray,
Yann LeCun, and Manohar Paluri. 2018. A closer
look at spatiotemporal convolutions for action recog-
nition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 6450–6459.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and
Qi Tian. 2019. Deep modular co-attention networks
for visual question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 6281–6290.

Amir Zadeh, Paul Pu Liang, Navonil Mazumder,
Soujanya Poria, Erik Cambria, and Louis-Philippe

Morency. 2018a. Memory fusion network for multi-
view sequential learning. In Thirty-Second AAAI
Conference on Artificial Intelligence.

AmirAli Zadeh, Paul Pu Liang, Soujanya Poria, Erik
Cambria, and Louis-Philippe Morency. 2018b. Mul-
timodal language analysis in the wild: CMU-
MOSEI dataset and interpretable dynamic fusion
graph. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2236–2246, Melbourne,
Australia. Association for Computational Linguis-
tics.

7



Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8–18
Seattle, USA, July5 - 10, 2020. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

A Multi-modal Approach to Fine-grained Opinion Mining
on Video Reviews

Edison Marrese-Taylor1*, Cristian Rodriguez-Opazo2*, Jorge A. Balazs1

Stephen Gould2 and Yutaka Matsuo1

Graduate School of Engineering, The University of Tokyo, Japan1

{emarrese, jorge, matsuo}@weblab.t.u-tokyo.ac.jp
Australian Centre for Robotic Vision (ACRV), Australian National University2

{cristian.rodriguez, stephen.gould}@anu.edu.au
*Authors contributed equally to this work.

Abstract

Despite the recent advances in opinion min-
ing for written reviews, few works have tack-
led the problem on other sources of reviews.
In light of this issue, we propose a multi-
modal approach for mining fine-grained opin-
ions from video reviews that is able to deter-
mine the aspects of the item under review that
are being discussed and the sentiment orienta-
tion towards them. Our approach works at the
sentence level without the need for time an-
notations and uses features derived from the
audio, video and language transcriptions of its
contents. We evaluate our approach on two
datasets and show that leveraging the video
and audio modalities consistently provides in-
creased performance over text-only baselines,
providing evidence these extra modalities are
key in better understanding video reviews.

1 Introduction
Sentiment analysis (SA) is an important task in natural
language processing, aiming at identifying and extract-
ing opinions, emotions, and subjectivity. As a result,
sentiment can be automatically collected, analyzed and
summarized. Because of this, SA has received much
attention not only in academia but also in industry,
helping provide feedback based on customers’ opin-
ions about products or services. The underlying as-
sumption in SA is that the entire input has an overall
polarity, however, this is usually not the case. For ex-
ample, laptop reviews generally not only express the
overall sentiment about a specific model (e.g., “This
is a great laptop”), but also relate to its specific as-
pects, such as the hardware, software or price. Sub-
sequently, a review may convey opposing sentiments
(e.g., “Its performance is ideal, I wish I could say the
same about the price”) or objective information (e.g.,
“This one still has the CD slot”) for different aspects of
an entity. Aspect-based sentiment analysis (ABSA) or
fine-grained opinion mining aims to extract opinion tar-
gets or aspects of entities being reviewed in a text, and
to determine the sentiment reviewers express for each.
ABSA allows us to evaluate aggregated sentiments for

each aspect of a given product or service and gain a
more granular understanding of their quality. This is
of especial interest for companies as it enables them to
refine specifications for a given product or service, and
leading to an improved overall customer satisfaction.

Fine-grained opinion mining is also important for a
variety of NLP tasks, including opinion-oriented ques-
tion answering and opinion summarization. In prac-
tical terms, the ABSA task can be divided into two
sub-steps, namely aspect extraction (AE) and (aspect
level) sentiment classification (SC), which can be tack-
led in a pipeline fashion, or simultaneously (AESC).
These tasks can be regarded as a token-level sequence
labeling problem, and are generally tackled using su-
pervised learning. The 2014 and 2015 SemEval work-
shops, co-located with COLING 2014 and NAACL
2015 respectively, included shared tasks on ABSA
(Pontiki et al., 2014) and also followed this approach,
which has also served as a way to encourage develop-
ments alongside this line of research (Mitchell et al.,
2013; Irsoy and Cardie, 2014; Liu et al., 2015; Zhang
et al., 2015).

The flexibility provided by the deep learning setting
has helped multi-modal approaches to bloom. Exam-
ples of this include tasks such as machine translation
(Specia et al., 2016; Elliott et al., 2017), word sense
disambiguation (Chen et al., 2015), visual question an-
swering (Chen et al., 2017), language grounding (Bein-
born et al.; Lazaridou et al., 2015), and sentiment anal-
ysis (Poria et al., 2015; Zadeh et al., 2016). Specifically
in this last example, the task focuses on generalizing
text-based sentiment analysis to opinionated videos,
where three communicative modalities are present: lan-
guage (spoken words), visual (gestures), and acoustic
(voice).

Although reviews often come under the form of a
written commentary, people are increasingly turning to
video platforms such as YouTube looking for product
reviews to help them shop. In this context, Marrese-
Taylor et al. (2017) explored a new direction, arguing
that video reviews are the natural evolution of written
product reviews and introduced a dataset of annotated
video product review transcripts. Similarly, Garcia
et al. (2019b) recently presented an improved version
of the POM movie review dataset (Park et al., 2014),

8

https://doi.org/10.18653/v1/P17


with annotated fine-grained opinions.
Although the videos in these kinds of datasets rep-

resent a rich multi-modal source of opinions, the fea-
tures of the language in them may fundamentally dif-
fer from written reviews given that information is con-
veyed through multiple channels (one for speech, one
for gestures, one for facial expressions, one for vocal
inflections, etc.) In these, different information chan-
nels complement each other to maximize the coherence
and clarity of their message. This means that although
the content of each channel may be comprehended in
isolation, in theory we need to process the information
in all the channels simultaneously to fully comprehend
the message (Hasan et al., 2019). In this context, infor-
mation extracted from nonverbal language in videos,
such as gestures and facial expressions, as well as from
audio in the manner of voice inflections or pauses, and
from scenes, object or images in the video, become crit-
ical for performing well.

In light of this, our paper introduces a multi-modal
approach for fine-grained opinion mining. We con-
duct extensive experiments on two datasets built upon
transcriptions of video reviews, Youtubean (Marrese-
Taylor et al., 2017) and a fine-grain annotated version
of the Persuasive Opinion Multimedia (POM) dataset
(Park et al., 2014; Garcia et al., 2019b), adapting them
to our setting by associating timestamps to each anno-
tated sentence using the video subtitles. Our results
demonstrate the effectiveness of our proposed approach
and show that by leveraging the additional modalities
we can consistently obtain better performance.

2 Related Work
Our work is related to aspect extraction using deep
learning, a task that is often tackled as a sequence label-
ing problem. In particular, our work is related to Irsoy
and Cardie (2014), who pioneered in the field by using
multi-layered RNNs. Later, Liu et al. (2015) success-
fully adapted the architectures by Mesnil et al. (2013)
which were originally developed for slot-filling in the
context of Natural Language Understanding.

Literature offers related work on the usage of RNNs
for open domain targeted sentiment (Mitchell et al.,
2013), where Zhang et al. (2015) experimented with
neural CRF models using various RNN architectures
on a dataset of informal language from Twitter.

Regarding target-based sentiment analysis, the liter-
ature contains several ad-hoc models that account for
the sentence structure and the position of the aspect on
it (Tang et al., 2016a,b). These approaches mainly use
attention-augmented RNNs for solving the task. How-
ever, they require the location of the aspect to be known
in advance and therefore are only useful in pipeline
models, while instead we model aspect extraction and
sentiment classification as a joint task or using multi-
tasking.

AESC has also often been tackled as a sequence
labeling problem, mainly using Conditional Random

Fields (CRFs) (Mitchell et al., 2013). To model the
problem in this fashion, collapsed or sentiment-bearing
IOB labels (Zhang et al., 2015) are used. Pipeline
models (i.e. task-independent model ensembles) have
also been extensively studied by the same authors. Xu
et al. (2014) performed AESC by modeling the link-
ing relation between aspects and the sentiment-bearing
phrases.

When it comes to the video review domain, there
is related work on YouTube mining, mainly focused
on exploiting user comments. For example, Wu et al.
(2014) exploited crowdsourced textual data from time-
synced commented videos, proposing a temporal topic
model based on LDA. Tahara et al. (2010) introduced
a similar approach for Nico Nico, using time-indexed
social annotations to search for desirable scenes inside
videos.

On the other hand, Severyn et al. (2014) proposed
a systematic approach to mine user comments that re-
lies on tree kernel models. Additionally, Krishna et al.
(2013) performed sentiment analysis on YouTube com-
ments related to popular topics using machine learn-
ing techniques, showing that the trends in users’ sen-
timents is well correlated to the corresponding real-
world events. Siersdorfer et al. (2010) presented an
analysis of dependencies between comments and com-
ment ratings, proving that community feedback in com-
bination with term features in comments can be used
for automatically determining the community accep-
tance of comments.

We also find some papers that have successfully at-
tempted to use closed caption mining for video activity
recognition (Gupta and Mooney, 2010) and scene seg-
mentation (Gupta and Mooney, 2009). Similar work
has been done using closed captions to classify movies
by genre (Brezeale and Cook, 2006) and summarize
video programs (Brezeale and Cook, 2006). Regard-
ing multi-modal approaches for sentiment analysis, we
see that previous work has focused mainly on senti-
ment classification, or the related task of emotion de-
tection (Lakomkin et al., 2017), where the CMU MOSI
dataset (Zadeh et al., 2016) appears as the main re-
source. In this setting, the main problem is how to
model and capture cross-modality interactions to pre-
dict the sentiment correctly. In this regard Zadeh et al.
(2017) proposed a tensor fusion layer that can better
capture cross-modality interactions between text, au-
dio and video inputs, while Poria et al. (2017) mod-
eled inter-dependencies across difference utterances of
a single video, obtaining further improvements.

Blanchard et al. (2018) are, to the best of our knowl-
edge, the first to tackle scalable multi-modal sentiment
classification using both visual and acoustic modalities.
More recently Ghosal et al. (2018) proposed an RNN-
based multi-modal approach that relies on attention to
learn the contributing features among multi-utterance
representations. On the other hand Pham et al. (2018)
introduced multi-modal sequence-to-sequence models
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which perform specially well in bi-modal settings. Fi-
nally, Akhtar et al. (2019) proposed a multi-modal,
multi-task approach in which the inputs from a video
(text, acoustic and visual frames), are exploited for si-
multaneously predicting the sentiment and expressed
emotions of an utterance. Our work is related to all
of these approaches, but it is different in that we apply
multi-modal techniques not only for sentiment classifi-
cation, but also for aspect extraction.

Finally, Marrese-Taylor et al. (2017) and Garcia
et al. (2019b) contributed multi-modal datasets ob-
tained from product and movie reviews respectively,
specifically for the task of fine-grained opinion min-
ing. Furthermore, Garcia et al. (2019a) recently used
the latter to propose a hierarchical multi-modal model
for opinion mining. Compared to them, our approach
follows a more traditional setting for fine-grained opin-
ion mining, while also offering a more general frame-
work for the problem. Garcia et al. (2019a) utilize a
single encoder that receives as input the concatenation
of the features for each modality, for each token. This
requires explicit alignment between the features of the
different modalities at the token level. In contrast, since
each modality is encoded separately in our approach,
we only require the feature alignment to be at the sen-
tence level.

3 Task Description
Opinion mining can be performed at several levels of
granularity, the most common ones being the sentence
level, and the more fine-grained aspect level. Fine-
grained opinion mining can be further subdivided in
two tasks: aspect extraction and aspect-level sentiment
classification. The former deals with finding the as-
pects being referred to, and the latter with associating
them with a sentiment.

Previous work usually casts this task as a sequence-
labeling problem, where models have to predict
whether a token is a part of an aspect and infer its senti-
ment polarity (Mitchell et al., 2013; Zhang et al., 2015;
Liu et al., 2015). Depending on the dataset annotations,
aspect categories are in some cases specified as well.

Formally, given a sentence s = [x1, . . . , xn], we
want to automatically annotate each token xi with its
aspect membership and polarity. In the simpler case
where we only want to perform Aspect Extraction, a
common annotation scheme is to tag each token with
a label yi ∈ LAE where LAE = {I,O,B}. In this
scheme, commonly known as IOB, O labels indicate
that a token is not a member of an aspect, B labels in-
dicate that a token is at the beginning of an aspect, and
I labels indicate that the token is inside an aspect.

Similarly, performing token-level Sentiment Classi-
fication only is equivalent to tagging each token with
a label yi ∈ LSC where LSC = {φ,+,−}, and φ de-
notes no sentiment, + denotes a positive polarity and
− a negative one.

It is also possible to define a collapsed annotation

scheme, where aspect membership and sentiment po-
larity are encoded in a single tag. We define the label
set for this setting as LC = {O,B+, B−, I+, I−}.

Table 1 shows the possible ways to annotate the sen-
tence “I love the saturated colors!” under these three
annotation schemes, where the aspect being referred to
is “saturated colors”.

I love the saturated colors !

LAE O O O B I O

LSC φ φ φ + + φ

LC O O O B+ I+ O

Table 1: Label definition alternatives for the tasks in
ABSA using sequence labeling.

Labels can be further augmented with type informa-
tion. For example Liu et al. (2015) used different tags
for opinion targets (e.g. B-TARG), and opinion expres-
sions (e.g., B-EXPR), however, we do not rely on this
information.

4 Proposed Approach

We propose a multi-modal approach for aspect extrac-
tion and sentiment classification that leverages video,
audio and textual features. This approach assumes we
have a video review v containing opinions, its extracted
audio stream a, and a transcription of the audio into a
sequence of sentences S. Further, each sentence s ∈ S
is annotated with its respective start and end times in
the video effectively mapping them to a video segment
vs ⊂ v and its corresponding audio segment as ⊂ a.
These segments do not necessarily cover the whole
video i.e. ∪ vs ⊂ v since the reviews may include
parts that have no speech and therefore no sentences
are associated to those. Our end goal is to produce a
sequence of labels l = [y1, . . . , yn] for each sentence
s = [x1, . . . , xn] while exploiting the information con-
tained in vs and as.

Figure 1 presents a high-level overview of our ap-
proach. We rely on an encoder-decoder paradigm to
create separate representations for each modality (Cho
et al., 2014). The text encoding module generates a
representation for each token in the input text, while
the video and audio encoding layers produce utterance-
level representations from each modality.

We propose combining these representations with an
approach inspired by early-fusion (Xu et al., 2018),
which allows for the word-level representations to in-
teract with audio and visual features. Finally, a se-
quence labeling module is in charge of taking the final
token-level representations and producing a token-level
label. In the following sub-sections we describe each
component of our model.

4.1 Text Encoding Module

This module generates a representation of the natural
language input so that the obtained representation is
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Figure 1: Overview of our proposed approach for multi-modal opinion mining

useful for the sequence labeling task. Our text en-
coder first maps each word xi into an embedded in-
put sequence x = [x1, . . . ,xn], then projects this into
a vector hti ∈ Rdt , where dt corresponds to the hid-
den dimension of the obtained text representation. Al-
though our text encoding module is generic, in this pa-
per we implement it as a bi-directional GRU (Cho et al.,
2014), on top of pre-trained word embeddings, specifi-
cally GloVe (Pennington et al., 2014), as follows.

hti = BiGRU(xi,h
t
i−1) (1)

4.2 Audio Encoding Module
We assume the existence of a finite set of time-ordered
audio features a = [a1, . . . ,am] extracted from each
audio utterance as, for instance with the procedure de-
scribed in Section 5.2. We feed these vectors into an-
other bi-directional GRU to add context to each time
step, obtaining hidden states haj ∈ Rda .

haj = BiGRU(aj ,h
a
j−1) (2)

To obtain a condensed representation from the audio
signal we again utilize mean pooling over the interme-
diate memory vectors, obtaining h̄a.

4.3 Video Encoding Module
We propose a video encoding layer that generates a vi-
sual representation summarizing spatio-temporal pat-
terns directly from the raw input frames. Concretely,
given a video segment v = [v1, . . . ,vT ], where vi is
a vector representing a single frame in vs, our encod-
ing module first maps this sequence into another se-
quence of video features v̂ = [v̂1, . . . , v̂l] following
the method described in Section 5.2. Later, this new se-
quence is mapped into a vector h̄v ∈ Rdv that captures
summarized high-level visual semantics in the video,
as follows:

hvk = BiGRU(v̂k,h
v
k−1) (3)

4.4 Fusion Module
We utilize an early fusion strategy similar to Xu et al.
(2018) to aggregate the representations obtained from

each modality. We concatenate the contextualized rep-
resentation hti for each token to the summarized repre-
sentations of the additional modalities, h̄a and h̄v , and
feed this final vector representation to an additional Bi-
GRU:

hi = BiGRU([hti; h̄
a; h̄v],hi−1) (4)

As a result, our model now allows the representation
of each word in the input sentence to interact with the
audio and visual features, enabling it to learn poten-
tially different ways to associate each word with the
additional modalities. An alternative way to achieve
this would be to utilize attention mechanisms to enforce
such association behavior, however, we instead let the
model learn this relation without using any additional
inductive bias.

4.5 Sequence Labeling Module
The main labeling module is a multi-layer perceptron
guided by a self attention component. The self at-
tention component enriches the representation hi with
contextual information coming from every other se-
quence element by performing the following opera-
tions:

ui,j = v>α tanh(Wα[hi;hj ] + bα) (5)
αi,j = softmax(ui,j) (6)

ti =

n∑

j=1

αi,j · hj (7)

oi = Wl[hi; ti] + bl (8)

Where oi is a vector associated to input xi, and vα,
Wα, Wl and bα, bl are trainable parameters. As
shown, these vectors are obtained using both the corre-
sponding aligned input hi and the attention-weighted
vector ti.

Following previous work, we feed these vectors into
a Linear Chain CRF layer, which performs the final la-
beling. Neural CRFs have proven to be especially ef-
fective for various sequence segmentation or labeling
tasks in NLP (Ma and Hovy, 2016; Yang and Zhang,
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2018; Yang et al., 2018), and have also been used suc-
cessfully in the past for open domain opinion mining
(Zhang et al., 2015). Concretely, we model emission
and transition potentials as follows.

ψi := e(xi, yi; θ) = hi · yi (9)
ψi,j := q(yi, yj ;Π) = Πyi,yj (10)

Where hi is the fused hidden state for position i and θ
denotes the parameters involved in computing this vec-
tor, yi is a one-hot vector associated to yi, and Π is a
trainable matrix of size LAE or LC depending on the
setting —see Section 5 for more details on this. The
score function of a given input sentence s and output
sequence of labels l is defined as:

Φ(s, l) =

n∑

i=1

log e(x, yi; θ)+log q(yi, yi−1;Π) (11)

In this work we directly optimize the negative log-
likelihood associated to this score during training, and
apply Viterbi decoding during inference to obtain the
most likely labels.

5 Experimental Setup
We evaluate our proposal in several experimental set-
tings based on previous work.

• Simple: We only focus on the task of aspect ex-
traction, following a sequence labeling approach
with regular IOB tags in LAE.

• Collapsed Aspect-Level (CAL): We perform as-
pect extraction and aspect-level sentiment classi-
fication with a sequence labeling model, utilizing
sentiment-bearing IOB tags in LC.

• Collapsed Sentence-Level (CSL): Like the pre-
vious setting, but we only keep sentence examples
that contain a single sentiment, so we can perform
sentence-level sentiment classification. Again, we
use sequence labeling with sentiment-bearing IOB
tags in LC.

• Joint Sentence-Level (JSL): We use a multi-
tasking approach and perform sequence label-
ing for aspect extraction with regular IOB tags
in LAE, and sequence classification to predict
the sentence-level sentiment. In this sense, we
add a final 3-layer fully-connected neural net-
work that receives a mean-pooled representation
of the fusion layer h̄ = 1

n

∑n
i=1 hi and predicts a

sentence-level sentiment. As loss function we uti-
lize the mini-batch average cross-entropy with the
gold standard class label. The total loss is the sum
of the losses for sequence labeling and sequence
classification.

Previous work has also shown that most sentences
present a single aspect, and therefore a single sentiment

(Marrese-Taylor et al., 2017; Zuo et al., 2018; Zhao
et al., 2010), which motivates the introduction of the
CSL and JSL settings. For these cases we filtered out
sentences that do not fit this description.

5.1 Data
We report results on two different datasets containing
fine-grained annotations for both opinion targets and
sentiment.

First, we work with the Youtubean dataset (Marrese-
Taylor et al., 2017), which contains sentences extracted
from YouTube video annotated with aspects and their
respective sentiments. The data comes from the user-
provided closed-captions derived from 7 different long
product review videos about a cell phone, totaling up
to 71 minutes of audiovisual data. In total there are
578 long sentences from free spoken descriptions of the
product, on average each sentence consist of 20 words.
The dataset has a total of 525 aspects, with more than
66% of the sentences containing at least one mention.

Second, we work with the fine-grained annotations
gathered for the POM dataset by Garcia et al. (2019b).
This dataset is composed of 1000 videos containing re-
views where a single speaker in frontal view makes a
critique of a movie that he/she has watched. There are
videos from 372 unique speakers, with 600 different
movie titles being reviewed. Each video has an average
length of about 94 seconds and contains 15.1 sentences
on average. The fine-grained annotations we utilize are
available for each token indicating if it is responsible
for the understanding of the polarity of the sentence,
and whether it describes the target of an opinion; each
sentence has an average of 22.5 tokens. We assume
that whenever there is an overlap between the span an-
notations for a given target and a certain polarity, the
corresponding polarity can be assigned to that target,
otherwise it is labeled as neutral.

