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Abstract
Humans convey their intentions through the usage of both ver-
bal and nonverbal behaviors during face-to-face communica-
tion. Speaker intentions often vary dynamically depending on
different nonverbal contexts, such as vocal patterns and facial
expressions. As a result, when modeling human language, it is
essential to not only consider the literal meaning of the words
but also the nonverbal contexts in which these words appear.
To better model human language, we first model expressive
nonverbal representations by analyzing the fine-grained visual
and acoustic patterns that occur during word segments. In
addition, we seek to capture the dynamic nature of nonverbal
intents by shifting word representations based on the accom-
panying nonverbal behaviors. To this end, we propose the
Recurrent Attended Variation Embedding Network (RAVEN)
that models the fine-grained structure of nonverbal subword
sequences and dynamically shifts word representations based
on nonverbal cues. Our proposed model achieves competitive
performance on two publicly available datasets for multimodal
sentiment analysis and emotion recognition. We also visualize
the shifted word representations in different nonverbal con-
texts and summarize common patterns regarding multimodal
variations of word representations.

Introduction
Multimodal language communication happens through both
verbal and nonverbal channels. The verbal channel of com-
munication conveys intentions through words and sentences
while the nonverbal aspect uses gestures and vocal intona-
tions. However, the meaning of words and sentences uttered
by the speaker often varies dynamically in different non-
verbal contexts. These dynamic behaviors can arise from
different sources such as cultural shift or different political
backgrounds (Bamler and Mandt 2017). In human multi-
modal language, these dynamic behaviors are often inter-
twined with their nonverbal contexts (Burgoon, Guerrero, and
Floyd 2016). Intentions conveyed through uttering a sentence
can display drastic shifts in intensity and direction, leading
to the phenomena that the uttered words exhibit dynamic
meanings depending on different nonverbal contexts.

Previous work in modeling human language often utilizes
word embeddings pretrained on a large textual corpus to rep-
resent the meaning of language. However, these methods
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Figure 1: Conceptual figure demonstrating that the word rep-
resentation of the same underlying word “sick” can vary con-
ditioned on different co-occurring nonverbal behaviors. The
nonverbal context during a word segment is depicted by the
sequence of facial expressions and intonations. The speaker
who has a relatively soft voice and frowning behaviors at the
second time step displays negative sentiment.

are not sufficient for modeling highly dynamic human multi-
modal language. The example in Figure 1 demonstrates how
the same underlying word can vary in sentiment when paired
with different nonverbal cues. Although the two speakers
are using the same adjective “sick” to describe movies, they
are conveying different sentiments and remarks by showing
opposing facial expressions and intonations. These subtle
nonverbal cues contained in the span of the uttered words,
including facial expressions, facial landmarks, and acoustic
features, are crucial towards determining the exact intent dis-
played in verbal language. We hypothesize that this “exact
intent” can often be derived from the representation of the
uttered words combined with a shift in the embedding space
introduced by the accompanying nonverbal cues. In this re-
gard, a dynamic representation for words in particular visual
and acoustic background is required.



Modeling the nonverbal contexts concurrent to an uttered
word requires fine-grained analysis. This is because the visual
and acoustic behaviors often have a much higher temporal
frequency than words, leading to a sequence of accompany-
ing visual and acoustic “subword” units for each uttered word.
The structure of these subword sequences is especially im-
portant towards the representation of nonverbal dynamics. In
addition, modeling subword information has become essen-
tial for various tasks in natural language processing (Faruqui
et al. 2017), including language modeling (Labeau and Al-
lauzen 2017; Kim et al. 2016), learning word representations
for different languages (Peters et al. 2018; Oh et al. 2018;
Bojanowski et al. 2016), and machine translation (Kudo 2018;
Sennrich, Haddow, and Birch 2015). However, many of these
previous works in understanding and modeling multimodal
language has ignored the role of subword analysis. Instead,
they summarize the subword information during each word
span using the simple averaging strategies (Liang et al. 2018;
Liu et al. 2018; Zadeh et al. 2018b). While average behav-
iors may be helpful in modeling global characteristics, it is
lacking in its representation capacity to accurately model the
structure of nonverbal behaviors at the subword level. This
motivates the design of a more expressive model that can ac-
curately capture the fine-grained visual and acoustic patterns
that occur in the duration of each word.

