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Abstract— Over the past few years, there has been an
increased interest in automatic facial behavior analysis and
understanding. We present OpenFace 2.0 — a tool intended
for computer vision and machine learning researchers, affective
computing community and people interested in building inter-
active applications based on facial behavior analysis. OpenFace
2.0 is an extension of OpenFace toolkit (created by Baltrušaitis
et al. [11]) and is capable of more accurate facial landmark
detection, head pose estimation, facial action unit recognition,
and eye-gaze estimation. The computer vision algorithms which
represent the core of OpenFace 2.0 demonstrate state-of-the-
art results in all of the above mentioned tasks. Furthermore,
our tool is capable of real-time performance and is able to run
from a simple webcam without any specialist hardware. Finally,
unlike a lot of modern approaches or toolkits, OpenFace 2.0
source code for training models and running them is freely
available for research purposes.

I. INTRODUCTION

Recent years have seen an increased interest in machine
analysis of faces [58], [45]. This includes understanding
and recognition of affective and cognitive mental states,
and interpretation of social signals. As the face is a very
important channel of nonverbal communication [23], [20],
facial behavior analysis has been used in different appli-
cations to facilitate human computer interaction [47], [50].
More recently, there has been a number of developments
demonstrating the feasibility of automated facial behavior
analysis systems for better understanding of medical condi-
tions such as depression [28], post traumatic stress disorders
[61], schizophrenia [67], and suicidal ideation [40]. Other
uses of automatic facial behavior analysis include automotive
industries [14], education [49], and entertainment [55].

In our work we define facial behavior as consisting of:
facial landmark location, head pose, eye gaze, and facial
expressions. Each of these behaviors play an important
role together and individually. Facial landmarks allow us to
understand facial expression motion and its dynamics, they
also allow for face alignment for various tasks such as gender
detection and age estimation. Head pose plays an important
role in emotion and social signal perception and expression
[63], [1]. Gaze direction is important when evaluating things
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Fig. 1: OpenFace 2.0 is a framework that implements modern
facial behavior analysis algorithms including: facial land-
mark detection, head pose tracking, eye gaze and facial
action unit recognition.

like attentiveness, social skills and mental health [65], as
well as intensity of emotions [39]. Facial expressions reveal
intent, display affection, express emotion, and help regulate
turn-taking during conversation [3], [22].

Past years have seen huge progress in automatic analysis
of above mentioned behaviors [20], [58], [45]. However,
very few tools are available to the research community that
can recognize all of them (see Table I). There is a large
gap between state-of-the-art algorithms and freely available
toolkits. This is especially true when real-time performance
is wanted — a necessity for interactive systems.

OpenFace 2.0 is an extension of the OpenFace toolkit [11].
While OpenFace is able to perform the above mentioned
tasks, it struggles when the faces are non-frontal or occluded
and in low illumination conditions. OpenFace 2.0 is able to
cope with such conditions through the use of a new Convo-
lutional Neural Network based face detector and a new and
optimized facial landmark detection algorithm. This leads
to improved accuracy for facial landmark detection, head
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Tool Approach Landmark Head pose Expression Gaze Train Test Binary Real-time Free
COFW[13] RCPR[13] ! ! ! ! !
FaceTracker CLM[57] ! ! ! ! ! !

dlib [37] [35] ! ! ! ! !
Chehra [5] ! ! ! ! !

Menpo [2] AAM, CLM, SDM1 ! ! ! 2 !
CFAN [77] [77] ! ! ! !

[73] Reg. For [73] ! ! ! ! ! ! !
TCDCN CNN [81] ! ! ! ! !

WebGazer.js [54] ! ! ! ! !
EyeTab [71] ! N/A ! ! ! !
OKAO unknown ! ! ! ! !
Affdex unknown ! ! ! ! !

Tree DPM [85] [85] ! ! ! !
OpenPose [15] Part affinity Fields [15] ! ! ! ! ! !3 !

CFSS [83] CFSS [83] ! ! ! !
iCCR [56] iCCR [56] ! ! ! !