Since the annotated sentences in both datasets are not
associated to specific timestamps, in this work we pro-
pose a method based on heuristics to rescue the video
segments that correspond to each annotated sentence
by leveraging video subtitles (or closed-captions.)

168
0 0 : 2 0 : 4 1 , 1 5 0 −−> 0 0 : 2 0 : 4 5 , 1 0 9
− How d i d he do t h a t ?
− Made him an o f f e r he c o u l d n o t r e f u s e .

Figure 2: Excerpt of a subtitle chunk (in SubRip for-
mat,) showing its main components.

As shown in Figure 2, closed captions or subtitles
are composed of chunks that contain: (1) A numeric
counter identifying each chunk, (2) The time at which
the subtitle should appear on the screen followed by
--> and the time when it should disappear, (3) The
subtitle text itself on one or more lines, and (4) A blank
line containing no text, indicating the end of this sub-
title. These chunks exhibit a large variance in terms
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of their length, meaning that sentences are usually split
into many chunks.

Starting from a subtitle file associated to a given
product review video, we apply a fuzzy-matching ap-
proach between each annotated sentence for that review
and each closed caption chunk. This is repeated for
each one of the videos in our datasets. Whenever an
annotated sentence matches exactly or has over 90%
similarity with a closed caption chunk, its time-span
is associated to that sentence. Finally, the “start” and
“end” timestamps assigned to each sentence are defined
by the start and end time spans of their first and last as-
sociated closed captions, sorted by time.

5.2 Implementation Details
Pre-processing for the natural language input is per-
formed utilizing spacy1, which we use mainly to to-
kenize. Input sentences are trimmed to a maximum
length of 300 tokens, and tokens with frequency lower
than 1 are replaced with a special UNK marker. To
work with the POM dataset, which is already tok-
enized, we first convert it to the ABSA format, which
is tokenization agnostic, and then we process it.

Although our audio encoder is generic, in this work
we follow Lakomkin et al. (2017) and use Fast Fourier
Transform spectrograms to extract rich vectors from
each audio segment. Specifically, we use a window
length of 1024 points and 512 points overlap, giving us
vectors of size 513. Alternative audio feature extractors
such as Degottex et al. (2014) could also be utilized.

On the other hand, in this work we model video
feature extraction using I3D (Carreira and Zisserman,
2017). This method inflates the 2D filters of a well-
known network e.g. Inception (Szegedy et al., 2015;
Ioffe and Szegedy, 2015) or ResNet (He et al., 2016)
for image classification to obtain 3D filters, helping
us better exploit the spatio-temporal nature of video.
We first pre-process the videos by extracting features
of size 1024 using I3D with average pooling, taking as
input the raw frames of dimension 256 × 256, at 25
fps. We use the model pre-trained on the kinetics400
dataset (Kay et al., 2017) released by the same authors.
Despite our choice to obtain video features, again we
note that our video encoder is generic, so other alterna-
tives such as C3D (Tran et al., 2015) could be utilized.

Finally, all of our models are trained in an end-to-
end fashion using Adam (Kingma and Ba, 2014) with
a learning rate of 10−3. To prevent over-fitting, we add
dropout to the text encoding layer. We use a batch size
of 8 for the Youtubean dataset, and of 64 for the POM
dataset. The language encoder uses a hidden state of
size 150, and we fine-tune the pre-trained GloVe.

On each case we compare the performance of our
proposed approach against a baseline model that does
not consider multi-modality, does not utilize pre-
trained GloVe word embeddings and is based on a
cross-entropy loss, in which case we simply utilize

1https://spacy.io

the mini-batch average cross-entropy between ŷi =
softmax(oi) and the gold standard one-hot encoded la-
bels yi, a vector that is the size of the tag label vocabu-
lary for the corresponding task.

5.3 Evaluation
Since the size of Youtubean is relatively small, all our
experiments in this dataset are evaluated using 5-fold
cross validation. In the case of the POM dataset, we re-
port performance on the validation and test sets averag-
ing results for 5 different random seeds. In both cases
we compare models using paired two-sided t-tests to
check for statistical significance of the differences.

To evaluate our sequence labeling tasks we used the
CoNLL conlleval script, taking the aspect extraction
F1-score as our model selection metric for early stop-
ping. To perform joint aspect extraction and senti-
ment classification, we considered positive, negative
and neutral as sentiment classes, and decoupled the
IOB collapsed tags using simple heuristics. Concretely,
we recover the aspect extraction F1-score as well as
classification performances for each sentiment class.

6 Results
To evaluate the effectiveness of our proposals, we per-
form several ablation studies on the Simple setting for
the Youtubean dataset. Using variations of our base-
line with pre-trained GLoVe embeddings (GV), condi-
tional random field (CRF), audio and video modalities
(A+V). Experiments are also performed using 5-fold
cross-validation, and comparisons are always tested for
significance using paired two-sided t-tests.

As Table 4 shows, although every proposed model
variation performs better than the baseline, only the
model uses video and audio modalities obtains a sta-
tistically superior performance. We also see that our
proposed multi-modal variation is the one that obtains
the best performance, also being statistically significant
at the highest level of confidence. We believe these re-
sults show that our proposed multi-modal architecture
is not only able to exploit the features in the audio and
video inputs, but it can also leverage the information in
the pre-trained word embeddings and benefit from hav-
ing an inductive bias that is tailored for the task at hand,
in this case, with a loss based on structured prediction
for sequence labeling.

Table 2 summarizes our results for the Youtubean
dataset, where we can see that our proposed multi-
modal approach is able to outperform the baseline
model for all settings in the aspect extraction task.
When it comes to sentiment classification, our multi-
modal approaches do not obtain significant perfor-
mance gain in all cases, sometimes performing worse
although without statistical significance. We also
compare our results to the performance reported by
Marrese-Taylor et al. (2017), who experimented on
the Simple and CSL settings. Their models also use
pre-trained word embedding —although different from
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Setting Model Aspect Extraction Sentiment Classification

P R F1 P R F1

Simple Baseline 0.531 0.542 0.533 - - -
Ours 0.602** 0.568 0.584*** - - -

CAL Baseline 0.546 0.538 0.539 0.710 0.688 0.696
Ours 0.590 0.572 0.581* 0.722 0.722 0.718

CSL Baseline 0.526 0.463 0.490 0.746 0.722 0.724
Ours 0.563 0.581*** 0.568** 0.720 0.674 0.688

JSL Baseline 0.483 0.521 0.496 0.946 0.946 0.946
Ours 0.544*** 0.552 0.545*** 0.946 0.946 0.946

Table 2: Summary of our results on the Youtubean dataset, *** denotes statistical significance at 99% confidence,
** at 95% and * at 90%.

Setting Model Aspect Extraction Sentiment Classification

P R F1 P R F1

Simple Baseline 0.394 0.379 0.386 - - -
Ours 0.396 0.406 0.399 - - -

CAL Baseline 0.364 0.401* 0.382 0.540*** 0.416 0.270
Ours 0.444** 0.368 0.402** 0.488 0.466*** 0.342***

CSL Baseline 0.387 0.375 0.408* 0.614 0.446 0.296
Ours 0.438* 0.378 0.404 0.532 0.446 0.304

JSL Baseline 0.381 0.357 0.367 0.798 0.802 0.788
Ours 0.442*** 0.401* 0.420* 0.924*** 0.924*** 0.922***

Table 3: Summary of our results for the test set of the POM dataset, *** denotes statistical significance at 99%
confidence, ** at 95% and * at 90%.

Model Aspect Extraction

P R F1

T 0.532 0.543 0.533
T + CRF 0.558 0.528 0.541
T + GV 0.562 0.537 0.548

T + GV + CRF 0.576* 0.569 0.571**
T + A + V 0.587* 0.578 0.580*

T + CRF + A + V 0.578 0.570 0.573*
T + GV + CRF + A + V 0.602** 0.568 0.584***

Table 4: Ablation study on aspect extraction on the
simple setting. *** denotes differences against the only
text model (T) results are statistically significant at 99%
confidence, ** at 95% and * at 90%. (A + V) refers to
the audio and video modalities, (GV) stands for GLoVe
embeddings and (CRF) for the model trained using the
Conditional Random Fields loss.

GloVe— and as input they additionally receives binary
features derived from POS tags and other word-level
cues. We note, however, that they only experimented
with a maximum length of 200 tokens, which makes
our results not directly comparable. Their performance
on aspect extraction for the Simple and CAL tasks are
0.561 and 0.555 F1-Score respectively, both of which
are lower than ours. In terms of sentiment classifica-
tion, they report results for each sentiment class with
F1-Scores of 0.523, 0.149 and 0.811 for the positive,

Setting Model AE F1 SC F1

Simple Baseline 0.428 -
Ours 0.433 -

CAL Baseline 0.412 0.240
Ours 0.427*** 0.310**

CSL Baseline 0.408 0.264
Ours 0.423* 0.262

JSL Baseline 0.387 0.950***
Ours 0.469** 0.840

Table 5: Results for the validation set of the POM
dataset, where *** denotes results are statistically sig-
nificant at 99% confidence, ** at 95% and * at 90%.

negative and neutral classes, respectively. Our model
is able to outperform this baseline, with a cross-class
average F1-Score of 0.718. We do not deepen the anal-
ysis in this regard, as numbers are difficult to interpret
without statistical testing.

Table 5 and Table 3 summarize our results for the
POM dataset for the validation and test splits respec-
tively. Compared to the previous dataset we see similar
results where our multi-modal approach consistently
outperforms the baseline for aspect extraction, but with
the gains being comparatively smaller. We also see that
our model is able to significantly outperform the base-
line in the sentiment classification tasks at least in two
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Figure 3: Qualitative comparison between baseline and our method on the POM dataset. Green and red boxes
represent positive and negative sentiment respectively.
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Figure 4: Qualitative comparison between baseline and our method on the Youtubean dataset. Green and yellow
boxes represent positive and neutral sentiment respectively.

of out the three settings. In terms of previous work,
our results cannot be directly compared to Garcia et al.
(2019a) and Garcia et al. (2019b) as their problem set-
ting is different from ours.

On a more broad perspective, we think the perfor-
mance differences across datasets are related to the na-
ture of each dataset. Meanwhile Youtubean contains
reviews about actual physical products, which are of-
ten shown in the videos at the same time the reviewer
is speaking, the POM dataset contains movie reviews
where the speakers directly face the camera during
most of the video, without utilizing any additional sup-
port material. As a result, the video reviews in the
Youtubean dataset mainly focus on capturing images
of the products under discussion, with relatively fewer
scenes showing the reviewer. This means that there
may be few visual cues in the manner of facial expres-
sions or other specific actions that the models could ex-
ploit in order to perform better at the sentiment classifi-
cation task, but more cues useful for aspect extraction.
This situation is reverted in the POM dataset, which
could explain why our models tend to perform better
for sentiment classification, but offering smaller gains
for the AE task.

We also think performance differences across
datasets are to some extent explained by the nature of
the annotations on each case. The annotation guide-
lines utilized to elaborate each dataset are actually quite
different, with the annotations in the Youtubean dataset
closely following those of the well-known SemEval
datasets, which are target-centric and the POM stan-
dards substantially diverging from this. Concretely,
Garcia et al. (2019b) propose a two-level annotation
method, where “the smallest span of words that con-
tains all the words necessary for the recognition of
an opinion” are to be annotated. As a result, aspects
annotated in the POM dataset often include pronouns
which are more difficult to identify as aspects, often

requiring co-reference resolution. With regards to as-
pect polarity, while it can be extracted directly from the
Youtubean annotations, in the case of POM we needed
some pre-processing as target and sentiment are anno-
tated using independent text spans.

Qualitative results of the POM and Youtubean
dataset in a multitask CAL can be seen in Figure 3 and
4 respectively, results suggest that the method learn to
use the information from additional modalities and en-
hance the sentiment and aspect prediction.

Finally, as we observe that our models tend to ob-
tain bigger gains on the AE tasks rather than on SC,
we think this behavior can be partially attributed to the
inductive bias of our model, which makes it specially
suitable for sequence segmentation tasks.

7 Conclusions
In this paper we have presented a multi-modal ap-
proach for fine-grained opinion mining, introducing a
modular architecture that utilizes features derived from
the audio, video frames and language transcription of
video reviews to perform aspect extraction and senti-
ment classification at the sentence level. To test our
proposals we have taken two datasets built upon video
review transcriptions containing fine-grained opinions,
and introduced a technique that leverages the video
subtitles to associate timestamps to each annotated
sentence. Our results offer empirical evidence show-
ing that the additional modalities contain useful in-
formation that can be exploited by our models to of-
fer increased performance for both aspect extraction
and sentiment classification, consistently outperform-
ing text-only baselines.

For future work, we are interested in exploring other
ways to capture cross-modal interactions, exploit the
temporal relationship between the representations of
different modalities, and test alternative ways to better
deal with our multi-task settings.
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Abstract
Sentiment Analysis and Emotion Detection in
conversation is key in several real-world appli-
cations, with an increase in modalities avail-
able aiding a better understanding of the un-
derlying emotions. Multi-modal Emotion De-
tection and Sentiment Analysis can be partic-
ularly useful, as applications will be able to
use specific subsets of available modalities, as
per the available data. Current systems dealing
with Multi-modal functionality fail to lever-
age and capture - the context of the conver-
sation through all modalities, the dependency
between the listener(s) and speaker emotional
states, and the relevance and relationship be-
tween the available modalities. In this paper,
we propose an end to end RNN architecture
that attempts to take into account all the men-
tioned drawbacks. Our proposed model, at the
time of writing, out-performs the state of the
art on a benchmark dataset on a variety of ac-
curacy and regression metrics.

1 Introduction

Multi-modal Emotion Detection and Sentiment
Analysis in conversation is gathering a lot of at-
tention recently considering its potential use cases
owing to the rapid growth of online social me-
dia platforms such as YouTube, Facebook, Insta-
gram, Twitter etc. (Chen et al., 2017, Poria et al.,
2016, Poria et al., 2017, Zadeh et al., 2016b, Zadeh
et al., 2017), especially knowing that information
obtained from any combination of more than one
of the available modalities (e.g. text, audio, video)
can be used to produce meaningful results.

The current state of the art systems on multi-
modal emotion detection and sentiment analysis
do not treat the modalities in accordance to the
information they are capable of holding (e.g. tex-
tual information is significantly more likely to hold

∗* The following work was pursued when author was an
intern at NVIDIA Graphics, Bengaluru

contextual information then audio or video features
are), lack an adequate fusion mechanism, and fail
to effectively capture the context of a conversation
in a multi-modal setting. In addition to the lack of
proper usage of the available modalities, models
also fail to effectively capture the flow of a conver-
sation, the separation between speaker and listener
states, and the emotional effect a speaker’s utter-
ance has on the listener (s) in dyadic conversations.

Our proposed model Multilogue-Net, attempts to
embed basic domain knowledge and takes insight
from Poria et al. (2019), assuming that the senti-
ment or emotion governing a particular utterance
predominantly depends on 4 factors – interlocutor
state, interlocutor intent, the preceding and future
emotions, and the context of the conversation. In-
terlocutor intent amongst the mentioned is partic-
ularly difficult to model due to its dependency of
prior knowledge about the speaker, but modelling
the other 3 separately, yet in an interrelated manner
was theorized to produce meaningful results if man-
aged to be captured effectively. The key intention
was to attempt to simulate the setting in which an
utterance is said, and use the actual utterance at
that point to be able to gain better insights regard-
ing emotion and sentiment of that utterance. The
model uses information from all modalities learn-
ing multiple state vectors (representing interlocutor
state) for a given utterance, followed by a pair-
wise attention mechanism inspired by Ghosal et al.
(2018), attempting to better capture the relationship
between all pairs of the available modalities.

The model uses two gated recurrent units (GRU)
(Chung et al., 2014) for each modality for mod-
elling interlocutor state and emotion. Along
with these GRU’s, the model also uses an inter-
connected context network, consisting of the same
number of GRU’s as the number of available modal-
ities, to model a different learned context represen-
tation for each modality. The incoming utterance

19

https://doi.org/10.18653/v1/P17


representations and the historical GRU outputs are
used at every timestamp to be able to arrive at a
prediction for that timestamp.

The model produces m different representations
at every timestamp (Where m is the number of
modalities), where each representation is the emo-
tional state at that timestamp as conveyed by each
of the modalities. Thesem representations are used
by the fusion mechanism to incorporate informa-
tion from each of the m representations to be able
to arrive at the final prediction for that timestamp.
We understand that the usage of the pairwise atten-
tion mechanism, along with the Emotion GRU are
what make the model flexible across tasks.

The usage of only the text representation as input
to the context GRU’s has been observed to be key to
the results, as the context of the conversation would
be better captured by textual information then it
would have with audio or video information. We
believe that Multilogue-net performs better than
the current state of the art (Ghosal et al., 2018)
on multi-modal datasets because of better context
representation leveraging all available modalities.1

The remaining sections of the paper are arranged
as follows: Section 2 – discusses related work;
Section 3 – discusses the model in detail; Section 4
– provides experimental results, dataset details, and
analysis; Section 5 contains our ablation studies
and its implications; and finally Section 6 – speaks
on potential future work, and concludes our paper.

2 Related Work

Multi-modal Emotion recognition and Sentiment
Analysis has always attracted attention in multiple
fields such as natural language processing, psychol-
ogy, cognitive science, and so on (Picard, 2010).
Previous works have been done studying factors
of variation that have a more direct correlation
with emotion, such as Ekman et al. (1992), who
found correlation between emotion and facial cues,
and a lot of studies extensively focus on emotions
and their relationship with one another such as
Plutchik’s wheel of emotions, which defines eight
primary emotion types, each of which has a multi-
tude of emotions as sub-types.

Early work done to leverage multi-modal in-
formation for emotion recognition includes works
such as Datcu and Rothkrantz (2012), who fused

1A basic model and training implementation of
Multilogue-Net can be found at https://github.com/
amanshenoy/multilogue-net.

acoustic information with visual cues for emotion
recognition and Eyben et al. (2010), who used
contextual information for emotion recognition in
multi-modal settings. More recently, deep recur-
rent neural networks have been used to be able
make the best of the learned representations of the
modalities available to be able to give very effective
and accurate emotion and sentiment predictions.
Poria et al. (2017) successfully used RNN-based
deep networks for multi-modal emotion recogni-
tion, which was followed by multiple other works
(Chen et al., 2017; Zadeh et al., 2018a; Zadeh et al.,
2018c) giving results far better than what was seen
before. Recent works also include works such as
Hazarika et al. (2018), who used memory networks
for emotion recognition in dyadic conversations,
where two distinct memory networks enabled inter-
speaker interaction.

Some works such as DialogueRNN (Majumder
et al., 2018), though focused on emotion recogni-
tion and sentiment analysis using a single modal-
ity (text), works very well in a multi-modal set-
ting by just replacing the text representation with
a concatenated vector of all the modality represen-
tations. DialogueRNN effectively leveraged the
separation between the speakers by maintaining
two independent gated recurrent units to keep track
of the interlocutor states, also effectively capturing
context in the conversation, yielding state-of-the-
art performance on uni-modal data. Even though
DialogueRNN was able to give reasonably good
results on multi-modal data, the lack of an ade-
quate fusion mechanism and the lack of focus on
a multi-modal representation held its multi-modal
performance back.

Apart from the kind of works shown before,
where a methodology or a model was proposed,
works such as Poria et al. (2019) spoke extensively
about the research challenges and advancements
in emotion detection in conversation and gave a
comprehensive overview of the problem. Most re-
cently Ghosal et al. (2018) introduced the idea of
learning the relationship between pairs of all avail-
able modalities using pairwise attention, in a multi-
modal setting, where similar attributes learned by
multiple modalities are emphasized and differences
between the modality representations are dimin-
ished. Pairwise attention proved to be incredibly
effective yielding state-of-the-art performance on
multi-modal data with just simple representations
for each modality.
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3 Proposed Methodology

3.1 Problem Formulation
Let there be a P number of participants
p1, p2, ..., pP in the conversation. The problem is
defined such that for every utterance u1, u2, ..., uN
uttered by any participant(s), a sentiment score is
allotted along with a predicted emotion label (one
of happy, sad, angry, surprise, disgust, and fear).
Each utterance corresponds to a particular partici-
pant of the conversation, allowing this formulation
of the problem to also capture the average senti-
ment of a participant in the conversation. Predic-
tions over utterances also avoid problems such as
classification during long moments of silence when
predictions are made for a fixed time interval, and
is also mostly common practice.

For every utterance ut(p), where p is the party
who uttered the utterance, there exist three inde-
pendent representations , tt ∈ RDt , at ∈ RDa ,
and vt ∈ RDv , and are obtained using the feature
extractors further explained in section 4.2.

This gives us our overall formulation of the prob-
lem, which is to be able to learn a function which
would take as input three independent representa-
tions of a particular utterance, information regard-
ing the previous emotional state of the participant,
and a representation of the current context of the
conversation - to be able to map to an output pre-
diction of a sentiment score and emotion label.

Details regarding how these representations are
updated and how the output is generated using these
inputs are described in detail below.