To this end, we propose the Recurrent Attended Variation
Embedding Network (RAVEN), a model for human mul-
timodal language that considers the fine-grained structure
of nonverbal subword sequences and dynamically shifts the
word representations based on these nonverbal cues. In order
to verify our hypotheses on the importance of subword anal-
ysis as well as the dynamic behaviors of word meanings, we
conduct experiments on multimodal sentiment analysis and
emotion recognition. Our model shows excellent performance
on both tasks. We present visualizations of the shifted word
representations to better understand the impact of subword
modeling and dynamic shifts on modeling word meaning.
Finally, we present ablation studies to analyze the effects of
subword modeling and dynamic shifting. We discover that
the shifted embeddings learned by RAVEN exhibit mean-
ingful distributional patterns with respect to the sentiment
expressed by the speaker.

Related Works
Previously, much effort has been devoted to building machine
learning models that learn from multiple modalities (Ngiam
et al. 2011; Srivastava and Salakhutdinov 2014). However,
there has been limited research into modeling the variations
of word representations using nonverbal behaviors. To place
our work in the context of prior research, we categorize pre-
vious works as follows: (1) subword word representations,
(2) modeling variations in word representations, and (3) mul-
timodal sentiment and emotion recognition.

Modeling subword information has become crucial for vari-
ous tasks in natural language processing (Faruqui et al. 2017).
Learning the compositional representations from subwords
to words allows models to infer representations for words not
in the training vocabulary. This has proved especially useful
for machine translation (Sennrich, Haddow, and Birch 2015),

language modeling (Kim et al. 2016) and word representation
learning (Bojanowski et al. 2016). In addition, deep word
representations learned via neural models with character con-
volutions (Zhang, Zhao, and LeCun 2015) have been found
to contain highly transferable language information for down-
stream tasks such as question answering, textual entailment,
sentiment analysis, and natural language inference (Peters et
al. 2018).

Modeling variations in word representations is an impor-
tant research area since many words have different mean-
ings when they appear in different contexts. Li and Juraf-
sky (2015) propose a probabilistic method based on Bayesian
Nonparametric models to learn different word representa-
tions for each sense of a word, Nguyen et al. (2017) use a
Gaussian Mixture Model (Reynolds 2009) and Athiwaratkun,
Wilson, and Anandkumar (2018) extend FastText word repre-
sentations (Bojanowski et al. 2016) with a Gaussian Mixture
Model representation for each word.

Prior work in multimodal sentiment and emotion recog-
nition has tackled the problem via multiple approaches: the
early fusion method refers to concatenating multimodal data
at the input level. While these methods are able to out-
perform unimodal models (Zadeh et al. 2016) and learn
robust representations (Wang et al. 2016), they have lim-
ited capabilities in learning modality-specific interactions
and tend to overfit (Xu, Tao, and Xu 2013). The late fu-
sion method integrates different modalities at the predic-
tion level. These models are highly modular, and one can
build a multimodal model from individual pre-trained uni-
modal models and fine-tuning on the output layer (Poria et
al. 2017). While such models can also outperform unimodal
models (Pham et al. 2018), they focus mostly on modeling
modality-specific interactions rather than cross-modal inter-
actions. Finally, multi-view learning refers to a broader class
of methods that perform fusion between the input and pre-
diction levels. Such methods usually perform fusion through-
out the multimodal sequence (Rajagopalan et al. 2016;
Liang, Zadeh, and Morency 2018), leading to explicit mod-
eling of both modality-specific and cross-modal interactions
at every time step. Currently, the best results are achieved
by augmenting this class of models with attention mecha-
nisms (Liang et al. 2018), word-level alignment (Tsai et al.
2018), and more expressive fusion methods (Liu et al. 2018).