LEAR LEAR [46] ! ! ! !
TAUD TAUD [33] ! ! !

OpenFace [8], [7] ! ! ! ! ! ! ! ! !
OpenFace 2.0 [70], [75], [78] ! ! ! ! ! ! ! ! !

TABLE I: Comparison of facial behavior analysis tools. Free indicates that the tool is freely available for research purposes,
Train the availability for model training source code, Test the availability of model fitting/testing/runtime source code, Binary
the availability of model fitting/testing/runtime executable. Note that most tools only provide binary versions (executables)
rather than the source code for model training and fitting. Notes: (1) The implementation differs from the originally proposed
one based on the used features, (2) the algorithms implemented are capable of real-time performance but the tool does not
provide it, (3) requires GPU support.

pose tracking, AU recognition and eye gaze estimation. Main
contributions of OpenFace 2.0 are: 1) new and improved
facial landmark detection system; 2) distribution of ready
to use trained models; 3) real-time performance, without
the need of a GPU; 4) cross-platform support (Windows,
OSX, Ubuntu); 5) code available in C++ (runtime), Matlab
(runtime and model training), and Python (model training).

Our work is intended to bridge that gap between existing
state-of-the-art research and easy to use out-of-the-box so-
lutions for facial behavior analysis. We believe our tool will
stimulate the community by lowering the bar of entry into
the field and enabling new and interesting applications1.

II. PREVIOUS WORK

A full review of prior work in facial landmark detection,
head pose, eye gaze, and action unit recognition is outside the
scope of this paper, we refer the reader to recent reviews in
these respective fields [18], [31], [58], [17]. As our contribu-
tion is a toolkit, we provide an overview of available tools for
accomplishing the individual facial behavior analysis tasks.
For a summary of available tools see Table I.

Facial landmark detection – there exists a number of
freely available tools that perform facial landmark detection
in images or videos, in part thanks to availability of recent
good quality datasets and challenges [60], [76]. However,
very few of them provide the source code and instead only
provide runtime binaries, or thin wrappers around library
files. Binaries only allow for certain predefined functionality
(e.g. only visualizing the results), are very rarely cross-
platform, and do not allow for bug fixes — an important

1https://github.com/TadasBaltrusaitis/OpenFace

consideration when the project is no longer actively sup-
ported. Further, lack of training code makes the reproduction
of experiments on different datasets very difficult. Finally, a
number of tools expect face detections (in form of bounding
boxes) to be provided by an external tool, in contrast
OpenFace 2.0 comes packaged with a modern face detection
algorithm [78].

Head pose estimation has not received the same amount
of interest as facial landmark detection. An early example of
a dedicated head pose estimation toolkit is the Watson system
[52]. There also exists a random forest based framework
that allows for head pose estimation using depth data [24].
While some facial landmark detectors include head pose
estimation capabilities [4], [5], most ignore this important
behavioral cue. A more recent toolkit for head (and the rest
of the body) pose estimation is OpenPose [15], however, it
is computationally demanding and requires GPU acceleration
to achieve real-time performance.

Facial expression is often represented using facial ac-
tion units (AUs), which objectively describe facial muscle
activations [21]. There are very few freely available tools
for action unit recognition (see Table I). However, there are
a number of commercial systems that among other func-
tionality perform action unit recognition, such as: Affdex2,
Noldus FaceReader 3, and OKAO4. Such systems face a
number of drawbacks: sometimes prohibitive cost, unknown
algorithms, often unknown training data, and no public
benchmarks. Furthermore, some tools are inconvenient to use

2http://www.affectiva.com/solutions/affdex/
3http://www.noldus.com/human-behavior-research/

products/facereader
4https://www.omron.com/ecb/products/mobile/
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Fig. 2: OpenFace 2.0 facial behavior analysis pipeline, including: landmark detection, head pose and eye gaze estimation,
facial action unit recognition. The outputs from all of these systems (indicated in green) can be saved to disk or sent via
network in real-time.

by being restricted to a single machine (due to MAC address
locking or requiring of USB dongles). Finally, and most
importantly, the commercial product may be discontinued
leading to impossible to reproduce results due to lack of
product transparency (this is illustrated by discontinuation
of FACET, FaceShift, and IntraFace).