3.2 Model Details
Modelling was done under the underlying assump-
tion that the sentiment or emotion of an utterance
predominantly depends on four factors as men-
tioned before:

• Interlocutor State

• Interlocutor Intent

• Context of the conversation until that point

• Previous interlocutor states and emotions of a
particular participant in the conversation

The proposed model attempts to model three out
of the mentioned four explicitly, and assume that
interlocutor intent will be modelled implicitly dur-
ing model training. Interlocutor state is modelled
using a state GRU (will be referred to as sGRU ),

A context GRU is used to keep track of the con-
text of the conversation (cGRU ), and an emotion
GRU (eGRU ) is used to keep track of the emo-
tional state of that particular participant. Finally, a
pairwise attention mechanism, which uses the emo-
tion representation of all modalities at a particular
timestamp is used to leverage the important modal-
ities and relevant combination of the modalities for
emotion or sentiment prediction at that timestamp.

Figure 1: Description of all the state updates at times-
tamp t for a single participant p1

Every utterance has three independent feature
representations (text, audio, and video features),
tt ∈ RDt , at ∈ RDa , and vt ∈ RDv . Each of these
feature representations are treated and operated on
independently until the pairwise attention mech-
anism. The model consists of two GRU’s (state
GRU, and emotion GRU) for every modality and
participant, and a context GRU for each modality
common to all participants in the conversation (If
p is the number of participants and m is the num-
ber of modalities, the model would have a total of
2mp+m GRU’s). The inputs at the current times-
tamp and the previous state, context, and emotion
representations are operated on to be able to arrive
at the prediction at that timestamp. Figure 1 de-
scribes the updates at a particular timestamp and
the role of each GRU is further explained below.

3.2.1 Context GRU (cGRU )
The Context GRU (cGRU ) for each modality aims
to capture the context of the conversation by jointly
encoding the utterance representation of that modal-
ity (at timestamp t in the given diagram) (tt ∈ RDt

, at ∈ RDa , or vt ∈ RDv ) and the previous times-
tamp speaker state GRU output of that modality.
This accounts for inter-speaker and inter-utterance
dependencies to produce an effective context rep-
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Figure 2: State updates and final prediction output in a conversation between two participants p1 and p2, where the
updates of each participant at a timestamp is as given in figure 1

resentation. The current utterance tt, at, or vt,
changes the state of that speaker from (stt, s

a
t , svt )

to (stt+1, sat+1, svt+1). To capture this change in
context we use GRU cell cGRU having output size
Dc, using tt, at, or vt and (stt, s

a
t , svt ) as:

ctt+1 = cGRU(ctt, (tt ⊕ stt)) (1)

cat+1 = cGRU(cat , (at ⊕ sat )) (2)

cvt+1 = cGRU(cvt , (vt ⊕ svt )) (3)

Where Dc is the size of the context vectors ctt+1,
cat+1, and cvt+1.Dt, Da, and Dv are the sizes of ut-
terance representations of text, audio, and video
respectively.⊕ represents the concatenation oper-
ation, Ds is the size of all the state vectors stt+1,
sat+1, and svt+1; and all GRU weight and biases
shapes are such that they produce the expected
shape of outputs taking the given shape of inputs.

3.2.2 State GRU (sGRU )
The network keeps track of the participants in-
volved in a conversation by employing a p ∗ m
number of (sGRU )’s, where p is the number par-
ticipants in the conversation and m is the number
of available modalities.The sGRU associated with
a participant outputs fixed size vectors which serve
as an encoding to represent the interlocutor state,

and are directly used for both emotion and senti-
ment prediction, and updating the context vectors.

All the state vectors are initialized to null at the
first timestamp. For a timestamp t, the state vector
of participant p and modality m ∈ {t, a, v} is up-
dated using the input feature representation of that
modality and simple attention over all the context
vectors until that timestamp. The simple attention
mechanism over all the context vectors is described
by the following equations:

α = softmax(mT
t Wα[c

m
1 , c

m
2 , ..., c

m
t ]) (4)

attt = α[cm1 , c
m
2 , ..., c

m
t ]
T (5)

Where mT
t ∈ {tTt , aTt , vTt }, Wα ∈ RDt,a,v×Dc ,

αT ∈ R(t−1), and attt ∈ RDc . In equation 4, we
calculate attention scores over all previous context
representations of all previous utterances, highlight-
ing the relative importance of all the previous con-
text vectors to mt. A softmax layer is applied to
amplify this relative importance, and finally equa-
tion 5 the final output of attention over context
attt is calculated by pooling the previous context
vectors with α.

We then employ sGRU t,a,v to update st,a,vt to
st,a,vt+1 on the basis of incoming utterance representa-
tions for each modalitymT

t ∈ {tTt , aTt , vTt } and the
context representations atttt, att

a
t , and attvt using
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GRU cells sGRU tt , sGRUat , and sGRUvt , each of
output size Ds.

stt+1 = sGRU(stt, (tt ⊕ atttt+1)) (6)

sat+1 = sGRU(sat , (at ⊕ attat+1)) (7)

svt+1 = sGRU(svt , (vt ⊕ attvt+1)) (8)

Where Ds is the size of all the state vectors
stt+1, sat+1, and svt+1.Dt, Da, Dv are the sizes of
utterance representations of text, audio, and video
respectively.⊕ represents concatenation operation,
and all GRU weights shapes are such that they pro-
duce the expected shape of outputs taking the given
shape of inputs.

The intended purpose of using this as the input
to sGRU t,a,v is to model the dependency of the
speaker state on the context of the conversation as
understood by the utterances until that point, along
with the utterance representation at that point. The
output of the sGRU for modality m and times-
tamp t serves as an encoding of the speaker state
as conveyed by modality m, at time t.

3.2.3 Emotion GRU (eGRU )
The emotion GRU serves as the decoder for the
encoding produced by the state GRU. The emotion
GRU uses the previous timestamp eGRU output,
and the encoding provided by sGRU to produce
an emotion or sentiment representation which is
further used by the pairwise attention mechanism
to be able to produce the relevant output for predic-
tion. At timestamp (t+ 1) the emotion vectors are
updated as:

ett+1 = eGRU(ett, s
t
t+1) (9)

eat+1 = eGRU(eat , s
a
t+1) (10)

evt+1 = eGRU(evt , s
v
t+1) (11)

Where De is the size of all the emotion vec-
tors ett+1, eat+1, and evt+1.Dt, Da, andDv are the
sizes of utterance representations of text, audio,
and video respectively.De is the size of the state
vectors stt+1, sat+1, and svt+1; and all GRU weights
shapes are such that they produce the expected
shape of outputs taking the given shape of inputs.

The emotion GRU acts as a decoder to the encod-
ing produced by the associated state GRU, produc-
ing a vector which can be used for both sentiment
and emotion prediction.

3.2.4 Pairwise Attention Mechanism
The emotion GRU for each timestamp will produce
an m number of vectors (where m is the number
of modalities available). Pairwise attention is then
used over these m vectors to produce the final pre-
diction output. In particular pairwise attention is
calculated over the following pairs in our case –
(ev, et), (et, ea), and (ea, ev). Pairwise attention
for pair (ev, et) would be calculated as follows:

Figure 3: Pairwise attention mechanism used as the fu-
sion mechanism followed by the final prediction layer

B1 = ev.(et)T , B2 = et.(ev)T (12)

N1 = softmax(B1), N2 = softmax(B2) (13)

O1 = N1.e
t, O2 = N2.e

v (14)

A1 = O1 � ev, A2 = O2 � et (15)

pairwise(ev, et) = A1 ⊕A2 (16)

Where B1, B2 ∈ RDe×De ; N1, N2 ∈ RDe×De ;
A1, A2 ∈ RDe×De ; and pairwise(ev, et) ∈
RDe×2De ; � represents element-wise product; and
⊕ represents concatenation.

A complete analysis on the pairwise attention
mechanism has been done by Ghosal et al. (2018),
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where the role of each one of the intermediate vari-
ables has been described. These equations (12, 13,
14, 15, 16) calculate mC2 pairwise fusion represen-
tations, which are further concatenated to make the
final prediction as described below.

3.2.5 Final Predictions
The prediction layer varies based on whether a
sentiment or emotion prediction is expected. For
sentiment prediction first all three pairs of pairwise
attention i.e. pairwise(ev, et), pairwise(ea, et),
and pairwise(ev, ea) at that timestamp are con-
catenated along with the emotion GRU outputs at
that timestamp (ett, e

a
t , and evt ) and the concate-

nated layer is passed through a fully connected
layer followed by a softmax or tanh layer based
on the nature of the expected prediction. For senti-
ment prediction between -1 and +1 at timestamp t
the output layer would equate as follows:

pw = pw(ev, et)⊕pw(ea, et)⊕pw(ev, ea) (17)

Lt = pw ⊕ ett ⊕ eat ⊕ evt (18)

predsentiment(t) = tanh(WLLt) (19)

Where pairwise(ev, et) has been represented as
pw(ev, et); and WL ∈ R9De×1.

For emotion prediction we use a fully connected
layer along with a final softmax layer to calculate
6 emotion class probabilities from Lt.

lt = ReLU(WlLt + bl) (20)

Pt = softmax(Wsmaxlt + bsmax) (21)

predemotion(t) = argmax(Pt) (22)

Where Wl ∈ RDl×9De ; bl =∈ RDl ;Wsmax ∈
Rc×Dl ; bsmax ∈ Rc and Pt ∈ Rc

3.2.6 Training
Fairly standard practices have been employed for
the training of the model. Categorical cross-entropy
has been used along with L2-regularization as the
loss function during training for emotion prediction,
to maximize likelihood over each of the classes.

Mean Square Error (MSE) along with L2 regular-
ization has been employed as loss function during
training for sentiment regression. The usage of a

Metric A2 F1
Text + Audio
BC-LSTM 79.30 -
MMMU-BA 80.58 -
DialogueRNN 78.81 79.12
Multilogue-net 80.12 78.84
Video + Audio
BC-LSTM 62.10 -
MMMU-BA 65.16 -
DialogueRNN 63.22 60.14
Multilogue-net 69.55 63.40
Text + Video
BC-LSTM 80.20 -
MMMU-BA 81.51 -
DialogueRNN 79.88 79.10
Multilogue-net 80.66 79.62
Text + Audio + Video
BC-LSTM 80.30 -
MMMU-BA 82.31 -
DialogueRNN 79.80 79.48
Multilogue-net 81.19 80.10

Table 1: Multilogue-Net performance on CMU-MOSI
in comparison with the current and previous state-of-
the-art on the dataset. A2 indicating accuracy with 2
classes, and F1 indicating F1 score .

saturating output layer and a loss function that does
not undo the saturation, leads to the model to stop
training when it makes extreme predictions (close
to -1 or +1) due to very small gradients. Using
initialization strategies that start at smaller model
weights, mini-batch gradient descent-based Adam
(Kingma and Ba, 2014) optimizer, and using L2
regularization is used to avoid this failure mode.

4 Experiments, Datasets, and Results

4.1 Datasets

We evaluate our model using two benchmark
datasets - CMU Multi-modal Opinion-level Senti-
ment Intensity (CMU-MOSI) (Zadeh et al., 2016a)
and the recently published CMU Multi-modal
Opinion Sentiment and Emotion Intensity (CMU-
MOSEI) dataset (Zadeh et al., 2018b).

4.1.1 CMU-MOSI
CMU-MOSI dataset consists of 93 videos spanning
over 2199 utterances. Each utterance has a senti-
ment label associated with it. It has 52, 10 & 31
videos in training, validation & test set accounting
for 1151, 296 & 752 utterances. CMU-MOSEI
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has 3229 videos with 22676 utterances from more
than 1000 online YouTube speakers. The training,
validation & test set consist of 16216, 1835 & 4625
utterances, respectively. Each utterance in CMU-
MOSI dataset has been annotated as either positive
or negative.

4.1.2 CMU-MOSEI
In CMU-MOSEI dataset labels are in a continu-
ous range of -3 to +3 and are accompanied by an
emotion label being one of six emotions. How-
ever, in this work we also project the instances of
CMU-MOSEI in a two-class classification setup
with values ≥ 0 signifies positive sentiments and
values < 0 signify negative sentiments. We have
called this A2 accuracy (accuracy with 2 classes).
Along with this we have also shown results for con-
tinuous range prediction between -3 and +3, and
emotion prediction with the 6 emotion labels for
each utterance in CMU- MOSEI. We have used
A2 as a metric to be consistent with the previous
published works on CMU-MOSEI dataset (Ghosal
et al., 2018; Zadeh et al., 2018b). CMU-MOSEI
has further been used for other comprehensive ex-
periments due to its large sizer and easier feature
extraction

4.2 Uni-modal Feature Extraction

4.2.1 CMU-MOSEI
We use the CMU-Multi-modal Data SDK (Zadeh
et al., 2018b) for feature extraction. For MOSEI
dataset, sentiment label-level features were pro-
vided where text features used were GloVe em-
beddings (Pennington et al., 2014), visual features
extracted by Facet (Stöckli et al., 2017) & acous-
tic features by OpenSMILE (Eyben et al., 2010).
Thereafter, we compute the average of sentiment
label-level features in an utterance to obtain the
utterance-level features. For each sentiment label-
level feature, the dimension of the feature vector is
set to 300 (text), 35 (visual) & 384 (acoustic).

4.2.2 CMU-MOSI
In contrast, for MOSI dataset we use utterance
level features provided in Poria et al. (2017). These
utterance-level features represent the outputs of
a convolutional neural network (Karpathy et al.,
2014), 3D convolutional neural network (Ji et al.,
2010) & openSMILE (Eyben et al., 2010) for text,
visual & acoustic modalities, respectively. Dimen-
sions of utterance-level features are 100, 100 & 73
for text, visual & acoustic, respectively.

Metric A2 F1 MAE r
T + A
MMMU-BA 79.74 - - -
DialogueRNN 79.80 78.32 - -
Multilogue-net 80.18 79.88 - -
V + A
MMMU-BA 76.66 - - -
DialogueRNN 73.90 73.92 - -
Multilogue-net 75.16 74.04 - -
V + T
MMMU-BA 79.40 - - -
DialogueRNN 78.90 78.12 - -
Multilogue-net 80.06 79.84 - -
T + A + V
Graph-MFN 76.90 77.00 0.71 0.54
MMMU-BA 79.80 - - -
DialogueRNN 79.98 79.82 0.69 0.42
Multilogue-net 82.10 80.01 0.59 0.50

Table 2: Multilogue-Net performance on CMU-
MOSEI Sentiment Labels compared to previous state-
of-the-art models on regression and accuracy Metrics.
All metrics apart from MAE represents higher values
for better results, MAE represents lower values for bet-
ter results.

4.3 Experiments

We evaluate our proposed approach on CMU-
MOSI (test-set) on accuracy and F1 score, and
CMU-MOSEI (dev-set) on accuracy, F1 score,
mean absolute error (MAE), pearson score (r),
and accuracy’s on the emotion labels. Due to the
lack of speaker information in CMU-MOSI we
were not able to use the CMU-Multi-modal Data
SDK for sentiment label extraction, to be able to
evaluate our approach on CMU-MOSI on mean
absolute error and Pearson score.

Results have also been reported for usage of two
of the three available modalities. Uni-modal per-
formance has not been reported as the focus of the
paper is the effective usage of multi-modal data.
In a uni-modal setting the model would not be us-
ing the fusion mechanism and the output would
be equivalent to having a few dense layers after
the emotion GRU to directly output the final pre-
diction. F1 scores have not been mentioned by
most previous models being used for comparison,
but have been reported for Multilogue-Net for ad-
ditional comparison to any future models using
CMU-MOSI dataset.

Table 1 shows the performance of Multilogue-
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MOSEI Emotions (Text + Video + Audio)
Emotion Anger Disgust Fear Happy Sad Surprise

Metric WA F1 WA F1 WA F1 WA F1 WA F1 WA F1
Graph-MFN 62.6 72.8 69.1 76.6 62.0 89.9 66.3 66.3 60.4 66.9 53.7 85.5

Multilogue-Net 83.1 80.9 90.3 87.3 89.7 87.0 70.0 68.4 76.1 74.5 87.4 84.0

Table 3: Multilogue-Net performance on MOSEI Emotion Labels compared with that of Graph-MFN on weighted
accuracy and F1 score. MOSEI Emotion label results were presented by only one model, and comprehensive results
have not been published for the same.

Net on CMU-MOSI dataset, comparing to the cur-
rent state of the art (Ghosal et al., 2018), previ-
ous state-of-the-art (Poria et al., 2017), and Dia-
logueRNN (Majumder et al., 2018) (Multi-modal
performance of DialogueRNN has not been re-
ported by Majumder et al. (2018), and we have
run these experiments additionally for a better com-
parative study, where concatenating the input rep-
resentations has been used as a fusion mechanism).
Our model consistently outperforms the previous
state-of-the-art but performs better only on one of
the subsets of the modalities when compared to the
current state-of-the-art.

In comparison to MMMU-BA our model also
lacks in Multi-modal performance. We theorize
that the model performance is lacking because of
the low number of training examples (CMU-MOSI
consists only of 93 conversations out of which 62
were used for training), in contrast to our model
which has a high capacity (Relative to models be-
ing compared with). Since Multilogue-Net learns
a lot of intermediate representations in order to
make a prediction, it would need a larger dataset
with more variability to be able to learn meaningful
representations. The proposition that performance
lacks due to a lack of training examples is backed
by the results on CMU-MOSEI (demonstrated in
a comparative setting in Table 2 and 3) where the
model consistently outperforms the current state-
of-the-art on most metrics.

On CMU-MOSEI, our model seems to perform
very consistently on both sentiment and emotion
labels. The model outperforms the current state of
the art on all but one metric (both classification and
accuracy) on sentiment labels in the tri-modal set-
ting. Multilogue-Net also outperforms the current
state of the art on the emotion labels by a consider-
able margin (This is also attributed to the fact that
not a lot of models have presented results on these
labels).

Similar observations are made in both datasets,

where the tri-modal metrics show the best perfor-
mance, and audio + video show the worst relative
performance (suggesting the importance of text in a
multi-modal setting). Textual information seems to
be the guiding factor for multi-modal performance,
with video and audio features simply acting as a
push to the uni-modal performance on text.

We theorize that the performance of Multilogue-
Net is majorly attributed to its increased capacity
as compared to previous models. Effective usage
of this increased capacity, using representations in-
spired from a basic understanding of conversation,
along with a larger dataset for training have been
key in achieving the improved results.

5 Ablation Studies and Analysis

Until now, some architectural considerations, such
as the use of eGRU and the fusion mechanism,
have been briefly explained but not empirically jus-
tified. This section aims to get empirical evidence
regarding the effectiveness of these modules. Since
our model completely hinges around the usage of
the context and state GRU’s, our ablation studies
and analysis have focused on the fusion mechanism
and emotion GRU (eGRU ) only.

5.1 Fusion Mechanism

The effectiveness of the fusion mechanism can be
very easily examined by observing the results of
the model on both tasks − Sentiment Regression
and Emotion Recognition, with and without the
fusion mechanism. Table 4 shows these results on
CMU-MOSEI modality subsets.

The bi-modal results in table 4 involve evaluat-
ing the pairwise attention module only once (Since
there is only one pair available), directly followed
by the prediction layer. The tri-modal case on the
other hand involves evaluating the pairwise atten-
tion module thrice (Once for each pair). In general,
the number of times this module will have to be
evaluated for m modalities is mC2, which raises
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Fusion Mechanism A2 MAE
Text + Audio
without 75.78 -
with 80.18 -
Video + Audio
without 75.66 -
with 75.16 -
Text + Video
without 76.80 -
with 80.06 -
Text + Audio + Video
without 79.80 0.66
with 82.10 0.59

Table 4: Multilogue-Net performance on CMU-
MOSEI with and without the fusion mechanism - for
’without’ fusion we have concatenated all the represen-
tations and directly passed them to the prediction layer.

a fair concern regarding the trade-off between the
additional computational cost and performance.

We empirically observe that the additional com-
putational cost can be considered negligible in con-
text of the increased performance, largely attribut-
ing to the non-parametric nature of the fusion mech-
anism and the relatively small number of additional
parameters in the prediction layer (6De for the sen-
timent regression; 36De for emotion recognition).

The fusion mechanism seems to clearly be bene-
ficial in all of the reported cases apart from video
+ audio, implying that the fusion mechanism is
useful only in the cases the text representation is
used. This further strengthens our claim that the
text representation guides tri-modal performance.

5.2 Emotion GRU (eGRU )

Unlike as done with the fusion mechanism, the
effectiveness of the eGRU cannot be examined by
evaluating metrics with and without it. Removing
the Emotion GRU would clearly be detrimental to
the results, and would not convey the intention of
having it.

The primary intention of having the eGRU can
be considered to be maintaining consistency be-
tween tasks. To better understand what this means
table 5 quantitatively demonstrates this effect. The
model was trained separately for Emotion Detec-
tion and Sentiment Regression tasks. After both the
models were trained satisfactorily, a particular sam-
ple from the test set (test sample 6) was inferred
on. We then retrieved the intermediate text repre-

Representation Euclidean Distance
Sample 6 with t = 4

st4 4.6 units
ct4 6.1 units
et4 26.4 units

Table 5: Euclidean Distance between the same rep-
resentations for Sentiment Regression as compared to
Emotion Detection. (Distances have been converted to
units for convenience and easier comparison)

sentations (et4, ct4, and st4; superscript t indicating
text modality) at a particular timestamp (t = 4)
for both models on that sample. The Euclidean
Distance between these two sets of representations
(one for each task) was evaluated and have been
shown in table 5, where we can clearly observe
that the euclidean distance between the emotion
representations is much larger as compared to the
state and context representations.

This shows that for both tasks, interlocutor state
and context representations are relatively similar to
each other, whereas the emotion state representa-
tion is more varied and task dependant. This not
only allows us to use the same cGRU and sGRU
weights across tasks, but would also allow us to
train for multiple tasks in parallel using a different
eGRU for each task - giving us consistent and ac-
curate predictions across multiple tasks. Analysis
of such a network, and whether training for multi-
ple tasks in parallel aids one another, has not been
covered in this paper and is left to our future work.