These previous studies have explored integrating non-
verbal behaviors or building word representations with dif-
ferent variations from purely textual data. However, these
works do not consider the temporal interactions between the
nonverbal modalities that accompany the language modality
at the subword level, as well as the contribution of non-verbal
behaviors towards the meaning of underlying words. Our
proposed method models the nonverbal temporal interactions
between the subword units. This is performed by word-level
fusion with nonverbal features introducing variations to word
representations. In addition, our work can also be seen as an
extension of the research performed in modeling multi-sense
word representations. We use the accompanying nonverbal
behaviors to learn variation vectors that either (1) disam-
biguate or (2) emphasize the existing word representations
for multimodal prediction tasks.
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Figure 2: An illustrative example for Recurrent Attended Variation Embedding Network (RAVEN) model: The RAVEN model has
three components: (1) Nonverbal Sub-networks, (2) Gated Modality-mixing Network, and (3) Multimodal Shifting. For the given
word “sick” in the utterance, the Nonverbal Sub-networks first computes the visual and acoustic embedding through modeling the
sequence of visual and acoustic features lying in a word-long segment with separate LSTM network. The Gated Modality-mixing
Network module then infers the nonverbal shift vector as the weighted average over the visual and acoustic embedding based
on the original word embedding. The Multimodal Shifting finally generates the multimodal-shifted word representation by
integrating the nonverbal shift vector to the original word embedding. The multimodal-shifted word representation can be then
used in the high-level hierarchy to predict sentiments or emotions expressed in the sentence.

Recurrent Attended Variation Embedding
Network (RAVEN)

The goal of our work is to better model multimodal human
language by (1) considering subword structure of nonverbal
behaviors and (2) learning multimodal-shifted word repre-
sentations conditioned on the occurring nonverbal behaviors.
To achieve this goal, we propose the Recurrent Attended
Variation Embedding Network (RAVEN).

An overview of the proposed RAVEN model is given in
Figure 2. Our model consists of three major components:
(1) Nonverbal Sub-networks model the fine-grained structure
of nonverbal behaviors at the subword level by using two
separate recurrent neural networks to encode a sequence of
visual and acoustic patterns within a word-long segment,
and outputs the nonverbal embeddings. (2) Gated Modality-
mixing Network takes as input the original word embedding
as well as the visual and acoustic embedding, and uses an
attention gating mechanism to yield the nonverbal shift vector
which characterizes how far and in which direction has the
meaning of the word changed due to nonverbal context. (3)
Multimodal Shifting computes the multimodal-shifted word
representation by integrating the nonverbal shift vector to the
original word embedding. The following subsections discuss
the details of these three components of our RAVEN model.

Nonverbal Sub-networks

To better model the subword structure of nonverbal behaviors,
the proposed Nonverbal Sub-networks operate on the visual
and acoustic subword units carried alongside each word. This
yields the visual and acoustic embeddings. These output
embeddings are illustrated in Figure 2.

Formally, we begin with a segment of multimodal lan-
guage L denoting the sequence of uttered words. For the
span of the ith word denoted as L(i), we have two accom-
panying sequences from the visual and acoustic modali-
ties: V(i) = [v

(i)
1 , v

(i)
2 ,⋯, v

(i)
tvi

], A(i) = [a
(i)
1 , a

(i)
2 ,⋯, a

(i)
tai

].
These are temporal sequences of visual and acoustic frames,
to which we refer as the visual and acoustic subword units. To
model the temporal sequences of sub-word information com-
ing from each modality and compute the nonverbal embed-
dings, we use Long-short Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997) networks. LSTMs have been suc-
cessfully used in modeling temporal data in both computer
vision (Ullah et al. 2018) and acoustic signal processing
(Hughes and Mierle 2013).

The modality-specific LSTMs are applied to the sub-word
sequences for each word L(i), i = 1,⋯, n. For the i-th word
L(i) in the language modality, two LSTMs are applied sepa-



rately for its underlying visual and acoustic sequences:

h(i)v = LSTMv(V
(i)

) (1)

h(i)a = LSTMa(A
(i)

) (2)

where h
(i)
v and h

(i)
a refer to the final states of the visual and

acoustic LSTMs. We call these final states visual and acoustic
embedding, respectively.

Gated Modality-mixing Network
Our Gated Modality-mixing Network component computes
the nonverbal shift vector by learning a non-linear combi-
nation between the visual and acoustic embedding using an
attention gating mechanism. Our key insight is that depend-
ing on the information in visual and acoustic modalities as
well as the word that is being uttered, the relative importance
of the visual and acoustic embedding may differ. For exam-
ple, the visual modality may demonstrate a high activation of
facial muscles showing shock while the tone in speech may
be uninformative. To handle these dynamic dependencies, we
propose a gating mechanism that controls the importance of
each visual and acoustic embedding.

In order for the model to control how strong a modal-
ity’s influence is, we use modality-specific influence gates to
model the intensity of the influence. To be more concrete, for
word L(i), given the original word representation e(i), we
concatenate e(i) with the visual and acoustic embedding h

(i)
v

and h
(i)
a respectively and then use the concatenated vectors

as the inputs of the visual and acoustic gate w(i)v and w(i)a :

w(i)v = σ(Whv[h
(i)
v ;e(i)] + bv) (3)

w(i)a = σ(Wha[h
(i)
a ;e(i)] + ba) (4)

where [; ] denotes the operation of vector concatenation.
Whv and Wha are weight vectors for the visual and acoustic
gates and bv and ba are scalar biases. The sigmoid function
σ(x) is defined as σ(x) = 1

1+e−x
, x ∈ R.

Then a nonverbal shift vector is calculated by fusing the
visual and acoustic embeddings multiplied by the visual and
acoustic gates. Specifically, for a word L(i), the nonverbal
shift vector h(i)m is calculated as follows:

h(i)m = w(i)v ⋅ (Wvh
(i)
v ) +w(i)a ⋅ (Wah

(i)
a ) + b

(i)
h (5)

where Wv and Wa are weight matrices for the visual and
acoustic embedding and b

(i)
h is the bias vector.

Multimodal Shifting
The Multimodal Shifting component learns to dynamically
shift the word representations by integrating the nonverbal
shift vector h

(i)
m into the original word embedding. Con-

cretely, the multimodal-shifted word representation for word
L(i) is given by:

e(i)m = e(i) + αh(i)m (6)

α =min(

∣∣e(i)∣∣2

∣∣h
(i)
m ∣∣2

β,1) (7)

where β is a threshold hyper-parameter which can be deter-
mined by cross-validation on a validation set.

In order to ensure the magnitude of the nonverbal shift
vector h(i)m is not too large as compared to the original word
embedding e(i), we apply a scaling factor α to constrain
the magnitude of the nonverbal shift vector to be within a
desirable range. At the same time, the scaling factor maintains
the direction of the shift vector.

By applying the same method for every word in L, we
can transform the original sequence triplet (L,V,A) into
one sequence of multimodal-shifted representations E =

[e
(1)
m ,e

(2)
m ,⋯,e

(n)
m ]. The new sequence E now corresponds

to a shifted version of the original sequence of word repre-
sentations L fused with information from its accompanying
nonverbal contexts.

This sequence of multimodal-shifted word representations
is then used in the high-level hierarchy to predict sentiments
or emotions expressed in the utterance. We can use a simple
word-level LSTM to encode a sequence of the multimodal-
shifted word representations into an utterance-level multi-
modal representation h. This multimodal representation can
then be used for downstream tasks:

h = LSTMe(E) (8)

For concrete tasks, the representation h is passed into a
fully-connected layer to produce an output that fits the task.
The various components of RAVEN are trained end-to-end
together using gradient descent.

Experiments
In this section, we describe the experiments designed to evalu-
ate our RAVEN model. We start by introducing the tasks and
datasets and then move on to the feature extraction scheme. 1

Datasets
To evaluate our approach, we use two multimodal
datasets involving tri-modal human communications: CMU-
MOSI (Zadeh et al. 2016) and IEMOCAP (Busso et al. 2008),
for multimodal sentiment analysis and emotion recognition
tasks, respectively.

Multimodal Sentiment Analysis: we first evaluate our ap-
proach for multimodal sentiment analysis. For this task, we
choose the CMU-MOSI dataset. It comprises 2199 short
video segments excerpted from 93 Youtube movie review
videos and has real-valued sentiment intensity annotations
from [−3,+3]. Negative values indicate negative sentiments
and vice versa.

Multimodal Emotion Recognition: we investigate the per-
formance of our model under a different, dyadic conversa-
tional environment for emotion recognition. The IEMOCAP
dataset we use for this task contains 151 videos about dyadic
interactions, where professional actors are required to per-
form scripted scenes that elicit specific emotions. Annota-
tions for 9 different emotions are present (angry, excited, fear,
sad, surprised, frustrated, happy, disappointed and neutral).

1The codes are available at https://github.com/
victorywys/RAVEN.