6 Conclusion

In this paper, we have presented an RNN architec-
ture for multi-modal sentiment analysis and emo-
tion detection in conversation. In contrast to the cur-
rent state-of-the-art models, our model focuses on
effectively capturing the context of a conversation
and treats each modality independently, taking into
account the information a particular modality is ca-
pable of holding. Our model consistently performs
well on benchmark datasets such as CMU-MOSI
and CMU-MOSEI in any multi-modal setting.

The model can be further extended to have better
feature extractors, and increase both the number
of modalities and the number of participants in the
conversation. Due to the lack of availability of
datasets consisting of these extensions with emo-
tion or sentiment labels, we have left this to our
future work.
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Abstract

Our senses individually work in a coordi-
nated fashion to express our emotional inten-
tions. In this work, we experiment with mod-
eling modality-specific sensory signals to at-
tend to our latent multimodal emotional in-
tentions and vice versa expressed via low-
rank multimodal fusion and multimodal trans-
formers. The low-rank factorization of multi-
modal fusion amongst the modalities helps rep-
resent approximate multiplicative latent signal
interactions. Motivated by the work of (Tsai
et al., 2019) and (Liu et al., 2018), we present
our transformer-based cross-fusion architec-
ture without any over-parameterization of the
model. The low-rank fusion helps repre-
sent the latent signal interactions while the
modality-specific attention helps focus on rel-
evant parts of the signal. We present two meth-
ods for the Multimodal Sentiment and Emo-
tion Recognition results on CMU-MOSEI,
CMU-MOSI, and IEMOCAP datasets and
show that our models have lesser parameters,
train faster and perform comparably to many
larger fusion-based architectures.

1 Introduction

The field of Emotion Understanding involves com-
putational study of subjective elements such as sen-
timents, opinions, attitudes, and emotions towards
other objects or persons. Subjectivity is an inher-
ent part of emotion understanding that comes from
the contextual nature of the natural phenomenon.
Defining the metrics and disentangling the objec-
tive assessment of the metrics from the subjective
signal makes the field quite challenging and excit-
ing. Sentiments and Emotions are attached to the
language, audio and visual modalities at different
rates of expression and granularity and are use-
ful in deriving social, psychological and behavioral
insights about various entities such as movies, prod-
ucts, people or organizations. Emotions are defined

as brief organically synchronized evaluations of
major events whereas sentiments are considered as
more enduring beliefs and dispositions towards ob-
jects or persons (Scherer, 1984). The field of Emo-
tion Understanding has rich literature with many in-
teresting models of understanding (Plutchik, 2001;
Ekman, 2009; Posner et al., 2005). Recent studies
on tensor-based multimodal fusion explore regu-
larizing tensor representations (Liang et al., 2019)
and polynomial tensor pooling (Hou et al., 2019).

In this work, we combine ideas from (Tsai et al.,
2019) and (Liu et al., 2018) and explore the use
of Transformer (Vaswani et al., 2017) based mod-
els for both aligned and unaligned signals with-
out extensive over-parameterization of the models
by using multiple modality-specific transformers.
We utilize Low Rank Matrix Factorization (LMF)
based fusion method for representing multimodal
fusion of the modality-specific information. Our
main contributions can be summarized as follows:

• Recently proposed Multimodal Transformer
(MulT) architecture (Tsai et al., 2019) uses at
least 9 Transformer based models for cross-
modal representation of language, audio and
visual modalities (3 parallel modality-specific
standard Transformers with self-attention and
6 parallel bimodal Transformers with cross-
modal attention). These models utilize several
parallel unimodal and bimodal transformers
and do not capture the full trimodal signal
interplay in any single transformer model in
the architecture. In contrast, our method uses
fewer Transformer based models and fewer
parallel models for the same multimodal rep-
resentation.

• We look at two methods for leveraging the
multimodal fusion into the transformer ar-
chitecture. In one method (LMF-MulT), the
fused multimodal signal is reinforced using
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Figure 1: Modality-specific Fused Attention

attention from the 3 modalities. In the other
method (Fusion-Based-CM-Attn), the individ-
ual modalities are reinforced in parallel via
the fused signal.

The ability to use unaligned sequences for mod-
eling is advantageous since we rely on learning
based methods instead of using methods that force
the signal synchronization (requiring extra timing
information) to mimic the coordinated nature of
human multimodal language expression. The LMF
method aims to capture all unimodal, bimodal and
trimodal interactions amongst the modalities via
approximate Tensor Fusion method.

We develop and test our approaches on the CMU-
MOSI, CMU-MOSEI, and IEMOCAP datasets
as reported in (Tsai et al., 2019). CMU Multi-
modal Opinion Sentiment and Emotion Intensity
(CMU-MOSEI) (Zadeh et al., 2018) is a large
dataset of multimodal sentiment analysis and emo-
tion recognition on YouTube video segments. The
dataset contains more than 23,500 sentence utter-
ance videos from more than 1000 online YouTube
speakers. The dataset has several interesting prop-
erties such as being gender balanced, containing
various topics and monologue videos from peo-
ple with different personality traits. The videos
are manually transcribed and properly punctuated.
Since the dataset comprises of natural audio-visual
opinionated expressions of the speakers, it provides
an excellent test-bed for research in emotion and
sentiment understanding. The videos are cut into
continuous segments and the segments are anno-
tated with 7 point scale sentiment labels and 4
point scale emotion categories corresponding to the

Ekman’s 6 basic emotion classes (Ekman, 2002).
The opinionated expressions in the segments con-
tain visual cues, audio variations in signal as well
as textual expressions showing various subtle and
non-obvious interactions across the modalities for
both sentiment and emotion classification. CMU-
MOSI (Zadeh et al., 2016) is a smaller dataset
(2199 clips) of YouTube videos with sentiment an-
notations. IEMOCAP (Busso et al., 2008) dataset
consists of 10K videos with sentiment and emotion
labels. We use the same setup as (Tsai et al., 2019)
with 4 emotions (happy, sad, angry, neutral).

In Fig 1, we illustrate our ideas by showing the
fused signal representation attending to different
parts of the unimodal sequences. There’s no need
to align the signals since the attention computation
to different parts of the modalities acts as proxy
to the multimodal sequence alignment. The fused
signal is computed via Low Rank Matrix Factor-
ization (LMF). The other model we propose uses a
swapped configuration where the individual modal-
ities attend to the fused signal in parallel.

2 Model Description

In this section, we describe our models and meth-
ods for Low Rank Fusion of the modalities for use
with Multimodal Transformers with cross-modal
attention.

2.1 Low Rank Fusion

LMF is a Tensor Fusion method that models the uni-
modal, bimodal and trimodal interactions without
using an expensive 3-fold Cartesian product (Zadeh
et al., 2017) from modality-specific embeddings.
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Figure 2: Low Rank Matrix Factorization

Instead, the method leverages unimodal features
and weights directly to approximate the full multi-
tensor outer product operation. This low-rank ma-
trix factorization operation easily extends to prob-
lems where the interaction space (feature space or
number of modalities) is very large. We utilize the
method as described in (Liu et al., 2018). Simi-
lar to the prior work, we compress the time-series
information of the individual modalities using an
LSTM (Hochreiter and Schmidhuber, 1997) and
extract the hidden state context vector for modality-
specific fusion. We depict the LMF method in Fig 2
similar to the illustration in (Liu et al., 2018). This
shows how the unimodal tensor sequences are ap-
pended with 1s before taking the outer product to

Figure 3: Fused Cross-modal Transformer

be equivalent to the tensor representation that cap-
tures the unimodal and multimodal interaction in-
formation explicitly (top right of Fig 2). As shown,
the compressed representation (h) is computed us-
ing batch matrix multiplications of the low-rank
modality-specific factors and the appended modal-
ity representations. All the low-rank products are
further multiplied together to get the fused vector.

2.2 Multimodal Transformer

We build up on the Transformers (Vaswani et al.,
2017) based sequence encoding and utilize the
ideas from (Tsai et al., 2019) for multiple cross-
modal attention blocks followed by self-attention
for encoding multimodal sequences for classifi-

Figure 4: Low Rank Fusion Transformer
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Metric Acch7 Acch2 F1h MAEl Corrh

(Aligned) CMU-MOSI Sentiment
LF-LSTM (pub) 35.3 76.8 76.7 1.015 0.625

MulT (Tsai et al., 2019) (pub) 40.0 83.0 82.8 0.871 0.698
MulT (Tsai et al., 2019) (our run) 33.1 78.5 78.4 0.991 0.676

Fusion-Based-CM-Attn-MulT (ours) 32.9 77.0 76.9 1.017 0.636
LMF-MulT (ours) 32.4 77.9 77.9 1.016 0.647

(Unaligned) CMU-MOSI Sentiment
LF-LSTM (pub) 33.7 77.6 77.8 0.988 0.624

MulT (Tsai et al., 2019) (pub) 39.1 81.1 81.0 0.889 0.686
MulT (Tsai et al., 2019) (our run) 34.3 80.3 80.4 1.008 0.645

Fusion-Based-CM-Attn-MulT (ours) 34.4 76.8 76.8 1.003 0.640
LMF-MulT (ours) 34.0 78.5 78.5 0.957 0.681

Table 1: Performance Results for Multimodal Sentiment Analysis on CMU-MOSI dataset with aligned and un-
aligned multimodal sequences.

Metric Acch7 Acch2 F1h MAEl Corrh

(Aligned) CMU-MOSEI Sentiment
LF-LSTM (pub) 48.8 80.6 80.6 0.619 0.659

MulT (Tsai et al., 2019) (pub) 51.8 82.5 82.3 0.580 0.703
MulT (Tsai et al., 2019) (our run) 49.3 80.5 81.1 0.625 0.663

Fusion-Based-CM-Attn-MulT (ours) 49.6 79.9 80.7 0.616 0.673
LMF-MulT (ours) 50.2 80.3 80.3 0.616 0.662

(Unaligned) CMU-MOSEI Sentiment
LF-LSTM (pub) 48.8 77.5 78.2 0.624 0.656

MulT (Tsai et al., 2019) (pub) 50.7 81.6 81.6 0.591 0.694
MulT (Tsai et al., 2019) (our run) 50.4 80.7 80.6 0.617 0.677

Fusion-Based-CM-Attn-MulT (ours) 49.3 79.4 79.2 0.613 0.674
LMF-MulT (ours) 49.3 80.8 81.3 0.620 0.668

Table 2: Performance Results for Multimodal Sentiment Analysis on larger-scale CMU-MOSEI dataset with
aligned and unaligned multimodal sequences.

cation. While the earlier work focuses on latent
adaptation of one modality to another, we focus on
adaptation of the latent multimodal signal itself us-
ing single-head cross-modal attention to individual
modalities. This helps us reduce the excessive pa-
rameterization of the models by using all combina-
tions of modality to modality cross-modal attention
for each modality. Instead, we only utilize a linear
number of cross-modal attention for each modality
and the fused signal representation. We add Tempo-
ral Convolutions after the LMF operation to ensure
that the input sequences have a sufficient awareness
of the neighboring elements. We show the overall
architecture of our two proposed models in Fig 3
and Fig 4. In Fig 3, we show the fused multimodal
signal representation after a temporal convolution
to enrich the individual modalities via cross-modal
transformer attention. In Fig 4, we show the archi-
tecture with the least number of Transformer layers
where the individual modalities attend to the fused
convoluted multimodal signal.

3 Experiments

We present our early experiments to evaluate the
performance of proposed models on the standard
multimodal datasets used by (Tsai et al., 2019)1.
We run our models on CMU-MOSI, CMU-MOSEI,
and IEMOCAP datasets and present the results for
the proposed LMF-MulT and Fusion-Based-CM-
Attn-MulT models. Late Fusion (LF) LSTM is
a common baseline for all datasets with reported
results (pub) together with MulT in (Tsai et al.,
2019). We include the results we obtain (our run)
for the MulT model for a direct comparison2. Ta-
ble 1, Table 2, and Table 3 show the performance of
various models on the sentiment analysis and emo-
tion classification datasets. We do not observe any
trend suggesting that our methods can achieve bet-
ter accuracies or F1-scores than the original MulT
method (Tsai et al., 2019). However, we do note

1We have built this work up on the code-base released
for MulT (Tsai et al., 2019) at https://github.com/
yaohungt/Multimodal-Transformer

2In this work, we have not focused on the further hyper-
parameter tuning of our models.
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Emotion Happy Sad Angry Neutral
Metric Acch F1h Acch F1h Acch F1h Acch F1h

(Aligned) IEMOCAP Emotions
LF-LSTM (pub) 85.1 86.3 78.9 81.7 84.7 83.0 67.1 67.6

MulT (Tsai et al., 2019) (pub) 90.7 88.6 86.7 86.0 87.4 87.0 72.4 70.7
MulT (Tsai et al., 2019) (our run) 86.4 82.9 82.3 82.4 85.3 85.8 71.2 70.0

Fusion-Based-CM-Attn-MulT (ours) 85.6 83.7 83.6 83.7 84.6 85.0 70.4 69.9
LMF-MulT (ours) 85.3 84.1 84.1 83.4 85.7 86.2 71.2 70.8

(Unaligned) IEMOCAP Emotions
LF-LSTM (pub) 72.5 71.8 72.9 70.4 68.6 67.9 59.6 56.2

MulT (Tsai et al., 2019) (pub) 84.8 81.9 77.7 74.1 73.9 70.2 62.5 59.7
MulT (Tsai et al., 2019) (our run) 85.6 79.0 79.4 70.3 75.8 65.4 59.2 44.0

Fusion-Based-CM-Attn-MulT (ours) 85.6 79.0 79.4 70.3 75.8 65.4 59.3 44.2
LMF-MulT (ours) 85.6 79.0 79.4 70.3 75.8 65.4 59.2 44.0

Table 3: Performance Results for Multimodal Emotion Recognition on IEMOCAP dataset with aligned and un-
aligned multimodal sequences.

Dataset CMU-MOSI CMU-MOSEI IEMOCAP
Model Aligned Unaligned Aligned Unaligned Aligned Unaligned

MulT (Tsai et al., 2019) 18.87 19.25 191.40 216.32 36.20 37.93
Fusion-Based-CM-Attn (ours) 14.53 15.80 140.95 175.68 26.10 29.16

LMF-MulT (ours) 11.01 12.03 106.15 137.35 20.57 23.53

Table 4: Average Time/Epoch (sec)

Dataset CMU-MOSI CMU-MOSEI IEMOCAP
MulT (Tsai et al., 2019) 1071211 1073731 1074998

Fusion-Based-CM-Attn (ours) 512121 531441 532078
LMF-MulT (ours) 836121 855441 856078

Table 5: Number of Model Parameters

that on some occasions, our methods can achieve
higher results than the MulT model, in both aligned
(see LMF-MulT results for IEMOCAP in Table 3)
and unaligned (see LMF-MulT results for CMU-
MOSEI in Table 2) case. We plan to do an ex-
haustive grid search over the hyper-parameters to
understand if our methods can learn to classify the
multimodal signal better than the original competi-
tive method. Although the results are comparable,
below are the advantages of using our methods:

• Our LMF-MulT model does not use multiple
parallel self-attention transformers for the dif-
ferent modalities and it uses least number of
transformers compared to the other two mod-
els. Given the same training infrastructure and
resources, we observe a consistent speedup in
training with this method. See Table 4 for
average time per epoch in seconds measured
with fixed batch sizes for all three models.

• As summarized in Table 5, we observe that
our models use lesser number of trainable pa-
rameters compared to the MulT model, and
yet achieve similar performance.

4 Conclusion

In this paper, we present our early investigations
towards utilizing Low Rank representations of the
multimodal sequences for usage in multimodal
transformers with cross-modal attention to the
fused signal or the modalities. Our methods
build up on the (Tsai et al., 2019) work and apply
transformers to fused multimodal signal that aim
to capture all inter-modal signals via the Low
Rank Matrix Factorization (Liu et al., 2018). This
method is applicable to both aligned and unaligned
sequences. Our methods train faster and use
fewer parameters to learn classifiers with similar
SOTA performance. We are exploring methods to
compress the temporal sequences without using
the hidden state context vectors from LSTMs that
lose the temporal information. We recover the
temporal information with a Convolution layer.
We believe these models can be deployed in low
resource settings with further optimizations. We
are also interested in using richer features for
the audio, text, and the vision pipeline for other
use-cases where we can utilize more resources.
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Abstract
Allowing humans to communicate through
natural language with robots requires con-
nections between words and percepts. The
process of creating these connections is called
symbol grounding and has been studied
for nearly three decades. Although many
studies have been conducted, not many
considered grounding of synonyms and
the employed algorithms either work only
offline or in a supervised manner. In this
paper, a cross-situational learning based
grounding framework is proposed that allows
grounding of words and phrases through
corresponding percepts without human
supervision and online, i.e. it does not
require any explicit training phase, but instead
updates the obtained mappings for every
new encountered situation. The proposed
framework is evaluated through an interaction
experiment between a human tutor and a robot,
and compared to an existing unsupervised
grounding framework. The results show that
the proposed framework is able to ground
words through their corresponding percepts
online and in an unsupervised manner, while
outperforming the baseline framework.

1 Introduction

An increasing number of service robots is em-
ployed in human-centered complex environments
and interacts with humans on a regular basis. This
creates a need for robots that are able to understand
instructions provided in natural language, such as
bring a glas of water or pick up a box, to execute
them appropriately and thereby enable efficient col-
laboration with humans. To this end, connections
between words, i.e. abstract symbols, and their
corresponding percepts, i.e. meanings, need to be
created because according to the ”Symbol Ground-
ing Problem”, which was proposed in 1990 by Har-
nad (1990), abstract knowledge and language only

has meaning, if it is linked to the physical world
through mappings from words to corresponding
percepts.
Grounding approaches can in general be separated
into supervised and unsupervised approaches. The
former utilize the guidance of a human tutor, while
the latter do not require any supervision and try to
use co-occurrence information to identify through
which percepts a word is grounded. Previous stud-
ies, such as (Kollar et al., 2010; Tellex et al., 2011;
Aly and Taniguchi, 2018), that investigated un-
supervised grounding employed algorithms that
only work offline, i.e. these algorithms need to
be trained before deployment with in advance
collected perceptual data and words, which pre-
vents these algorithms from being used in real-time
human-robot interactions. Additionally, most pre-
vious studies did not consider ambiguous words,
although the sentences humans produce are often
ambiguous due to homonymy, i.e. one word refers
to several percepts, and synonymy, i.e. one percept
can be referred to by several different words. The
latter do not need to be true synonyms, i.e. words
that refer to the exact same meaning, instead, words
only need to be synonyms as references to a per-
cept in a particular set of situations, e.g. coca cola
or lemonade instead of bottle.
In this paper, a recently proposed unsupervised
online grounding framework (Roesler and Nowé,
2019) is extended to handle real percepts obtained
during human-robot interactions. More specifically,
the learning framework is extended to first con-
vert obtained percepts through clustering to an ab-
stract representation, which is then used to ground
all non-auxiliary words1 of the encountered natu-
ral language instructions through cross-situational
learning. Each shape, color, and action is referred
to by at least two synonymous words, which need to

1Auxiliary words are words that do not have corresponding
percepts and only exist for grammatical reasons.
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be mapped to their corresponding geometric char-
acteristics, color histograms, or kinematic features
of the robot joints during action execution, to inves-
tigate the ability of the used frameworks to handle
synonymous words. The grounding performance
of the proposed framework is evaluated by compar-
ing it to the grounding performance of a Bayesian
grounding framework that has been used in several
previous studies, e.g. (Aly and Taniguchi, 2018;
Roesler et al., 2018, 2019)
The rest of this paper is structured as follows: Sec-
tions (2 and 3) provide a brief overview of cross-
situational learning and related work. Afterwards,
an overview of the proposed unsupervised online
grounding framework as well as the unsupervised
Bayesian baseline framework is given in Sections
(4 and 5). The experimental design and obtained
results are described in Sections (6 and 7). Finally,
Section (8) concludes the paper.

2 Background

Cross-situational learning (CSL) refers to the pro-
cess of learning the meaning of words across multi-
ple exposures to handle referential uncertainty. The
basic idea is that a set of candidate meanings, i.e.
mappings from words to percepts, can be created
for every situation or context a word is used in and
that the correct meaning can be obtained by de-
termining the intersection of the sets of candidate
meanings (Pinker, 1989; Fisher et al., 1994). Thus,
the correct mapping between a word and its corre-
sponding percepts, i.e. its meaning, will reliably
reoccur across situations (Blythe et al., 2010; Smith
and Smith, 2012). A number of experimental stud-
ies have confirmed that humans use CSL for word
learning, when no prior knowledge of language
is available (Akhtar and Montague, 1999; Gillette
et al., 1999; Smith and Yu., 2008). Since CSL re-
quires more than one exposure to learn a word, it
belongs to the group of slow-mapping mechanisms
through which most words are acquired (Carey,
1978). In contrast, fast-mapping allows words to
be acquired through a single exposure, but it is only
used for a limited number of words and can nei-
ther be explained nor achieved through CSL (Carey
and Bartlett, 1978; Vogt, 2012). Many different
algorithms have been proposed to simulate CSL in
humans and enable artificial agents, such as robots,
to learn the meaning of words by grounding them
through percepts (Section 3).

3 Related Work

Grounding is used to obtain the meaning of an
abstract symbol, e.g. a word, by linking it to per-
ceptual information, i.e. the “real” world (Harnad,
1990). There exist many different approaches for
grounding. She et al. (2014) grounded higher level
symbols through already grounded lower level sym-
bols with the help of a dialog system. Since the
system requires a sufficiently large set of grounded
lower level symbols as well as a professional tutor
to answer its questions, its usefulness is limited.
The need for a human tutor that knows the cor-
rect mappings also limits the applicability of the
Naming Game, which allows an agent to quickly
learn word-percept mappings (Steels and Loetzsch,
2012). In contrast to the previous approaches,
cross-situational learning (Section 2), which as-
sumes that one word appears several times together
with the same perceptual feature vector so that a
corresponding mapping can be created, does not
require a human tutor for grounding (Siskind, 1996;
Smith et al., 2011). Previous studies investigated
the use of cross-situational learning for grounding
of objects, actions, and spatial concepts (Roesler
et al., 2019; Dawson et al., 2013). In most studies,
grounding was conducted offline, i.e. perceptual
data and words were collected in advance, which
prevents these approaches from being used in real-
time human-robot interactions. In contrast to these
approaches, the framework used in this study learns
the correct mappings from words to percepts on-
line while interacting with humans and does not
require separate training and test phases. Addition-
ally, the majority of employed models were not
able to handle ambiguous words, although, the sen-
tences humans produce are often ambiguous due
to homonymy and synonymy. One recent study
showed that grounding of known synonyms does
not require semantic or syntactic information and
that such information can even have a negative ef-
fect, depending on the characteristics of the used
information and how it is applied (Roesler et al.,
2018). Therefore, the online grounding mechanism
employed in this study uses no additional semantic
or syntactic information to ground synonyms.

4 Grounding Framework

The employed grounding framework consists of
four parts: (1) 3D object segmentation component,
which segments objects into point clouds to deter-
mine their geometric characteristics and colors, (2)
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Action recording component, which creates action
feature vectors by recording the states of several
joints while the robot is executing actions, (3) Per-
cept clustering component, which obtains an ab-
stract representation of percepts through clustering,
and (4) Cross-situational learning based grounding
component, which identifies auxiliary words and
maps percepts to non-auxiliary words and phrases.
The inputs and outputs of the individual parts are
highlighted below, and described in detail in the
following subsections.

1. 3D object segmentation:

• Input: Point cloud data.
• Output: Geometric characteristics and

colors of objects.

2. Action recording:

• Input: Changes of the robot’s joint states
during action execution.
• Output: Action feature vectors repre-

senting the executed actions.

3. Clustering of percepts:

• Input: Geometric object characteristics,
object colors, and action feature vectors.
• Output: Cluster numbers of percepts.

4. Cross-situational learning:

• Input: Natural language instructions and
cluster numbers of percepts.
• Output: Word to percept mappings.

4.1 3D Object Features
In this study, an unsupervised model based 3D
point cloud segmentation approach is used to seg-
ment objects lying in a plane into separate point
clouds because it is fast, reliable and does not need
much prior knowledge, such as object models or
the number of regions to process (Craye et al.,
2016). The applied model uses the RANSAC al-
gorithm (Fischler and Bolles, 1981) to detect the
major plane in the environment, which is a tabletop
in the conducted experiment, and keeps track of
it in consecutive frames. If a plane is orthogonal
to the major plane and touches at least one border
of the image, it is defined as a wall plane. After
filtering out points that belong to the main plane or
wall planes, the remaining points are voxelized and
clustered into blobs representing object candidates.
Blobs that are neither extremely small nor large are

Figure 1: Illustration of the used objects and the cor-
responding 3D point cloud information: (A) car, (B)
bottle, and (C) cup.

treated as objects2. Point clouds of segmented ob-
jects are characterized through Viewpoint Feature
Histogram (VFH) descriptors (Rusu et al., 2010),
which represent the object geometries taking into
consideration the viewpoints while ignoring scale
variances, and color histograms, which represent
the colors of the objects. Figure (1) provides an
illustrative example of the obtained 3D point cloud
information.

4.2 Action Features
Action feature vectors are used to represent the dy-
namic characteristics of actions during execution
through teleoperation. Overall, five different char-
acteristics, which represent possible subactions, are
recorded through the sensors of the robot (Toyota
Motor Corporation, 2017). The used characteristics
are:

1. The distance from the actual to the lowest
torso position in meters.

2. The angle of the arm flex joint in radians.

3. The angle of the wrist roll joint in radians.

4. Velocity of the base.

5. Binary state of the gripper (1: closing, 0:
opening or no change).

They are then combined into the following vec-
tor: 


a11 a21 a31 a41 a51
...

...
...

...
...

a16 a26 a36 a46 a56


 ,

where a1 represents the difference of the distances
from the lowest torso position in meters, while a2

and a3 represent the differences in the angles of the
arm flex and wrist roll joints in radians, respectively.
The differences are calculated by subtracting the

2The threshold for the blob size was manually set based
on the objects used in the experiment and should be suitable
for all objects of similar size.
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values at the beginning of the subaction from the
values at the end of the subaction. a4 represents
the mean velocity of the base (forward/backward),
and a5 represents the binary gripper state. Each ac-
tion is characterized through six manually defined
subactions. Therefore, if an action consists of less
than six subactions, rows with zeros are added at
the end, while the duration of a subaction is not
fixed because it depends on the teleoperator.

4.3 Clustering of percepts

The CSL algorithm (Section 4.4) requires percepts
to be converted to an abstract representation that
can then be used to ground natural language. The
abstract representation is obtained through cluster-
ing as proposed in (Roesler, 2019). Since it cannot
be assumed that the number of clusters, i.e. the
number of different percepts, is known in advance,
DBSCAN, which is a density-based clustering al-
gorithm proposed by Ester et al. (1996), is used3

because it determines the number of clusters auto-
matically, while only requiring two parameters, i.e.
the radius ε and threshold minSamples. Each itera-
tion DBSCAN determines a number of core points,
which are points that have more than minSamples
points within radius ε around them (Schubert et al.,
2017). All the points within radius ε of a core point
are assigned to the same cluster as the core point.
Cluster numbers are calculated every situation prior
to grounding so that they can be provided to the
CSL algorithm. Recalculating them every situation
is necessary to take into account the new percepts
of that situation.

4.4 Cross-Situational Learning

A variety of algorithms have been developed that
realize CSL in different ways, e.g. through the use
of probabilistic models (Aly and Taniguchi, 2018;
Roesler et al., 2019), to ground words through
percepts in artificial agents. This section describes
an online CSL algorithm for grounding of words,
which has first been proposed by Roesler and
Nowé (2018) and recently been extended with
auxiliary word and phrase detection (Roesler and
Nowé, 2019). Since the sentences in this study
are shorter, have a much simpler structure, and
less variation than the sentences used in (Roesler
and Nowé, 2019), the previous auxiliary word
and phrase detection algorithms do not work.

3The used DBSCAN implementation is available in scikit-
learn (Pedregosa et al., 2011).

Algorithm 1 The grounding procedure takes as
input all words (W) and percepts (P) of the current
situation, the sets of all previously obtained word-
percept (WP) and percept-word (PW) pairs, the set
of auxiliary words (AW), and the set of permanent
phrases (PP) and returns the sets of grounded words
(GW) and percepts (GP).

1: procedure GROUNDING(W, P, WP, PW, AW,
PP)

2: Substitute words with phrases from PP
3: Update AW (Algorithm 2) and remove AW

from W
4: Update WP and PW using W and P
5: for j = 1 to word number do
6: Save highest WP to GW
7: end for
8: for j = 1 to percept number do
9: Save highest PW to GP

10: end for
11: return GW ∪GP
12: end procedure

Thus, a novel auxiliary word detection algorithm
(Algorithm 2) is proposed to handle the simpler
sentences employed in this study4, while no phrase
detection is used to ensure a fair comparison with
the baseline framework (Section 5), which does
not have any phrase detection capabilities. The
rest of this section provides an overview of the
employed grounding algorithm.
For each situation all corresponding words and
percepts are given to the grounding algorithm
(Algorithm 1), while the sets of grounded words
(GW) and percepts (GP) are initially empty. Before
the actual grounding procedure, words that are part
of known phrases will be combined so that they
can be grounded together and auxiliary words are
automatically detected and removed (Algorithm 2).
Afterwards, all possible word-percept (WP) and
percept-word (PW) pairs are created, i.e. for each
word and percept a set containing all percepts and
words they occurred with is created, and saved
together with a number indicating how often the
pair occurred. The highest word-percept pair is
determined and saved to the set of grounded words
(GW). All other word-percept pairs the word or

4Both auxiliary word mechanisms, i.e. the one used
in (Roesler and Nowé, 2019) and the one proposed in this
study, are used in parallel because both have shown to not
produce false detections, i.e. they either detect an auxiliary
word correctly or do not detect it.
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Algorithm 2 The auxiliary word detection proce-
dure takes as input the sets of word and percept
occurrences (WO and PO), and the set of detected
auxiliary words (AW).

1: procedure AUXILIARY WORD DETEC-
TION(WO, PO, AW)

2: for word, occurrence in WO do
3: if occurrence > max(PO) ∗ 2 then
4: Add word to AW
5: end if
6: end for
7: return AW
8: end procedure

percept are part of will no longer be considered for
the selection of the highest word-percept pair in
future iterations. This restriction is applied until
all percepts have been used once for grounding.
Afterwards, if some words have not been grounded,
all percepts will become again available for
grounding until all words have been grounded to
allow grounding of synonyms. After all words
have been grounded the same process is repeated
for percept-word pairs to assign synonymous
percepts to the same word. Finally, the sets of
grounded words and percepts are merged.

5 Baseline Framework

The baseline framework consists of three parts: (1)
3D object segmentation component as described in
Section (4.1), (2) Action recording component as
described in Section (4.2), and (3) Bayesian learn-
ing model, which identifies auxiliary words and
grounds non-auxiliary words and phrases through
corresponding percepts. Since the perceptual data
extraction components are the same for both frame-
works, any difference in grounding performance
can only be due to the different grounding algo-
rithms, i.e. component three and four of the pro-
posed framework (Sections 4.3 and 4.4) and com-
ponent three of the baseline framework, which is
described in the remainder of this section.

The probabilistic learning model, described in
this section, is based on the model used in (Roesler
et al., 2019), since the experimental setup em-
ployed in this study (Section 6) is also based on
the scenario used in (Roesler et al., 2019). In
general, the model has been chosen as a baseline
because similar models have previously been em-

Figure 2: Graphical representation of the probabilistic
model. Indices i, s, c, and a denote the order of words,
object shapes, object colors, and actions, respectively.

Table 1: Definitions of the learning parameters in the
graphical model.

Parameter Definition
λ Hyperparameter of the distribution πw

αs, αc, αa Hyperparameters of the distributions πs, πc and πa

mi
Modality index of each word

(modality index ∈ {Shape, Color, Action, AW})
Zs, Zc, Za Indices of shape, color and action distributions

wi Word indices
s, c, a Observed states representing shapes, colors and actions
γ Hyperparameter of the distribution θm,Z

βs, βc, βa Hyperparameters of the distributions φs, φc and φa
θm,Z Word distribution over modalities

ployed in similar grounding scenarios by different
researchers, e.g. (Kollar et al., 2010; Tellex et al.,
2011; Aly and Taniguchi, 2018; Roesler et al., 2018,
2019). In the model, the observed state wi repre-
sents word indices, i.e. each individual word is rep-
resented by a different integer5. The observed state
s represents the shape of objects, more specifically
their geometric characteristics expressed through
VFH descriptors (Section 4.1), c represents the
color of objects and a represents actions. Table (1)
provides a summary of the definitions of the learn-
ing model parameters. The corresponding prob-
ability distributions, i.e., wi, θm,ZL1

, φsK1
, φcK2

,
φaK3

, πw, πs, πc, πa, mi, Zs, Zc, Za, s, c, and a,
which characterize the different modalities in the
graphical model, are defined in Equation (1), where
Cat denotes a categorical distribution, Dir denotes
a Dirichlet distribution, GIW denotes a Gaussian
Inverse-Wishart distribution, and N denotes a mul-

5The following two example sentences illustrate the rep-
resentation of words through word indices: (please, 1) (lift
up, 2) (the, 3) (brown, 4) (coke, 5) and (lift up, 2) (the, 3)
(brownish, 6) (lemonade, 7), where the bold numbers indicate
word indices.
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tivariate Gaussian distribution.





wi ∼ Cat(θmi,Zmi
)

θm,ZL1
∼ Dir(γ) , L1 = (1, ..., L)

φsK1
∼ GIW (βs) , K1 = (1, ...,Ks)

φcK2
∼ GIW (βc) , K2 = (1, ...,Kc)

φaK3
∼ GIW (βa) , K3 = (1, ...,Ka)

πw ∼ Dir(λ)
πs ∼ Dir(αs)
πc ∼ Dir(αc)
πa ∼ Dir(αa)
mi ∼ Cat(πw)
Zs ∼ Cat(πs)
Zc ∼ Cat(πc)
Za ∼ Cat(πa)
s ∼ N(φZs)
c ∼ N(φZc)
a ∼ N(φZa)

(1)
The latent variables of the Bayesian learning

model are inferred using the Gibbs sampling algo-
rithm (Geman and Geman, 1984) (Algorithm 3),
which repeatedly samples from and updates the
posterior distributions (Equation 2). Distributions
were sampled for 100 iterations, after which con-
vergence had been achieved.





φs ∼ P (φs|s, βs)
φc ∼ P (φc|c, βc)
φa ∼ P (φa|a, βa)
πw ∼ P (πw|λ,m)
πs ∼ P (πs|αs, Zs)
πc ∼ P (πc|αc, Zc)
πa ∼ P (πa|αa, Za)
Zs ∼ P (Zs|s, πs, w)
Zc ∼ P (Zc|c, πc, w)
Za ∼ P (Za|a, πa, w)
θm,Z ∼ P (θm,Z |m,Zs, Zc, Za, γ, w)
mi ∼ P (mi|θm,Z , Zs, Zc, Za, πw, wi)

(2)

6 Experimental Setup

The experimental scenario used in this study is
based on the scenario used in (Roesler et al.,
2019). The main difference is the use of an
additional modality, i.e. color, which leads to
slightly different sentences. During the experiment
a human tutor and HSR robot6 interact in front

6The Human Support Robot from Toyota, which is used for
the experiment, has an omnidirectional movable cylindrical

Algorithm 3 Inference of the model’s latent vari-
ables. In this study, nr of iterations was set to
100.

1: procedure GIBBS SAMPLING(W, P, WP, AW)
2: Initialization of θ, φs, φc, φa, πw, πs, πc,
3: πa, Zs, Zc, Za,mi

4: for i = 1 to nr of iterations do
5: Equation (2)
6: end for
7: return θ, φs, φc, φa, πw, πs, πc, πa, Zs,
8: Zc, Za,mi

9: end procedure

of a table, with one of the following five objects
{BOTTLE, CUP, BOX, CAR, and BOOK} (Figure 1).
Each interaction follows below procedure:

1. The human tutor places an object on the table
and the robot determines the object’s geomet-
ric characteristics and color to create corre-
sponding feature vectors (Section 4.1).

2. An instruction, which describes how to ma-
nipulate the object, is given to the robot by the
human tutor, e.g. “please lift up the red soda”.

3. The human tutor teleoperates the robot to exe-
cute the action provided through the instruc-
tion while several kinematic characteristics
are recorded and converted into an action fea-
ture vector (Section 4.2).

A total of 125 interactions were performed to
record perceptual information for all combinations
of employed shapes, colors, and actions. Since in-
struction words were selected randomly for each
situation, except that words had to fit the encoun-
tered percepts, their number of occurrences in the
data varies, e.g. the word “coffee” only occurs
once, while the word “brown” occurs 14 times.
Grounding was then performed for ten different
interaction sequences, i.e. the order of the recorded
situations was randomly changed, to ensure that
the performance is not due to the specific order in
which situations are encountered. Figure (3) shows
how often each word occurred on average in all
interactions as well as the training and test interac-
tions.

shaped body with one arm and gripper. It is equipped with
a variety of different sensors, such as stereo and wide-angle
cameras, and has 11 degrees of freedom.
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Table 2: Overview of all percepts with their correspond-
ing synonyms. The action percepts are explained in Ta-
ble (3).

Type Percept Synonyms

Shape

Bottle coca cola, soda, pepsi, coke, lemonade
Cup latte, milk, milk tea, coffee, espresso
Box candy, chocolate, confection, sweets, dark chocolate
Car audi, toyota, mercedes, bmw, honda

Book harry potter, narnia, lord of the rings, dracula, frankenstein

Color

Yellow yellow, yellowish
Pink pink, pinkish

Brown brown, brownish
Red red, reddish

White white, whitish

Action

Lift up lift up, raise
Grab grab, take
Push push, poke
Pull pull, drag

Move move, shift
Auxiliary

Word
- the
- please

Table 3: Explanations of the employed action percepts.

Percept Description
Lift up The object will be grabbed and lifted up.
Grab The object will be grabbed, but not displaced.
Push The object will be pushed with the closed gripper without being grabbed first.
Pull The object will be grabbed and moved towards the robot.

Move The object will be grabbed and moved away from the robot.

Each sentence consists of one of the following
structures: “action the color shape” or “please ac-
tion the color shape”, where action, color, and
shape are substituted by one of their correspond-
ing words (Table 2). Each action and color can
be referred to by two different words, while each
shape has five corresponding words. During train-
ing and testing the obtained situations are given to
the proposed and baseline frameworks. The former
framework gets the situations separately one after
the other, as if it is processing the data in real-time
during the interaction. It first clusters the percepts
of the current situation together with all previously
encountered percepts to obtain abstract represen-
tations of shapes, colors and actions (Section 4.3).
Afterwards, the CSL based grounding algorithm is
used to ground words through the obtained cluster
numbers (Section 4.4). In contrast, the baseline
framework does not allow online learning and re-
quires all sentences and corresponding percepts of
the training situations to be given at once to the
learning model.

7 Results and Discussion

The proposed cross-situational learning framework
(Section 4) is evaluated through a human-robot
interaction scenario (Section 6) and the obtained
grounding results are compared to the groundings
achieved by an unsupervised Bayesian grounding
framework (Section 5). Figure (4) shows how

Figure 3: Word occurrences for all encountered words
except auxiliary words. The dark blue part of the bars
shows the mean number of occurrences during train-
ing and the bright blue part the mean number of occur-
rences during testing.

Figure 4: Mean number and standard deviation of
correct and false mappings obtained by the proposed
model over all 125 situations. The dotted part only oc-
curs, when all situations are used for training, other-
wise the model obtains only 43 correct mappings.

the mean number of correct and false mappings
changes, when the proposed grounding framework
encounters the employed situations one after the
other. It also shows that all 45 correct mappings are
obtained, when all 125 situations are used for train-
ing, while on average only 43 correct mappings
are obtained, when only 60% of the situations are
used for training. The figure also illustrates the on-
line grounding capability of the model, i.e. that it
updates its mappings with every new encountered
situation, as well as its transparency because it al-
lows to check at any time through which percept
a word is grounded at that moment. Based on the
collected co-occurrence information it would also
be possible to calculate a confidence score for ev-
ery mapping to understand how likely it is that a
false mapping disappears or a correct mapping per-
sists. The described transparency of the proposed
framework can be helpful to understand and de-
bug responses to instructions provided by a human,
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(a) All situations used for training and testing.

(b) 60% of the situations used for training and 40% for testing.

Figure 5: Mean grounding accuracy results and cor-
responding standard deviations for all modalities and
both models. Additionally, the percentage of sentences
for which all words were correctly grounded is shown.

when the framework is used to control an artifical
agent interacting with a human, especially when
the responses are incorrect or inappropriate.

In contrast, the baseline model requires an ex-
plicit training phase so that no corresponding fig-
ure, illustrating the number of correct and false
mappings, can be created. Thus, to allow a com-
parison between the two models, the mappings of
the proposed model are extracted after 125 and 75
situations, depending on the used train/test split.
Two different train/test splits are analyzed in this
study. For the first split, all situations are used for
training and testing to see how well the frameworks
perform when all test situations have been encoun-
tered before. For the second split, only 60% of the
used situations are provided for training, while the
remaining situations are used for testing. In this
case, it is possible that some words never occur
during training or only a limited number of times,
e.g. once or twice. If a word does not occur during
training, the proposed model is not able to obtain
a corresponding mapping which leads to an accu-
racy of 0% as shown in Figure (6c) for the words
coffee and sweets, which both only exist once in
the dataset and are thus only present during train-

ing or testing, but not both. The word accuracies
shown in Figure (6) were calculated by dividing
the number of times a word was correctly grounded
through the number of times the word was encoun-
tered during testing. Similar to the proposed model,
the baseline model was also not able to ground the
words coffee and sweets correctly, when only 60%
of the situations were used for training. However,
the baseline model also seems to require in gen-
eral a higher minimum number of occurrences to
successfully ground words, since there are many
words that achieved a mean accuracy of 0%, when
only 60% of the situations were used for training
(Figure 6d).
Figure (5a) shows that the proposed model achieves
perfect grounding, when the same situations are
provided for training and testing, which confirms
that it is able to obtain all correct mappings as
shown in Figure (4). However, if only 60% of the
situations are used for training and the remaining
40% unknown situations for testing the grounding
accuracy drops for both models. For the proposed
model the largest accuracy decrease is seen for
auxiliary words, while still more than 95% of the
obtained shape, color and action groundings are
correct. For the baseline framework the largest
drop in accuracy is seen for shapes, from more
than 95% to less than 2%. The reason might be
that every shape word has 5 synonyms, thus, if
words would be equally distributed among all situ-
ations and specifically among the training and test
sets, the decrease might not be as sharp. However,
Figure 3 shows that the number of occurrences is
not necessarily the reason for the drop because the
words bmw and narnia occured on average 7 and
2.5 times during training, respectively, and narnia
achieved an accuracy of about 5%, while the accu-
racy of bmw was 0% (Figure 6d). In contrast, the
proposed model shows a more stable performance,
since it was able to ground all non-auxiliary words
that occured at least one time during training with
a mean accuracy of more than 70%, while only
the auxiliary word please achieved a lower mean
accuracy of 30%.
Overall the evaluation shows that the proposed
model outperforms the baseline model based on its
auxiliary word detection and grounding accuracy.
Interestingly, the performance difference is larger,
when only 60% of the situations are used for train-
ing, although this scenario is artificially harming
the proposed model by preventing it to learn during
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(a) Proposed model using all situations for training and testing. (b) Baseline model using all situations for training and testing.