Evaluation Metrics: since the multimodal sentiment anal-
ysis task can be formulated as a regression problem, we
evaluate the performance in terms of Mean-absolute Error
(MAE) as well as the correlation of model predictions with
true labels. On top of that, we also follow the convention of
the CMU-MOSI dataset, and threshold the regression values
to obtain a categorical output and evaluate the performance
in terms of classification accuracy. As for the multimodal
emotion recognition, the labels for every emotion are binary
so we evaluate it in terms of accuracy and F1 score.

Unimodal Feature Representations
Following prior practice (Liu et al. 2018; Liang et al. 2018;
Gu et al. 2018), we adopted the same feature extraction
scheme for language, visual and acoustic modalities.

Language Features: we use the GloVe vectors from (Pen-
nington, Socher, and Manning 2014). In our experiments, we
used the 300-dimensional version trained on 840B tokens2.

Visual Features: given that the two multimodal tasks all
include a video clip with the speakers’ facial expressions, we
employ the facial expression analysis toolkit FACET3 as our
visual feature extractor. It extracts features including facial
landmarks, action units, gaze tracking, head pose and HOG
features at the frequency of 30Hz.

Acoustic Features: we use the COVAREP (Degottex et
al. 2014) acoustic analysis framework for feature extraction.
It includes 74 features for pitch tracking, speech polarity,
glottal closure instants, spectral envelope. These features are
extracted at the frequency of 100Hz.

Baseline Models
Our proposed Recurrent Attended Variation Embedding Net-
work (RAVEN) is compared to the following baselines and
state-of-the-art models in multimodal sentiment analysis and
emotion recognition.

Support Vector Machines (SVMs) (Cortes and Vapnik
1995) are widely used non-neural classifiers. This baseline
is trained on the concatenated multimodal features for clas-
sification or regression tasks (Pérez-Rosas, Mihalcea, and
Morency 2013; Park et al. 2014; Zadeh et al. 2016).

Deep Fusion (DF) (Nojavanasghari et al. 2016) performs
late fusion by training one deep neural model for each modal-
ity and then combining the output of each modality network
with a joint neural network.

Bidirectional Contextual LSTM (BC-LSTM) (Poria et al.
2017) performs context-dependent fusion of multimodal data.

Multi-View LSTM (MV-LSTM) (Rajagopalan et al. 2016)
partitions the memory cell and the gates inside an LSTM
corresponding to multiple modalities in order to capture both
modality-specific and cross-modal interactions.

Multi-attention Recurrent Network (MARN) (Zadeh et al.
2018b) explicitly models interactions between modalities
through time using a neural component called the Multi-
attention Block (MAB) and storing them in the hybrid mem-
ory called the Long-short Term Hybrid Memory (LSTHM).

2https://nlp.stanford.edu/projects/glove/
3https://imotions.com/

Dataset CMU-MOSI
Metric MAE Corr Acc-2
SVM 1.864 0.057 50.2
DF 1.143 0.518 72.3
BC-LSTM 1.079 0.581 73.9
MV-LSTM 1.019 0.601 73.9
MARN 0.968 0.625 77.1
MFN 0.965 0.632 77.4‡

RMFN 0.922‡ 0.681† 78.4⋆

LMF 0.912⋆ 0.668‡ 76.4
RAVEN 0.915† 0.691⋆ 78.0†

Table 1: Sentiment prediction results on the CMU-MOSI
test set using multimodal methods. The best three results are
noted with ⋆, † and ‡ successively.

Memory Fusion Network (MFN) (Zadeh et al. 2018a) con-
tinuously models the view-specific and cross-view interac-
tions through time with a special attention mechanism and
summarized through time with a Multi-view Gated Memory.

Recurrent Multistage Fusion Network (RMFN) (Liang et
al. 2018) decomposes the fusion problem into multiple stages
to model temporal, intra-modal and cross-modal interactions.

Low-rank Multimodal Fusion (LMF) model (Liu et al.
2018) learns both modality-specific and cross-modal in-
teractions by performing efficient multimodal fusion with
modality-specific low-rank factors.

Results and Discussion
In this section, we present results for the aforementioned ex-
periments and compare our performance with state-of-the-art
models. We also visualize the multimodal-shifted representa-
tions and show that they form interpretable patterns. Finally,
to gain a better understanding of the importance of subword
analysis and multimodal shift, we perform ablation studies
on our model by progressively removing Nonverbal Sub-
networks and Multimodal Shifting from our model, and find
that the presence of both is critical for good performance.