(c) Proposed model using 60% of the situations for training and
40% for testing.

(d) Baseline model using 60% of the situations for training and
40% for testing.

Figure 6: Mean accuracy results and corresponding standard deviations for each individual word.

testing, since it does not require explicit training. In
addition to the better grounding performance, the
proposed model is also more transparent, which be-
comes important when robots are interacting with
humans in complex and unrestricted environments,
especially if some actions of the robots can cause
harm to humans.

8 Conclusions and Future Work

This paper investigated a multimodal framework
for grounding synonymous shape, color and action
words through the visual perception and propri-
oception of a robot during its interaction with a
human tutor. The cross-situational learning model
was set up to learn the meaning of shape and color
words of objects as well as action words using geo-
metric characteristics and color information of ob-
jects obtained from point cloud information as well
as kinematic features of the robot joints recorded
during action execution.
The proposed model allowed auxiliary word detec-
tion and online grounding of synonyms through
real percepts in an unsupervised manner and with-
out the use of any syntactic or semantic information.
Additionally, it outperformed the baseline model
based on the accuracy of the obtained groundings,

its capability to process new situations online and
its transparency.
In future work, different mechanisms will be in-
vestigated to improve the sample efficiency of the
algorithm, which will become relevant, if a larger
number of words is used or words occur less often.
Additionally, it will be verified whether the frame-
work can handle homonyms. Finally, supervised
grounding methods will be integrated so that the
robot is able to use human feedback, but does not
require it.
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Abstract

Behavioral cues play a significant part in hu-
man communication and cognitive perception.
In most professional domains, employee re-
cruitment policies are framed such that both
professional skills and personality traits are ad-
equately assessed. Hiring interviews are struc-
tured to evaluate expansively a potential em-
ployee’s suitability for the position - their pro-
fessional qualifications, interpersonal skills,
ability to perform in critical and stressful situa-
tions, in the presence of time and resource con-
straints, etc. Therefore, candidates need to be
aware of their positive and negative attributes
and be mindful of behavioral cues that might
have adverse effects on their success. We pro-
pose a multimodal analytical framework that
analyzes the candidate in an interview scenario
and provides feedback for predefined labels
such as engagement, speaking rate, eye con-
tact, etc. We perform a comprehensive anal-
ysis that includes the interviewee’s facial ex-
pressions, speech, and prosodic information,
using the video, audio, and text transcripts ob-
tained from the recorded interview. We use
these multimodal data sources to construct a
composite representation, which is used for
training machine learning classifiers to predict
the class labels. Such analysis is then used
to provide constructive feedback to the inter-
viewee for their behavioral cues and body lan-
guage. Experimental validation showed that
the proposed methodology achieved promis-
ing results.

Keywords: Behavioral analysis, Multimodal
Analytics, Personality computing

1 Introduction

In the business world, interviews are a prerequisite
to personnel recruitment for assessing the candi-
dates through a structured interaction and discus-

∗equal contribution

sion either on a one-to-one basis or by a panel of
interviewers. It is an opportunity for the candidates
to prove that they are qualified for the position,
and for recruiters to assess the job-to-candidate fit.
Such recruiters are trained in evaluating a candi-
date’s personality, thought patterns, behavior un-
der stressful situations, and emotional intelligence
through well-established metrics through technical
analysis, psychometric testing, etc. Several theoret-
ical models (Goldberg et al., 1981) have suggested
the “big five trait taxonomy”, based on which an
individual’s traits can be summarized, and scoring
can be performed for choosing a candidate (John
et al., 1999).

The field of personality computing focuses on
automatically analyzing such essential insights into
the psyche of a person based on their behavior, ver-
bal responses and non-verbal actions, speech pat-
terns, body language, etc (Vinciarelli and Moham-
madi, 2014). Studies have shown that nonverbal
behaviors such as smiling, maintaining eye con-
tact, and good posture all contribute significantly
to interpersonal communication along with an indi-
cation as to the mental health and well-being of the
participants (Krishnan and Kamath, 2019). The sig-
nificant difference between verbal and non-verbal
communication is that the former is specific and
interpreted, while the latter is subtle and implied.
Both channels of communication affect conversa-
tional dynamics and influence the relationship be-
tween individuals (Somant and Madan, 2015).

Automating such behavioral analysis can be ben-
eficial while conducting mass recruitment drives,
primarily when many of these are done online
through videoconferencing systems. From the can-
didates’ perspective, knowing the effect of their
own verbal and non-verbal behavior in creating a
favorable impression and increasing their chances
of success in interviews is also of significant in-
terest. These cues may be available through their
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interview videos and audio, speaking qualities, and
the effect of content delivery. Analysis of a sin-
gle modality can often be insufficient in obtaining
usable insights into how humans perceive and ex-
press information (Agrawal et al., 2019). Modal-
ities other than text can commonly present clues
for the expression of sentiment and feelings (Ding
and Ding, 2013). Audio and visual features also
aid in linguistic disambiguation as they provide ad-
ditional details regarding the speakers’ sentiment.
When a person speaks with optimal vocal modula-
tion or using appropriate gestures, it conveys a lot
more than just the content.

Research on automated analysis of both verbal
and non-verbal behavior cues in the case of job
interviews has recently gained momentum, which
we aim to analyze in this work. In this paper, we
experiment with several linguistic, audio, and vi-
sual features extracted from recorded interviews to
create feature vectors passed to different classifiers
to score the candidate on specific predefined labels.
The remainder of this paper is organized as follows:
Section 2 presents a discussion on existing works
in the area of interest. The details of the proposed
methodology and specifics of implementation are
presented in Section 3. In Section 4, the exper-
imental analysis and performance of the various
models for each task are discussed, followed by the
conclusion and references.

2 Related work

Over the last decade, behavioral patterns anal-
ysis using multimodal data has received signifi-
cant research attention. Navas et al. (2006) con-
ducted experiments for speech-based emotion anal-
ysis to compare speaker-dependent and speaker-
independent techniques. To perform this analysis,
several acoustic features such as fundamental fre-
quency, duration, intensity are extracted to find hid-
den information. However, the speaker-dependent
approach was not scalable and cannot be used in
large-scale applications with several users. Borth
et al. (2013) proposed a different approach for sen-
timent analysis of visual content using SentiBank.
SentiBank is a visual concept detector library used
to extract various concepts and Adjective Noun
Pairs (ANP) from the visual content. While ex-
isting models predicted sentiments or emotions di-
rectly from low-level visual features, their approach
used high-level visual features to better capture
sentiments. They use images to extract mid-level

semantic features and use a classifier to predict se-
mantic features, which can be used to determine
the relevance and importance of the image in deter-
mining emotion.

Nguyen et al. (2013) used real-time interview
data to monitor and analyze body communication
cues. The interviewees are seated in the videos,
which lets them analyze both upper body move-
ment and facial cues. Various visual features are
automatically extracted, and data is annotated to
predict the personality and job interview ratings.
This model shows the importance of using bodily
gestures to predict the personality and give inter-
view ratings. Naim et al. (2015) collated and used
the MIT Interview dataset and trained Lasso and
SVR models to predict several emotions and ver-
bal/nonverbal cues like EyeContact, Calm, Speak-
ing Rate, Authentic, Focused, Structured Answers,
Smiled, Friendly, Engagement, etc. These labeled
ratings were manually assigned by Amazon Turk
Workers, and the ground truth labels were derived
by averaging the scores of 9 Turk workers.

Pereira et al. (2016) presented a new technique
for sentiment analysis in the telecommunication do-
main. They extracted and combined prosodic, lexi-
cal, and visual features from news videos and ap-
plied various computational methods to recognize
real-time emotions from facial cues. The speech
delivered by each participant is processed, parsed,
and sentiment analysis is done on the correspond-
ing text transcript. Features such as visual power
of perceived emotion, field sizes of members, voic-
ing likelihood, sound intensity, the fundamental
frequency of the speech, and the scores associated
with the sentiment were defined and used. One
of the limitations is that the poor audio quality of
the chosen dataset resulted in inaccurate sentiment
prediction. Another drawback observed is due to
the selected distance metric, the model does not
map well to the intensity of the sentiment.

In recent years, behavioral pattern analysis using
multimodal data has received significant research
attention. The rise in online video streaming and
hosting websites such as YouTube has facilitated
an increase in sentiment expressions in multiple
modalities (Pravalika et al., 2017). The availability
of standard datasets containing videos annotated
for emotion or sentiment has also has been con-
ducive to this, as shown in (Zadeh et al., 2016).

Chen et al. (2016) generated a multimodal cor-
pus with structured interview responses, by manu-
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ally rating the interviewee’s personality and perfor-
mance for 12 structured interview questions which
measure different types of job related skills. Along
with interviews, the interviewee’s public speaking
videos were also recorded and used to provide use-
ful cues. They used visual, lexical and speech fea-
tures, based on which they showed that using both
non-verbal and verbal cues outperforms other cases.
Poria et al. (2017) studied the emotions from facial
expressions, reporting that standard facial expres-
sions are sufficient to provide several clues to detect
emotions. Speech-based emotion analysis based on
the identification of various acoustic features, such
as the intensity of utterance, bandwidth, pitch, and
duration, is also helpful. They achieved a 5-10%
improvement in performance compared, however,
the contextual relationship between utterances are
considered and treated equally in this model. Cam-
bria et al. (2017)’s multimodal emotion recognition
model extracts features from text and videos us-
ing a convolutional neural network architecture,
incorporating all three modalities- visual, audio,
and text. Radhakrishnan et al. (2018) proposed a
new approach for sentiment analysis from audio
clips, which uses a hybrid of the Keyword Spotting
System. The Maximum Entropy classifier was de-
signed to integrate audio and text processing into a
single system, and this model outperformed other
conventional classifiers.

Blanchard et al. (2018) developed a fusion tech-
nique for audio and video modalities using audio
and video features to analyze spoken sentences
for the sentiment. They did not consider the tra-
ditional transcription features to minimize human
intervention. However, the model can be scaled
and deployed in the real world effortlessly. They
selected high dimensional features for the model
to test their generalizability in the sentiment detec-
tion domain. Hu and Flaxman (2018) presented a
novel approach that uses deep learning to identify
the sentiment of multimodal data. The modalities
considered were images and text, and computer
vision techniques were combined with text mining.
Their aim was to treat it as a study of emotion, one
of the most exciting fields in psychology. They did
this using a large social media dataset of Tumblr
posts, using which the emotion word tags attached
by users was predicted, treating these as emotions
reported by the user. Their work combined im-
age and text and proved that combining these two
modalities conveyed more information about the

sentiment that either of the modalities alone.
Based on the review of existing work, several

limitations were observed. When features from dif-
ferent modalities are considered, it is crucial to find
only those features that influence the label. Thus,
we aim to address the issue of feature selection
by experimenting with different feature selection
algorithms. Many features are strongly correlated
to each other, and considering these strongly corre-
lated features together will not add a lot of value in
predicting a label. Identifying and removing such
features that are strongly correlated to each other
and considering only one such feature in predicting
the label can be more beneficial.

3 Proposed Approach

In this section, the proposed model and its asso-
ciated processes are described in detail. Our ap-
proach is built on all three modalities, and the
data modality-specific preprocessing techniques
and various algorithms used to classify the data for
each of the labels, are presented. For experimen-
tal validation, we used the MIT interview dataset
(Naim et al., 2015), which consists of recordings
of 138 mock job interviews of 69 candidates pre-
intervention and post-intervention. It contains
Amazon Mechanical Turk Worker scores for each
video, which when averaged gives the final score
for each of the labels. It includes the audio files
as well, which we use for audio analysis. In con-
trast to Naim et al. (2015) who used regression as
their evaluation metric, we use classification, with
the numbers 1 to 7 representing the level of perfor-
mance. A score of 1 for any label is treated as very
bad performance whereas a score of 7 is treated
as exceptionally good. We use class labels as, our
objective is to provide users with feedback based
on the class label.

3.1 Prosodic Features

Prosodic features play an essential role in char-
acterizing the speaking style of the interviewee.
Frequency, pitch information, tone, intensity, spec-
tral energy, spectral centroid, zero-crossing rate,
etc. are some of the prosodic features which are
considered to be primary in analyzing the speak-
ing style and emotions. In (Naim et al., 2015),
the pitch information, vocal intensities, character-
istics of the first three formants, and spectral en-
ergy were included. We found that time-domain
features are of utmost importance as the emotion
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can be predicted by considering several frames to-
gether. We used the raw audio signals to extract
the time domain features. Using the magnitude of
the Discrete Fourier Transform (DFT), we calcu-
lated the frequency domain features. The cepstral
domain is computed using the Inverse DFT on the
logarithmic spectrum. These features can be ex-
tracted for windows of small and large sizes. In
our methodology, we used a short term window
and split the audio signal into short-term windows
(frames). We extracted features for each frame,
giving us a feature vector of 40 elements, using a
short term window size between 20ms and 100ms.
The pyAudioAnalysis (Giannakopoulos, 2015) li-
brary of Python was used to generate the features
for the audio. Other frameworks, such as PRAAT
(Boersma and Weenink, 2018), can also be used to
extract prosodic features.

3.2 Facial Expressions
Landmarks are to be first captured for extracting fa-
cial features, which are essential points of interest
on a person’s face. The global transformations, in-
cluding rotation, translation, and scaling were disre-
garded, and only the local changes were considered
while extracting features from the tracked interest
points. These local changes can provide useful in-
formation about our facial expressions. OpenCV
was used to extract each landmark, namely, nose,
left mouth, right mouth, chin, left eye left corner,
and right eye right corner from each frame. The
video was broken down into frames of size 1 sec-
ond, and features are extracted. These were aver-
aged over the given time frame of the video. We
also incorporated the head pose features (Pitch,
Roll, and Yaw) based on the corresponding ele-
ments of the rotation matrix R. A pre-trained con-
volutional neural network called LeNet (LeCun
et al., 1998), consisting of two alternate Conv lay-
ers, a pooling layer, and finally, a fully connected
layer was used for detecting a person smiling or
not was used. LeNet was trained on the SMILES
dataset (Arigbabu et al., 2016) consisting of 13,165
face images, of dimension 64x64x1 (grayscale).

3.3 Lexical Features
The linguistic features provide insightful infor-
mation regarding the confidence and the style of
speech of the interview candidate. The most com-
monly used feature for text is the counts of individ-
ual unique words. It gives a clear understanding
of proficiency, eloquence, and the ability to use

proper vocabulary during a structured communica-
tion episode like an interview.

To obtain lexical features, the text transcripts of
all the audio clips were obtained, using the Google
Cloud Speech-to-Text API. Once we obtain all
the text transcripts, text cleaning was done before
further processing. All letters were converted to
lowercase, after which punctuation marks, accent
marks, and any extra white spaces were removed.
Tokenization was performed to split the text into
smaller units, using the Natural Language Toolkit
(Bird et al., 2008), a Python library for tokeniza-
tion. Next, the speaking style features were ex-
tracted, like the average number of words spoken
per minute, the average number of unique words
per minute, count of unique words in the transcript,
and the number of filler words used per minute.
Information regarding speaking rate, proficiency,
and fluency of a particular candidate can be eval-
uated using these features. Pereira et al. (2016)
computed the sentiment score for each sentence in
the closed captions as a summation over the gen-
erated vector assigning the sentiment (-1,0,1) for
each method. We incorporated a similar logic to
obtain the emotion scores.

Finally, to get a detailed analysis of the overall
emotion of the text, we used the Tone Analyzer
(Akkiraju, 2015). Each sentence is passed through
the Tone Analyzer, and the percentage of emotion
in that sentence in the following categories- Joy,
Sadness, Tentative, Analytical, Fear, and Anger,
is calculated. Each interview is assigned the aver-
age score per category, as mentioned earlier. The
Stanford Named Entity Recognizer (NER) (Finkel
et al., 2005) was also used to obtain the count of
nouns, adjectives, and verbs in each sentence.

3.4 Class Prediction

Several experiments were carried out after and be-
fore the feature selection process. Each of these ex-
periments was carried out for individual labels, and
we made several interesting observations. We ex-
perimented with four machine learning algorithms
- Random Forest, Support Vector Machine Classi-
fier (SVC), Multitask Lasso Model, and Multilayer
Perceptron (MLP).

Random Forest (Breiman, 2001) build decision
trees on data samples that get chosen randomly. A
prediction is obtained from each decision tree, and
the most optimal solution is selected through voting.
We used attribute selection techniques such as Infor-
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mation gain, Gini index, and Gain ratio to generate
each decision tree and obtain the final voting. With
this model, the issue of overfitting is avoided as the
biases get canceled out by taking an average of the
predictions. Support Vector Classifiers (Cortes and
Vapnik, 1995) find an appropriate hyperplane in
an N-dimensional space to classify the data points
distinctly. The support vector classifier aims to
maximize the margin between the hyperplane and
data points. The Multi-task Lasso model (Lozano
and Swirszcz, 2012) penalizes least-squares along
with regularization to suppress or shrink features.
The Lasso makes use of both feature selection and
continuous shrinkage due to the nature of the norm
penalty. The optimization objective for Lasso can
be calculated using Eq. (1) and Eq. (2), where n
represents the sample size considered, Y is the vec-
tor containing the target values, X is the training
data, W denotes the weight matrix, α is a constant
that is multiplied with the L1-norm of the coeffi-
cient vector.

1/(2∗nsamples))∗ ||Y −XW ||2+α||W ||21 (1)

where,

||W ||21 =
∑

i

√∑

j

w2
ij (2)

The Multi-layer Perceptron (MLP) is a super-
vised learning algorithm that helps the target learn
a non-linear function approximator, given a set of
features. There may exist one or may non-linear
layers known as hidden layers between the first
(input) and last (output) layers. A single hidden
layer makes the model a universal approximator,
while also supporting multi-label classification and
learning non-linear models.

3.5 Implementation
The features generated from the three different
modalities - text, audio, and video were used to
construct a feature vector, which is then passed
through various classifiers to predict the class for
the labels. As discussed, four different algorithms -
Random Forest, SVC, Multitask Lasso, and MLP
were used as classifiers. The features used to build
the feature vector were:

1. Audio - Power, intensity, duration, pitch,
zero-crossing rate, energy, the entropy of en-
ergy, spectral centroid, spectral flux, spectral
spread, spectral roll-off, MFCCs, Chroma vec-
tor, Chroma deviation.

2. Video - Nose, chin, left eye left corner, right
eye right corner, left mouth, right mouth land-
marks, yaw, pitch, roll, smiling or not smiling.

3. Lexical - speaking rate, proficiency, fluency,
count of total words spoken, Count of total
unique words spoken, the emotion of the text,
the score associated with the emotion, count
of Nouns, Verbs, Adjectives.

Once the fused feature vector is obtained, the
ML classifiers are trained to predict the ratings of
the interview on a scale of 1-7 based on 9 different
parameters - Eye Contact, Speaking rate, Engaged,
Pauses, Calmness, Not stressed, Focused, Authen-
tic and Not Awkward. These parameters are influ-
enced by a set of selected features from the feature
vector, as processed from the dataset. Thus, we
take different combinations of lexical, prosody, and
facial features to find the optimal features for each
of the parameters. Feature selection techniques are
also employed for obtaining the optimal feature
vector. The data is first normalized using standard-
ization and scaled to unit variance. The standard
score of sample x is calculated using the Eq. (3),
where u is the mean of the training samples, and s
is the standard deviation of the training samples.

z = (x− u)/s (3)

Each feature is centered and scaled based on the
mean computed for the samples in the training set.
Automatic feature selection is carried out to elim-
inate redundant and irrelevant features. Different
feature selection processes are performed for each
of the parameters. During K best feature selection,
a correlation matrix is calculated, and k features
that have the highest scores indicating strong re-
lationships with the output variable are retained,
while the other features are eliminated.

Based on the feature vector selected, we also
experimented to find the optimal value of k as
well. We used the Benjamini-Hochberg procedure
(Thissen et al., 2002) to decrease the false discov-
ery rate, as it helps control the influence of small
p-values, which often leads to rejection of a true
null hypothesis. Due to this, the number of false
positives is mostly decreased. For this, the p val-
ues for all variables are calculated and then ranked.
The variables with p values higher than a thresh-
old value are retained, while all other variables
are eliminated. Family-based errors are used to
calculate the probability of false positives so that
features that cause Type I errors can be eliminated.
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During our experiments, we found that several
features were correlated with each other. In such
cases, just one of the features can be retained, and
the rest can be ignored. Through several exper-
iments, we determined the ideal threshold value
for correlation, as 0.6. The ML models were then
trained to predict ratings for each of the label pa-
rameters. We try different combinations of feature
selection methods and algorithms and observed
their effect on the performance. This helped in
understanding the most well-suited model for dif-
ferent settings. For each algorithm, an extensive
search is performed over specified hyper-parameter
values to help ensure that the models do not per-
form poorly due to a lack of hyperparameter tuning.
We used 3 fold cross-validation to ensure that our
models perform well in the real world as well.

4 Experimental Results and Analysis

For extensively evaluating the proposed multi-
modal analytics pipeline, various combinations of
prosodic, visual, and lexical features were exper-
imented with, and used to train the four different
classifiers, discussed in Section 3. each classifier is
trained to predict from 9 different class labels - eye
contact, speaking rate, engaged, pauses, calmness,
not stresses, focused, authentic, and not awkward.
Experiments using the fused multimodal feature
vector were performed, the results of which are tab-
ulated in Table 1. As can be observed from Table
1, the Random Forest Classifier outperformed the
others for the Eye Contact class, with an accuracy
of 64.28% obtained when the family-wise error
technique of feature selection was used (further ex-
periments were conducted to evaluate the effect of
different modalities, this is presented in Table 2).
Most models were able to predict a rating for Speak-
ing rate with high accuracy of 96.43%. The Lasso

Classifier with Benjamini-Hochberg technique and
Random Forest Classifier with the family-wise er-
ror technique helped achieve the best results. For
the Engaged label, an accuracy of 75% using the
Support Vector Classifier, along with the family-
wise error technique of feature selection was ob-
tained, while for Pauses, an accuracy of 82.14%
using the Random Forest Classifier and the K best
feature selection was seen as the best.

Two models performed well on the dataset to
achieve an accuracy of 78.57% on the Calmness
parameter - the Support Vector Classifier with the
Benjamini-Hochberg technique and the Random
Forest Classifier with K best feature selection tech-
nique. The Random Forest Classifier and Support
Vector Classifier achieved an accuracy of 82.14%
for Not Stressed label, while the Random Forest
Classifier with the family-wise error technique out-
performed other variations for the Focused label.
For the Authentic label, the best accuracy obtained
was only 67.87% using the Random Forest Classi-
fier with the family-wise error technique of feature
selection when Lexical and Facial features were
used. For the Not Awkward label, the Random
Forest Classifier showed the best performance at
60.71%, though still low when compared to other
class labels. Random Forest performed the best for
8 out of 9 labels. This is because it selects features
that contribute the most to the classification as it
considers the average of all predictions, canceling
out the bias. However, MLP underperformed on
most of the parameters.

Another objective was to check how the differ-
ent modalities measure up when feature sets using
any two modalities are created and ML models are
trained using these features. This basically pro-
vides insights into which modalities provide an
edge in capturing personality-specific traits. To as-

Table 1: Best accuracy scores obtained for models trained on audio+video+lexical multimodal feature vector

Label Random Forest SVC Multitask Lasso MLP
Eye contact 0.5714 0.5714 0.5714 0.5714
Speaking rate 0.9643 0.8928 0.9642 0.7857
Engaged 0.6428 0.7500 0.6428 0.5383
Pauses 0.8214 0.7857 0.6785 0.6785
Calmness 0.7857 0.7857 0.7500 0.6071
Not Stressed 0.8214 0.8214 0.6785 0.7500
Focused 0.7500 0.7142 0.7142 0.7142
Authentic 0.6787 0.6428 0.4642 0.6428
Not Awkward 0.6071 0.464 0.4285 0.45357
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Table 2: Observed accuracy scores for different combinations of modalities using a Random Forest Classifier.

Label Audio+Video+Lexical Audio+Video Lexical+Video Audio+Lexical
Eye Contact 0.5714 0.6428 0.5714 0.5428
Speaking rate 0.9643 0.9285 0.9285 0.9285
Engaged 0.6428 0.6428 0.6071 0.6071
Pauses 0.8214 0.7857 0.7857 0.7857
Calmness 0.7857 0.7500 0.7500 0.7857
Not Stressed 0.8214 0.7500 0.7142 0.8214
Focused 0.7500 0.5714 0.6071 0.6071
Authentic 0.6787 0.6071 0.6785 0.6428
Not Awkward 0.6071 0.4285 0.2500 0.4285

Table 3: Observed accuracy scores for individual modalities using Random Forest Classifier

Label Audio Video Lexical
Eye Contact 0.5000 0.6071 0.4642
Speaking rate 0.8571 0.8571 0.8571
Engaged 0.5357 0.4642 0.5357
Pauses 0.6071 0.6071 0.6428
Calmness 0.6785 0.6785 0.6785
Not stressed 0.7500 0.7142 0.7857
Focused 0.7857 0.7142 0.6785
Authentic 0.4642 0.5357 0.5714
Not Awkward 0.5000 0.2857 0.2142

Table 4: Best accuracy scores for different feature selection techniques.

Label Benjamini-Hochberg Family-wise error selection K best feature selection
Eye Contact 0.5714 0.6428 0.5714
Speaking rate 0.9643 0.9643 0.9285
Engaged 0.6428 0.7500 0.6071
Pauses 0.7124 0.7857 0.8214
Calmness 0.7857 0.7500 0.7857
Not Stressed 0.7142 0.8214 0.7857
Focused 0.6875 0.7500 0.6071
Authentic 0.5357 0.6787 0.6428
Not Awkward 0.6071 0.5714 0.5357

sess this behaviour, we conducted experiments with
three combinations of modalities - Audio+video,
Lexical+video and Audio+lexical as well as exper-
imented with individual modalities. The random
forest classifier was trained on feature sets gen-
erated by fusing these modalities to create three
different two-modality feature sets, after which the
label prediction performance was then observed.
Similarly, we also considered each of the three
modalities on their own, that is, the audio, video
and lexical feature sets. Again, the best performing
classifier, Random Forest was trained separately on
the one-modality feature vectors, and label predic-

tion performance was observed.

Table 2 and Table 3 show the results obtained
from two-modality feature vectors and each indi-
vidual modality feature vector for the best perform-
ing classifier, Random Forest, respectively. We
observed that the performance varies significantly
when the classifiers are trained on different com-
binations of the modality-specific feature set. For
the Eye contact class, the Audio+video+lexical
feature vector was not very accurate. In fact, the
two-modality feature vector performed better than
the three-modality feature vector. However, for all
other classes, the Random Forest classifier trained
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on the three-modality feature vector outperformed
all other variants. Table 4 shows the accuracy
scores for the different feature selection techniques
when all the modalities are considered.

5 Concluding Remarks

In this paper, approaches to automatically assess
candidates’ strengths and weaknesses during an in-
terview, using the video, audio, and transcripts of
the interview was presented. Various preprocessing
steps, including normalization and feature extrac-
tion for each of the three modalities was performed,
followed by feature selection to select the best fea-
tures from each modality. Label classification was
performed using four machine learning models -
Random Forest, Support Vector Classifier, Multi-
task Lasso, and Multi-Layer Perceptron model on
the optimal set of fused features and their varia-
tions. Effect of various combinations of modalities
and feature selection techniques are experimented
with. The models were trained for prediction with
respect to nine labels to evaluate the candidate. Ex-
periments revealed that the Random Forest Classi-
fier outperformed all other models for 8 out of the
9 labels considered.

The current dataset has only 169 videos, making
it difficult to get a very high accuracy for all the
labels. The dataset could be expanded to include
more interview videos that are scored by Amazon
Turk workers. We also aim to improve the pre-
dictions by incorporating behaviors such as hand
movements and body posture to get a refined un-
derstanding of the candidate’s performance. The
current model will be integrated into a web appli-
cation that can be used as a feedback tool to train
candidates for interviews by providing them with
real-time feedback on their performance and point-
ers to manage their strengths and weaknesses. The
scores can then be interpreted to give meaningful
suggestions to the candidate for boosting their in-
terview performance.

References
Anumeha Agrawal, Rosa Anil George, Selvan Sunitha

Ravi, Sowmya Kamath, and Anand Kumar. 2019.
ARS NITK at MEDIQA 2019: Analysing various
methods for natural language inference, recognising
question entailment and medical question answering
system. In Proceedings of the 18th BioNLP Work-
shop and Shared Task, ACL 2019, pages 533–540.

Rama Akkiraju. 2015. Ibm watson tone analyzer—new
service now available. IBM Cloud Blog, Jul, 16.

Olasimbo Ayodeji Arigbabu, Saif Mahmood, Sharifah
Mumtazah Syed Ahmad, and Abayomi A Arigbabu.
2016. Smile detection using hybrid face representa-
tion. Journal of Ambient Intelligence and Human-
ized Computing, 7(3):415–426.

Steven Bird, Ewan Klein, and Edward Loper. 2008.
Nltk documentation. Online: accessed April.

Nathaniel Blanchard, Daniel Moreira, Aparna Bharati,
and Walter J Scheirer. 2018. Getting the subtext
without the text: Scalable multimodal sentiment
classification from visual and acoustic modalities.
arXiv preprint arXiv:1807.01122.

Paul Boersma and David Weenink. 2018. Praat: Doing
phonetics by computer [computer program]. version
6.0. 37. RetrievedFebruary, 3:2018.

Damian Borth, Rongrong Ji, Tao Chen, Thomas Breuel,
and Shih-Fu Chang. 2013. Large-scale visual sen-
timent ontology and detectors using adjective noun
pairs. In Proceedings of the 21st ACM International
Conference on Multimedia, MM ’13, pages 223–
232, New York, NY, USA. ACM.

Leo Breiman. 2001. Random forests. Mach. Learn.,
45(1):5–32.

Erik Cambria, Devamanyu Hazarika, Soujanya Po-
ria, Amir Hussain, and RBV Subramanyam. 2017.
Benchmarking multimodal sentiment analysis. In
International Conference on Computational Linguis-
tics and Intelligent Text Processing, pages 166–179.
Springer.

Lei Chen, Gary Feng, Michelle Martin-Raugh,
Chee Wee Leong, Christopher Kitchen, Su-Youn
Yoon, Blair Lehman, Harrison Kell, and Chong Min
Lee. 2016. Automatic scoring of monologue video
interviews using multimodal cues. In INTER-
SPEECH, pages 32–36.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Mach. Learn., 20(3):273–297.

Huiling Ding and Xin Ding. 2013. 360-degree rhetor-
ical analysis of job hunting: A four-part, multi-
modal project. Business Communication Quarterly,
76(2):239–248.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd annual meet-
ing on association for computational linguistics,
pages 363–370. Association for Computational Lin-
guistics.

Theodoros Giannakopoulos. 2015. pyaudioanalysis:
An open-source python library for audio signal anal-
ysis. PloS one, 10(12).

53



LS Goldberg, LH Goldberg, LR GOLDBERG,
LR Goldberg, L Goldberg, and R Goldberg. 1981.
Language and individual differences: The search for
universals in personality lexicons.

Anthony Hu and Seth Flaxman. 2018. Multimodal sen-
timent analysis to explore the structure of emotions.
In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery &#38;
Data Mining, KDD ’18, pages 350–358, New York,
NY, USA. ACM.

Oliver P John, Sanjay Srivastava, et al. 1999. The big
five trait taxonomy: History, measurement, and theo-
retical perspectives. Handbook of personality: The-
ory and research, 2(1999):102–138.

Gokul S Krishnan and Sowmya S Kamath. 2019. A
novel ga-elm model for patient-specific mortality
prediction over large-scale lab event data. Applied
Soft Computing, 80:525–533.
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Abstract
Building multimodal dialogue understanding
capabilities situated in the in-cabin context is
crucial to enhance passenger comfort in au-
tonomous vehicle (AV) interaction systems.
To this end, understanding passenger intents
from spoken interactions and vehicle vision
systems is an important building block for
developing contextual and visually grounded
conversational agents for AV. Towards this
goal, we explore AMIE (Automated-vehicle
Multimodal In-cabin Experience), the in-cabin
agent responsible for handling multimodal
passenger-vehicle interactions. In this work,
we discuss the benefits of multimodal under-
standing of in-cabin utterances by incorporat-
ing verbal/language input together with the
non-verbal/acoustic and visual input from in-
side and outside the vehicle. Our experimental
results outperformed text-only baselines as we
achieved improved performances for intent de-
tection with multimodal approach.

1 Introduction

Understanding passenger intents from spoken in-
teractions and visual cues (both from inside and
outside the vehicle) is an important building block
towards developing contextual and scene-aware di-
alogue systems for autonomous vehicles. When
the passengers give instructions to the in-cabin
agent AMIE, the agent should parse commands
properly considering three modalities (i.e., ver-
bal/language/text, vocal/audio, visual/video) and
trigger the appropriate functionality of the AV sys-
tem.

For in-cabin dialogue between car assistants
and driver/passengers, recent studies explore cre-
ating a public dataset using a WoZ approach (Eric
et al., 2017) and improving ASR for passenger
speech recognition (Fukui et al., 2018). Another
recent work (Zheng et al., 2017) attempts to clas-
sify sentences as navigation-related or not using the

CU-Move in-vehicle speech corpus (Hansen et al.,
2001), a relatively old and large corpus focusing
on route navigation.

We collected a multimodal in-cabin dataset
with multi-turn dialogues between the passengers
and AMIE using a Wizard-of-Oz (WoZ) scheme
via realistic scavenger hunt game. In previous
work (Okur et al., 2019), we experimented with
various RNN-based models to detect the utterance-
level intents (i.e., set-destination, change-route, go-
faster, go-slower, stop, park, pull-over, drop-off,
open-door, other) along with the intent keywords
and relevant slots (i.e., location, position/direction,
object, gesture/gaze, time-guidance, person) asso-
ciated with these intents.

In this work, we discuss the benefits of a mul-
timodal understanding of in-cabin utterances by
incorporating verbal/language input together with
the non-verbal/acoustic and visual cues, both from
inside and outside the vehicle (e.g., passenger ges-
tures and gaze from in-cabin video stream, referred
objects outside of the vehicle from the road view
camera stream).

2 Data

Our AMIE in-cabin dataset includes 30 hours of
multimodal data collected from 30 passengers (15
female, 15 male) in a total of 20 sessions. In 10
sessions, a single passenger was present, whereas
the remaining 10 sessions include two passengers
interacting with the vehicle. Participants sit in the
back of the vehicle, separated from the driver and
the human acting as an agent at the front. The
vehicle is modified to hide the operator and the
WoZ AMIE agent from the passengers, using a
variation of the WoZ approach (Wang et al., 2017).
In each ride/session, which lasted about 1 hour or
more, the participants were playing a realistic scav-
enger hunt game on the streets of Richmond, BC,
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Figure 1: AMIE In-cabin Data Collection Setup

Canada. Passengers treat the vehicle as AV and
communicate with the WoZ AMIE agent mainly
via speech commands. Game objectives require
passengers to interact naturally with the agent to
go to certain destinations, update routes, give spe-
cific directions regarding where to pull over or park
(sometimes with gestures), find landmarks (refer
to outside objects), stop the vehicle, change speed,
get in and out of the vehicle, etc. Further details
of the data collection protocol and dataset statistics
can be found in (Sherry et al., 2018; Okur et al.,
2019). See Fig. 1 for the vehicle instrumentation
to enable multimodal data collection setup.

2.1 Dataset Statistics

Multimodal AMIE dataset consists of in-cabin con-
versations between the passengers and the AV
agent, with 10590 utterances in total. 1331 of
these utterances have commands to the WoZ agent,
hence they are associated with passenger intents.
Utterance-level intent and word-level slot annota-
tions are obtained on the transcribed utterances by
majority voting of 3 annotators. The annotation
results for utterance-level intent types, slots and in-
tent keywords can be found in Table 1 and Table 2.

AMIE Scenario Intent Type Utterance Count
Set/Change SetDestination 311

Destination/Route SetRoute 507

Park 151
Finishing the Trip PullOver 34

Stop 27

Set/Change GoFaster 73
Driving Behavior/Speed GoSlower 41

Others OpenDoor 136
(Door, Music, A/C, etc.) Other 51

Total 1331

Table 1: AMIE In-cabin Dataset Statistics: Intents

3 Methodology

We explored leveraging multimodality for the Natu-
ral Language Understanding (NLU) module in the
Spoken Dialogue System (SDS) pipeline. As our
AMIE in-cabin dataset has audio and video record-
ings, we investigated three modalities for the NLU:
text, audio, and visual.

For text (verbal/language) modality, we em-
ployed the Hierarchical & Joint Bi-LSTM
model (Schuster and Paliwal, 1997; Hakkani-Tur
et al., 2016; Zhang and Wang, 2016; Wen et al.,
2018), namely H-Joint-2.

• Hierarchical & Joint Model (H-Joint-2):
This is a 2-level hierarchical joint learning
model that detects/extracts intent keywords &
slots using sequence-to-sequence Bi-LSTMs
first (Level-1), then only the words that are
predicted as intent keywords & valid slots are
fed into the Joint-2 model (Level-2), which
is another sequence-to-sequence Bi-LSTM
network for utterance-level intent detection,
jointly trained with slots & intent keywords.

This architecture was chosen based on the best-
performing uni-modal results presented in previous
work (Okur et al., 2019) for utterance-level intent
recognition and slot filling on our AMIE dataset.
These initial uni-modal results were obtained on
the transcribed text with pre-trained GloVe word
embeddings (Pennington et al., 2014).

In this study, we explore the following multi-
modal features to better assess passenger intents
for conversational agents in self-driving cars: word
embeddings for text, speech embeddings and acous-
tic features for audio, and visual features for the
video modality.

Slot/Keyword Type Word Count
Intent Keyword 2007

Location 1969
Position/Direction 1131

Person 404
Time Guidance 246
Gesture/Gaze 167

Object 110

None 6512

Total 12546

Table 2: AMIE In-cabin Dataset Statistics: Slots
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Modalities Features F1(%)

Text Word2Vec (37.6K vocab) 85.63
Text GloVe (400K vocab) 89.02
Text & Audio GloVe & Acoustic (openSMILE/IS10) 89.53
Text & Visual GloVe & Video cabin (CNN/Inception-ResNet) 89.40
Text & Visual GloVe & Video road (CNN/Inception-ResNet) 89.37
Text & Visual GloVe & Video cabin+road (CNN/Inception-ResNet) 89.68

Audio Speech2Vec (37.6K vocab) 84.47
Text & Audio Word2Vec+Speech2Vec 88.08
Text & Audio GloVe+Speech2Vec 90.85
Text & Audio GloVe+Word2Vec+Speech2Vec 91.29
Text & Audio GloVe+Word2Vec+Speech2Vec & Acoustic (IS10) 91.68
Text & Audio & Visual GloVe+Word2Vec+Speech2Vec & Video cabin (CNN) 91.50
Text & Audio & Visual GloVe+Word2Vec+Speech2Vec & Video cabin+road (CNN) 91.55

Table 3: F1-scores of Intent Recognition with Multimodal Features

3.1 Word and Speech Embeddings

We incorporated pre-trained speech embeddings,
called Speech2Vec1, as additional audio-related
features. These Speech2Vec embeddings (Chung
and Glass, 2018) are trained on a corpus of 500
hours of speech from LibriSpeech. Speech2Vec
can be considered as a speech version of Word2Vec
embeddings (Mikolov et al., 2013), where the
idea is that learning the representations directly
from speech can capture the information carried by
speech that may not exist in plain text.

We experimented with concatenating word and
speech vectors using GloVe embeddings (6B to-
kens, 400K vocab, 100-dim), Speech2Vec embed-
dings (37.6K vocab, 100-dim), and its Word2Vec
(37.6K vocab, 100-dim) counterpart, in which the
Word2Vec embeddings are trained on the transcript
of the same LibriSpeech corpus.

3.2 Acoustic Features

Using openSMILE2 audio feature extraction
toolkit (Eyben et al., 2013), 1582 acoustic fea-
tures are extracted for each utterance using the seg-
mented audio clips from AMIE dataset. These are
the INTERSPEECH 2010 Paralinguistic Challenge
(IS10) features (Schuller et al., 2010) including
PCM (pulse-code modulation) loudness, MFCC
(Mel-frequency cepstral coefficients), log Mel Freq.
Band, LSP (line spectral pairs) Frequency, etc.

1https://github.com/iamyuanchung/
speech2vec-pretrained-vectors

2https://www.audeering.com/opensmile/

3.3 Visual Features

Intermediate CNN features3 are extracted from
each video clip segmented per utterance from the
AMIE dataset. Using the feature extraction pro-
cess described in (Kordopatis-Zilos et al., 2017),
one frame per second is sampled for any given
input video clip and its visual descriptors are ex-
tracted from the activations of the intermediate con-
volution layers of a pre-trained CNN. We used the
pre-trained Inception-ResNet-v2 model4 (Szegedy
et al., 2016) and generated 4096-dim features for
each sample. We experimented with utilizing two
sources of visual information: (i) cabin/passenger
view from the back-driver RGB camera recordings,
(ii) road/outside view from the dash-cam RGB
video streams.

4 Experimental Results

Performance results of the utterance-level intent
recognition models with varying modality and fea-
ture concatenations can be found in Table 3, using
hierarchical joint learning (H-Joint-2). For text
and speech embeddings experiments, we observe
that using Word2Vec or Speech2Vec representa-
tions achieve comparable F1-score performances,
which are significantly below the GloVe embed-
dings performance. This was expected as the pre-
trained Speech2Vec vectors have lower vocabu-
lary coverage than the GloVe vectors. On the

3https://github.com/MKLab-ITI/
intermediate-cnn-features

4https://github.com/tensorflow/models/
tree/master/research/slim
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other hand, we observe that concatenating GloVe
+ Speech2Vec embeddings, and further GloVe +
Word2Vec + Speech2Vec yields higher F1-scores
for intent recognition. These results show that the
speech embeddings indeed can capture useful se-
mantic information carried by speech only, which
may not exist in plain text.