Comparison with the State of the Art

We present our results on the multimodal datasets in Tables 1
and 2. Our model shows competitive performance when com-
pared with state-of-the-art models across multiple metrics
and tasks. Note that our model uses only a simple LSTM for
making predictions. This model can easily be enhanced with
more advanced modules such as temporal attention.

Multimodal Sentiment Analysis: On the multimodal sen-
timent prediction task, RAVEN achieves comparable per-
formance to previous state-of-the-art models as shown in
Table 1. Note the multiclass accuracy Acc-7 is calculated by
mapping the range of continuous sentiment values into a set
of intervals that are used as discrete classes.

Multimodal Emotion Recognition: On the multimodal emo-
tion recognition task, the performance of our model is also
competitive compared to previous ones across all emotions
on both the accuracy and F1 score.
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Figure 3: The Gaussian contours of shifted embeddings in 2-dimensional space. Three types of patterns observed in the
distribution of all instances of the same word type: words with their inherent polarity will need a drastic variation to convey
opposite sentiment; nouns that can appear in both positive and negative contexts will have large variations in both cases; words not
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instances significantly overlap.

Dataset IEMOCAP Emotions
Task Happy Sad Angry Neutral
Metric Acc-2 F1 Acc-2 F1 Acc-2 F1 Acc-2 F1
SVM 86.1 81.5 81.1 78.8 82.5 82.4 65.2 64.9
DF 86.0 81.0 81.8 81.2 75.8 65.4 59.1 44.0
BC-LSTM 84.9 81.7 83.2 81.7 83.5 84.2 67.5 64.1
MV-LSTM 85.9 81.3 80.4 74.0 85.1‡ 84.3‡ 67.0 66.7
MARN 86.7 83.6 82.0 81.2 84.6 84.2 66.8 65.9
MFN 86.5 84.0 83.5† 82.1 85.0 83.7 69.6‡ 69.2‡

RMFN 87.5⋆ 85.8⋆ 82.9 85.1† 84.6 84.2 69.5 69.1
LMF 87.3† 85.8⋆ 86.2⋆ 85.9⋆ 89.0⋆ 89.0⋆ 72.4⋆ 71.7⋆

RAVEN 87.3† 85.8⋆ 83.4‡ 83.1‡ 87.3† 86.7† 69.7† 69.3†

Table 2: Emotion recognition results on IEMOCAP test set
using multimodal methods. The best three results are noted
with ⋆, † and ‡ successively.

Multimodal Representations in Different
Nonverbal Contexts

As our model learns shifted representations by integrating
each word with its accompanying nonverbal contexts, every
instance of the same word will have a different multimodal-

shifted representation. We observe that the shifts across all
instances of the same word often exhibit consistent patterns.
Using the CMU-MOSI dataset, we visualize the distribution
of shifted word representations that belong to the same word.
These visualizations are shown in Figure 3. We begin by pro-
jecting each word representation into 2-dimensional space
using PCA (Jolliffe 2011). For each word, we plot Gaussian
contours for the occurrences in positive-sentiment contexts
and the occurrences in negative-sentiment contexts individu-
ally. Finally, we plot the centroid of all occurrences as well
as the centroids of the subset in positive/negative contexts.
To highlight the relative positions of these centroids, we add
blue and red arrows starting from that overall centroid and
pointing towards the positive and negative centroids. We dis-
cover that the variations of different words can be categorized
into the following three different patterns depending on their
roles in expressing sentiment in a multimodal context:

(1) For words with their inherent polarity, their instances
in the opposite sentiment context often have strong variations
that pull them away from the overall centroid. On the other
hand, their instances in their default sentiment context usually
experience minimal variations and are close to the overall



centroid. In Figure 3, the word “great” has an overall centroid
that is very close to its positive centroid, while its negative
centroid is quite far from both overall and positive centroids.

(2) For nouns that appear in both positive and negative
contexts, both of their positive and negative centroids are
quite far away from the overall centroid, and their positive
and negative instances usually occupy different half-planes.
While such nouns often refer to entities without obvious
polarity in sentiment, our model learns to “polarize” these
representations based on the accompanying multimodal con-
text. For example, the noun “guy” is frequently used for
addressing both good and bad actors, and RAVEN is able to
shift them accordingly in the word embedding space towards
two different directions (Figure 3).

(3) For words that are not critical in conveying sentiment
(e.g. stop words), their average variations under both positive
and negative contexts are minimal. This results in their pos-
itive, negative, and overall centroids all lying close to each
other. Two example words that fall under this category are
“that” and “the” with their centroids shown in Figure 3.

These patterns show that RAVEN is able to learn meaning-
ful and consistent shifts for word representations to capture
their dynamically changing meanings.

Ablation studies
RAVEN consists of three main components for perform-
ing multimodal fusion: Nonverbal Sub-networks, Gated
Modality-mixing Network and Multimodal Shifting. Among
these modules, Nonverbal Sub-networks and Multimodal
Shifting are explicitly designed to model the subtle structures
in non-verbal behaviors and to introduce dynamic variations
to the underlying word representations. In order to demon-
strate the necessity of these components in modeling mul-
timodal language, we conducted several ablation studies to
examine the impact of each component. We start with our
full model and progressively remove different components.
The different versions of the model are explained as follows:

RAVEN: our proposed model that models subword dynam-
ics and dynamically shifts word embeddings.

RAVEN w/o SUB: our model without the Nonverbal Sub-
networks. In this case, the visual and acoustic sequences are
averaged into a vector representation, hence the capability of
subword modeling is disabled.

RAVEN w/o SHIFT: our model without Multimodal Shift-
ing. Visual and acoustic representations are concatenated
with the word embedding before being fed to downstream
networks. While this also generates a representation associ-
ated with the underlying word, it is closer to a multimodal
representation projected into a different space. This does not
guarantee that the new representation is a dynamically-varied
embedding in the original word embedding space.

RAVEN w/o SUB&SHIFT: our model with both Nonverbal
Sub-networks and Multimodal Shifting removed. This leads
to a simple early-fusion model where the visual and acoustic
sequences are averaged into word-level representations and
concatenated with the word embeddings. It loses both the
capabilities of modeling subword structures and creating
dynamically-adjusted word embeddings.

Dataset CMU-MOSI
Metric MAE Corr Acc-2
RAVEN 0.915 0.691 78.0
RAVEN w/o SHIFT 0.954 0.666 77.7
RAVEN w/o SUB 0.934 0.652 73.9
RAVEN w/o SUB&SHIFT 1.423 0.116 50.6

Table 3: Ablation studies on CMU-MOSI dataset. The com-
plete RAVEN that models subword dynamics and word shifts
works best.

Table 3 shows the results of ablation studies using sev-
eral different variants of our model. The results show that
both Nonverbal Sub-networks and Multimodal Shifting com-
ponents are necessary for achieving state-of-the-art perfor-
mance. This further implies that in scenarios where the visual
and acoustic modalities are sequences extracted at a higher
frequency, the crude averaging method for sub-sampling
them to the same frequency of words does hurt performance.
Another observation is that given neural networks are uni-
versal function approximators (Csáji 2001), the early-fusion
model, in theory, is the most flexible model. Yet in practice,
our model improves upon the early-fusion model. This im-
plies that our model does successfully capture underlying
structures of human multimodal language.

Conclusion
In this paper, we presented the Recurrent Attended Varia-
tion Embedding Network (RAVEN). RAVEN models the
fine-grained structure of nonverbal behaviors at the subword
level and builds multimodal-shifted word representations
that dynamically captures the variations in different nonver-
bal contexts. RAVEN achieves competitive results on well-
established tasks in multimodal language including sentiment
analysis and emotion recognition. Furthermore, we demon-
strate the importance of both subword analysis and dynamic
shifts in achieving improved performance via ablation stud-
ies on different components of our model. Finally, we also
visualize the shifted word representations in different non-
verbal contexts and summarize several common patterns re-
garding multimodal variations of word representations. This
illustrates that our model successfully captures meaningful
dynamic shifts in the word representation space given non-
verbal contexts. For future work, we will explore the effect
of dynamic word representations towards other multimodal
tasks involving language and speech (prosody), videos with
multiple speakers (diarization), and combinations of static
and temporal data (i.e. image captioning).
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