We also investigate incorporating the audio-
visual features on top of text-only and text + speech
embedding models. Including openSMILE/IS10
acoustic features from audio as well as intermedi-
ate CNN/Inception-ResNet-v2 features from video
brings slight improvements to our intent recogni-
tion models, achieving 0.92 F1-score. These initial
results may require further explorations for spe-
cific intents such as stop (e.g., audio intensity &
loudness could have helped), or for relevant slots
such as passenger gesture/gaze (e.g., cabin-view
features) and outside objects (e.g., road-view fea-
tures).

5 Conclusion and Future Work

In this work, we briefly present our initial ex-
plorations towards the multimodal understanding
of passenger utterances in autonomous vehicles.
We show that our experimental results outper-
formed the uni-modal text-only baseline results,
and with multimodality, we achieved improved per-
formances for passenger intent detection in AV.
This ongoing research has the potential impact
of exploring real-world challenges with human-
vehicle-scene interactions for autonomous driving
support via spoken utterances.

There exist various exciting recent work on im-
proved multimodal fusion techniques (Zadeh et al.,
2018; Liang et al., 2019a; Pham et al., 2019; Bal-
trušaitis et al., 2019). In addition to the simplified
feature and modality concatenations, we plan to
explore some of these promising tensor-based mul-
timodal fusion networks (Liu et al., 2018; Liang
et al., 2019b; Tsai et al., 2019) for more robust in-
tent classification on AMIE dataset as future work.
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Abstract

An artificial intelligence(AI) system should be
capable of processing the sensory inputs to ex-
tract both task-specific and general informa-
tion about its environment. However, most of
the existing algorithms extract only task spe-
cific information. In this work, an innovative
approach to address the problem of processing
visual sensory data is presented by utilizing
convolutional neural network (CNN). It recog-
nizes and represents the physical and semantic
nature of the surrounding in both human read-
able and machine processable format. This
work utilizes the image captioning model to
capture the semantics of the input image and
a modular design to generate a probability dis-
tribution for semantic topics. It gives any au-
tonomous system the ability to process visual
information in a human-like way and gener-
ates more insights which are hardly possible
with a conventional algorithm. Here a model
and data collection method are proposed.

1 Introduction

In a world gifted with visible light facilitating infor-
mation sharing, the living creatures have developed
organs for sensing the light to understand their sur-
rounding. In an autonomous system, this informa-
tion is captured in IR, UV, and visible spectrum
involving sophisticated sensors and is processed
using complex algorithms. At Consumer Electron-
ics Show (CES) 2020, Samsung presented Ballie
which is a personalized robot with ideas to make it
self-aware of its surroundings and control IoT de-
vices around home to make the environment better.
With companies targeting to launch smart home
robots with capabilities of following voice com-
mands, there is a need to develop a system that
can automatically understand the semantics of the
environment and take appropriate decisions on its
own.

(a) a person cutting cake
while others cheering.

(b) Fire fighters are trying to
put out fire in the building.

Figure 1: Variety of scenarios that a human can de-
scribe comfortably.

The latest work in scene understanding involved
construction of knowledge graph for visual seman-
tic understanding(Jiang et al., 2019). The authors
used ontology graph in combination with visual
captioning to describe the scene. Another approach
for functional scene understanding was introduced
using semantic segmentation(Wald et al., 2018).
All these scene understanding approaches make a
system specialized in certain tasks and working en-
vironment while failing to generalize across various
types of situations and capture the human emotions.

It is efficient to make decision, based on a struc-
tured description of the scene instead of working
on raw pixel information. Fig.1 shows scenarios
where a human can easily interpret the meaning
of the scene. It is easy to tell from the Fig.1b that
firefighters are trying to put out the fire from build-
ing. This is also true for all the Fig.1a, 1b where a
human can understand and explain the scene easily
through a language representation.

In this work we recommend an AI sensing sys-
tem that can semantically interpret the environmen-
tal conditions, objects, relations and activity carried
out from the visual feed. These interpretations are
converted into text for human understanding and
probability distribution for the control system to
process and take decisions. The main intention of
this work is to have a neural network based sen-
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sor processing unit capable of extracting semantic
context while deployed on low powered compute
hardware.

This paper is divided as follows:

• Section 2 explains various modules of the pro-
posed approach.

• Section 3 discusses about the dataset and con-
siderations to make while implementing this
approach.

2 Proposed Approach

In this work, a modular approach is proposed to
represent the semantic content of the outside world
through vision sensor. A detailed flow diagram of
the proposed method is shown in Fig.2. It consist of
three sub-modules namely, CNN feature extractor,
language module, and environment context prob-
ability detector module. It combines visual, lan-
guage, and context detection modules to assist the
control unit to make decisions based on non-task
specific environment details.

2.1 CNN Feature Extractor
This module process the visual feed and convert
them into feature tensor(f ) which is used to gen-
erate semantic understanding of the surrounding.
This feature tensor(f ) encodes the information
present in the incoming frame. A CNN based
feature extractor(Xu et al., 2015) trained for im-
age classification task on Imagenet dataset(Deng
et al., 2009) is used. There are variety of CNN
based pre-trained architectures are available to be
used as feature extractors. Architectures such as
Mobilenet(Sandler et al., 2018), ResNet(He et al.,
2016), InceptionNet(Szegedy et al., 2015) and
DenseNet(Huang et al., 2017) have their own ben-
efits and drawbacks. Based on the deployment
hardware, expected response time and environment
nature, specific architecture can be chosen.

2.2 Language Module
In this module, the information from the feature
tensor(f ) are extracted and represented in a human
interpretable language(l). This is achieved by using
Long Short Term Memory unit(LSTM)(Sak et al.,
2014) which is a deep neural network(DNN) for
generating sequential output(Xu et al., 2015). A
combination of soft-attention mechanism(Xu et al.,
2015) and LSTM is used to describe the contents
extracted from the frame(Vinodababu, 2018). This

is a recursive step where the execution comes to a
halt when the end token < end > is predicted or
maximum sentence length is reached.

l = {w0, w1, w2, ...wn}

where

wi ∈ Rk

Here Rk is the vector of tokenized words in the
vocabulary and (l) is the generated word sequence.
The byproduct of having language representation
is explainability of action.

The process of caption generation happens re-
cursively were to sample a word w from Rk it goes
through the following process. Ref Fig.3.

At a time step t,

• The attention mechanism computes the mask
mt for feature tensorf using f and hidden state
Ht−1.

• f weighted by mt combined with the previous
word detected wt−1 is passed onto the LSTM
along with hidden state Ht−1 and cell state
Ct−1 from the previous step.

• The LSTM output a probability distribution
for the words in the vocabulary R.

This process is carried out until the end token <
end > is predicted or the max length of caption is
reached. The effectiveness of this module depends
on generation of dense caption for the scene.

2.3 Environment Context Detector

The verbal representation from language module
is used to generate probability distribution over
various groups of semantic context. The input se-
quence is tokanized, vectorized and converted into
probability distribution by using fully connected
network. It is constructed by single or multiple neu-
ral net operating parallel, perform prediction over
various context. Fig.4 provides the overall view
of this module where different fully connected net-
work(FCN) are used for prediction. The caption
are tokanized and vectorized to act as input. Here
GloVe embedding(Pennington et al., 2014) is used
to vectorize the sentence. The activation of the out-
put layer can use either softmax or sigmoid based
on the nature of the data. The topics of the con-
text should be decided based on the workspace and

61



Figure 2: A block diagram of the proposed model.

Figure 3: A flow diagram explaining how language
module prediction the next word in sequence.(Xu et al.,
2015)

preference of the robotics designer. Fig.4, shows
environment context detector block diagram.

E = [c0, c1, ...cd]

where ci is the prediction vector of ith context
net and E is the collection of c vectors. Here d is
the desired number of context net. The generated
probability distribution is sent to the control system
which takes the final decision whether to react or
not. The proposed solution serves as an add-on to
the existing control system.

3 Dataset and Considerations

The CNN feature extractor is a pre-trained model
trained on Imagenet dataset(Deng et al., 2009) for
classifying 1000 objects. The language module is
trained using COCO image captioning dataset(Lin
et al., 2014) which consist of image and captions
in target language. A BLEU-1 score of 70.7 is
achieved for the language module.

The dataset for the environment context mod-
ule is similar to the text sentiment classification
dataset. The input will be a sentence and the labels
are one-hot vector of target class. A dataset is cre-
ated from a portion of COCO caption where the

Figure 4: A block diagram of environment context de-
tector.

semantic context topics are environment, situation,
mood, presence of human, and objects in the scene
as shown in Fig.4. There are several logical consid-
erations to be take while adopting this method. few
of them are,

• On board compute capability to carryout DNN
calculation.

• Robot deployment environment and its nature.

• The actual intention and task of the robot.

• How the control system should react to the
generated probability distribution.

4 Conclusion

The main objective of the work is to use neural
networks to understand and represent the physical
environment around the system. This work serve as
an add-on to the existing control system by provid-
ing additional set of inputs capturing the semantic
meaning. An image captioning based approach is
used to obtain semantic content of the surrounding
and it is represented in a probability distribution.
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Abstract
Deep Neural Networks have been successfully
used for the task of Visual Question Answer-
ing for the past few years owing to the avail-
ability of relevant large scale datasets. How-
ever these datasets are created in artificial set-
tings and rarely reflect the real world scenario.
Recent research effectively applies these VQA
models for answering visual questions for the
blind. Despite achieving high accuracy these
models appear to be susceptible to variation
in input questions.We analyze popular VQA
models through the lens of attribution (input’s
influence on predictions) to gain valuable in-
sights. Further, We use these insights to
craft adversarial attacks which inflict signifi-
cant damage to these systems with negligible
change in meaning of the input questions. We
believe this will enhance development of sys-
tems more robust to the possible variations in
inputs when deployed to assist the visually im-
paired.

1 Introduction

Visual Question Answering (VQA) is a semantic
task, where a model attempts to answer a natu-
ral language question based on the visual context.
With the emergence of large scale datasets (Antol
et al., 2015; Goyal et al., 2017; Krishna et al., 2016;
Malinowski and Fritz, 2014; Zhu et al., 2016),
There has been outstanding progress in VQA sys-
tems in terms of accuracy obtained on the associ-
ated test sets. However these systems are seen to
somewhat fail when applied in real-world situations
(Gurari et al., 2018; Agrawal et al., 2016) majorly
due to a significant domain shift and an inherent
language/image bias. A direct application of VQA
is to answer the questions for images captured by
blind people. The VizWiz (Gurari et al., 2018) is a
first of its kind goal oriented dataset which reflects
the challenges conventional VQA models might
face when applied to assist the blind. The questions

in this dataset are not straightforward and are often
conversational which is natural knowing that they
have been asked by visually impaired people for
assistance. Due to unsuitable images or irrelevant
questions most of these questions are unanswerable.
These questions differ from those in other datasets
mainly in the type of answer they are expecting.
The questions are often subjective and require the
algorithm to actually read (OCR)/ detect/ count,
moreover understand the image before answering.
We believe models trained on such a challenging
dataset must be interpretable and should be ana-
lyzed for robustness to ensure they are accurate for
the right reasons.

2 Model Interpretability

Deep Neural Networks often lack interpretability
but are widely used owing to their high accuracy
on the representative test sets. In most applica-
tions a high test-set accuracy is sufficient, but in
certain sensitive areas, understanding causality is
crucial. When deploying such VQA models to aid
the blind, utmost care needs to be taken to prevent
the model from answering wrongly to avoid possi-
ble accidents. In the past, various saliency methods
have been used to interpret models which have tex-
tual inputs. Vanilla Gradient Method(Simonyan
et al., 2013) visualizes the gradients of the loss
with respect to each input token(word in this case).
SmoothGrad (Smilkov et al., 2017) averages the
gradient by adding Gaussian noise to the input.
Layerwise Relevance Propagation (LRP) (Binder
et al., 2016), DeepLift (Shrikumar et al., 2017) are
similar methods used for this purpose.

3 Integrated Gradients (IG)

Vanilla, LRP and DeepLift violate the axioms of
Sensitivity and Implementational Invariance as dis-
cussed by Sundararajan et al. 2017. As Integrated
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Gradients (IG)(Sundararajan et al., 2017) satisfies
the necessary axioms, we use it for the purpose of
interpretability. IG computes attributions for the
input features based on the network’s predictions.
These attributions assign credit/blame to the input
features (pixels in case of an image and words in
case of a question) which are responsible for the
output of the model. These attributions can help
identify when a model is accurate for the wrong
reasons like over-reliance on images or possible lan-
guage priors. These attributions are computed with
respect to a baseline input. In this paper, we use an
empty question as the baseline. We use these attri-
butions which specify word importance in the input
question to design adversarial questions, which the
model fails to answer correctly. While doing so,
we try to preserve the original meaning of the ques-
tion and ensure the simplicity of the same. We
design these questions manually by incorporating
highly attributed content-free words in the original
question,taking into consideration the free-formed
conversational nature of the questions that any user
of such a system might ask. By content-free, we
refer to words that are context independent like
prepositions (e.g., ”on”, ”in”), determiners (e.g.,
”this”, ”that”) and certain qualifiers (e.g., ”much”,
”many”) among others.

4 Related Work

The main idea of adversarial attacks is to care-
fully perturb the input without making perceivable
changes, in order to affect the prediction of the
model. There has been significant research on ad-
versarial attacks concerning images(Goodfellow
et al., 2014; Madry et al., 2017). These attacks ex-
ploit the oversensitivity of models towards changes
in the input image. Sharma et al. 2018 study at-
tention guided implementations of popular image-
based attacks on VQA models. Xu et al. 2018 dis-
cuss methods to generate targeted attacks to perturb
input images in a multimodal setting. Ramakrish-
nan et al. 2018 observe that VQA models heavily
rely on certain language priors to directly arrive
at the answer irrespective of the image. They fur-
ther develop a bias-reducing approach to improve
performance. Kafle and Kanan 2017 study the
response of VQA models towards various ques-
tion categories to indicate the deficiencies in the
datasets. Huang et al. 2019 analyze the robustness
of VQA models on basic questions ranked on the
basis of similarity by LASSO based optimization

method. Finally, Mudrakarta et al. 2018 use attribu-
tions to determine word importance and leverage
them to craft adversarial questions. We adapt their
ideas to the conversational aspect of questions in
VizWiz to better suit our task. In this paper we
restrict ourselves to attacks in the language domain,
i.e. we only perturb the input questions and analyze
the network’s response.

5 Robustness Analysis

5.1 Model and Data Specifications

The VizWiz dataset (Gurari et al., 2018) consists of
20,523 training set image-question pairs and 4,319
validation pairs (Bhattacharya and Gurari, 2019).
Whereas the VQA v2 dataset (Goyal et al., 2017)
consists of 443,757 training questions and 214,354
validation questions. The VizWiz dataset is signifi-
cantly smaller than other VQA datasets and hence
is not ideal to determine word importance for the
content free words. In order to do justice to these
words and to keep the analysis generalizable we
use the VQA v2 dataset for computing text attri-
butions. We use the Counter model (Zhang et al.,
2018) for the purpose of computing attributions.
This model is structurally similar to the Q+I+A
(Kazemi and Elqursh, 2017) (which was used to
benchmark on VizWiz). We select this model for
ease in reproducibility and for consistency with the
original paper (Gurari et al., 2018). We compute
attributions over the validation set, of which the
highly attributed words are selected to design pre-
fix and suffix phrases which can be incorporated
in original questions for adversarial effect.Further
we verify and test these attacks on the following
models : (1) Pythia (Singh et al., 2019) (the VizWiz
2018 challenge winner) pretrained on VQA v2 and
transferred to VizWiz (train split) and (2) Q+I+A
model (which was used to benchmark on VizWiz)
trained from scratch on VizWiz (train split).

5.2 Observations

We compute the total attribution that every word
receives as well as average attribution for every
word based on it’s frequency of occurrence. We
only take into account content free words, with the
intention of preserving the meaning of the original
question when these words are added to it. We
observe that among the content-free words, ’what’,
’many’, ’is’ ’this’, ’how’ consistently receive high
attribution in a question. We use these words along
with some other context independent words to de-
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Figure 1: Attributions overlaid on the corresponding
input words. The output of the model changes from
’yellow’ to 1 which is driven by the word ’many’.

Figure 2: The output of the model is driven by the word
’answer’ acting as an adversary.

sign the attacks. We use these words to create
seemingly natural phrases to be prepended or ap-
pended to the question. We observe that the model
alters it’s prediction under the influence of these
added words.

5.3 Suffix Attacks

We present Suffix Attacks, wherein we append con-
tent free phrases to the end of each question and
evaluate the strength of these attacks through the
accuracy obtained by the model on validation set
and the percentage of answers it predicts as unan-
swerable/unsuitable (U).

5.4 Prefix Attacks

We expand the Prefix attacks of Mudrakarta et al.
2018 in a conversational vein to suit our task. These
are seen to be more effective as prefix allows us to
add important words like ’What’ and ’How’ to the
start of a question which confuses the model to a
greater extent than suffix attacks.

Question :
what is the color of this fruit ?

Predicted Label:
Banana

Question :
in not many words what is the color of this fruit ?

Predicted Label:
1

Question :
what is this ?

Predicted Label:
Train

Question :
answer this for me what is this ?

Predicted Label:
No

5.5 Evaluation and Analysis
The Pythia v3 (Singh et al., 2019) model achieves
an accuracy of 53% while the Q+I+A model
achieves 48.8% when evaluated on clean samples
from the val-set. We tabulate the results obtained
by using these phrases as prefixes and suffixes. It
is worth noting that when tested on empty ques-
tions (which is the baseline for our task) Pythia
retains an accuracy of 35.43% while Q+I+A re-
tains 38.35%. Thus our strongest attacks which are
meaningful combinations of the basic attacks(in
bold; see Table 1 for Pythia) and (in bold; see Ta-
ble 3 for Q+I+A) drop the model’s accuracy close
to the empty question lower bound. Our strongest
attack ( see Table 1) renders 97% of the questions
unanswerable, which is a significant increase from
58% when evaluated on clean questions.

6 Performance on other attacks

6.1 Word Substitution
We observe that when we evaluate the model by
substituting certain words of the input question by
low-attributed words, which change the meaning
of the question, the answer predicted in most cases
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Pythia v0.3 (Singh et al., 2019)
Prefix Phrase Accuracy % U
guide me on this 47.8 74.28
answer this for me 46.27 82.66
in not a lot of words 44.66 85.15
what is the answer to 43.46 86.10
in not many words 42.29 91.3
in not many words- 38.16 97.06
what is the answer to

Table 1: Prefix attacks on Pythia v0.3

Pythia v0.3 (Singh et al., 2019)
Suffix Phrase Accuracy % U
guide me on this 49.8 69.2
answer this for me 48.82 75.19
answer this for me- 45.3 82.47
in not a lot of words
answer this for me- 42.5 88.46
in not many words

Table 2: Suffix attacks on Pythia v0.3

Q+I+A (Kazemi and Elqursh, 2017)
Suffix Phrase Accuracy % U
describe this for me 43.52 82.8
answer this for me 43.90 89.7
guide me on this 41.31 87.0
answer this for me- 40.1 91.13
in not a lot of words
answer this for me- 38.44 94.1
in not many words

Table 3: Suffix attacks on Q+I+A

Q+I+A (Kazemi and Elqursh, 2017)
Prefix Phrase Accuracy % U
describe this for me 46.72 76.8
answer this for me 45.90 79.8
what is the answer to 44.72 80.6
in not many words 44.50 81.4
answer this for me- 42.1 81.13
in not many words

Table 4: Prefix attacks on Q+I+A

is ’unanswerable’. This means that the model does
not over-rely on images and is robust in this aspect.

6.2 Input Reduction

We follow the approach of Feng et al. 2018 to it-
eratively remove less important words from the

input question. With the removal of around 50%
words from a question, the accuracy drops close to
46% and renders 72% of the questions unanswer-
able. The Pythia model is fairly robust in this sense
too, as it’s output becomes ’unanswerable’ after
considerable input reduction.

6.3 Absurd Questions
To evaluate the effect of absurd attacks on these
models, we make a short, non-exhaustive list of
objects that do not appear in the validation set of
VizWiz(questions, answers and captions) but are
present in the training set. We use these objects
to form questions similar to the training set ques-
tions which contained these objects. A good model
should be able to detect absurd questions. For ab-
surd questions like ”which country’s flag is this ?”
(where ”flag” does not occur in the validation set of
VizWiz) Pythia predicts over 90% of these (clean
image)-(absurd question) pairs as ’unanswerable’
which is the desired outcome.

7 Conclusion

We analyzed two popular VQA models trained un-
der different circumstances for robustness. Our
analysis was driven by textual attributions, which
helped identify shortcomings of the current ap-
proaches to solve a real world problem. The at-
tacks discussed in this paper, illuminate the need
for achieving robustness to scale up better to the
task of visual assistance. To improve accessibility
for the visually impaired, these VQA systems must
be interpretable and safe for operation even under
adverse conditions arising out of conversational
variations. We believe these insights can be useful
to surmount this challenging task.

References
Aishwarya Agrawal, Dhruv Batra, and Devi Parikh.

2016. Analyzing the behavior of visual question an-
swering models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1955–1960, Austin, Texas. Asso-
ciation for Computational Linguistics.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual Question An-
swering. In International Conference on Computer
Vision (ICCV).

Nilavra Bhattacharya and Danna Gurari. 2019. Vizwiz
dataset browser: A tool for visualizing machine
learning datasets. arXiv preprint arXiv:1912.09336.

67
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