Gaze estimation – there are a number of tools and
commercial systems for gaze estimation, however, majority
of them require specialized hardware such as infrared or
head mounted cameras [19], [42], [62]. There also exist a
couple of commercial systems available for webcam based
gaze estimation, such as xLabs5 and EyesDecide6, but they
suffer from previously mentioned issues that commercial
facial expression analysis systems do. There exist several
recent free webcam eye gaze tracking projects [27], [71],
[54], [68], but they struggle in real-world scenarios and often
require cumbersome manual calibration steps.

In contrast to other available tools (both free and commer-
cial) OpenFace 2.0 provides both training and testing code
allowing for modification, reproducibility, and transparency.
Furthermore, our system shows competitive results on real
world data and does not require any specialized hardware.
Finally, our system runs in real-time with all of the facial
behavior analysis modules working together.

III. OPENFACE 2.0 PIPELINE

In this section we outline the core technologies used by
OpenFace 2.0 for facial behavior analysis (see Figure 2 for
a summary). First, we provide an explanation of how we
detect and track facial landmarks, together with novel speed
enhancements that allow for real-time performance. We then
provide an outline of how these features are used for head
pose estimation and eye gaze tracking. Finally, we describe
our facial action unit intensity and presence detection system.

A. Facial landmark detection and tracking

OpenFace 2.0 uses the recently proposed Convolutional
Experts Constrained Local Model (CE-CLM) [75] for facial
landmark detection and tracking. The two main components
of CE-CLM are: Point Distribution Model (PDM) which
captures landmark shape variations and patch experts which
model local appearance variations of each landmark. For

5https://xlabsgaze.com/
6https://www.eyesdecide.com/

more details about the algorithm refer to Zadeh et al. [75],
example landmark detections can be seen in Figure 3.

1) OpenFace 2.0 novelties: Our C++ implementation of
CE-CLM in OpenFace 2.0 includes a number of speed opti-
mizations that enable real-time performance. These include
deep model simplification, smart multiple hypotheses, and
sparse response map computation.

Deep model simplification The original implementation
of CE-CLM used deep networks for patch experts with
≈ 180, 000 parameters each (for 68 landmarks at 4 scales
and 7 views). We retrained the patch experts for first two
scales using simpler models by narrowing the deep network
to half the width, leading to ≈ 90, 000 parameters each. We
chose the final model size after exploring a large range of
alternatives, and chose the smallest model that still retains
competitive accuracy. This reduces the model size and im-
proves the speed by 1.5 times, with minimal loss in accuracy.
Furthermore, we only store half of the patch experts, by
relying on mirrored views for response computation (e.g. we
store only the left eye recognizesr, instead of both eyes). This
reduces the model size by a half. Both of these improvements
reduced the model size from ≈ 1, 200MB to ≈ 400MB.

Smart multiple hypotheses In case of landmark detection
in difficult in-the-wild and profile images CE-CLM uses
multiple initialization hypotheses (11 in total) at different
orientations. During fitting it selects the model with the
best converged likelihood. However, this slows down the
approach. In order to speed this up we perform an early
hypothesis termination, based on current model likelihood.
We start by evaluating the first scale (out of four different
scales) for each initialization hypothesis sequentially. If the
current likelihood is above a threshold τi (good enough), we
do not evaluate further hypotheses. If none of the hypotheses
are above τi, we pick three hypotheses with the highest
likelihood for evaluation in further scales and pick the best
resulting one. We determine the τi values that lead to small
fitting errors on for each view on training data. This leads
to a 4 time performance improvement of landmark detection
in images and for initializing tracking in videos.

Sparse response maps An important part of CE-CLM is
the computation of response maps for each facial landmark.
Typically it is calculated in a dense grid around the current
landmark estimate (e.g. 15×15 pixel grid). However, instead
of computing the response map for a dense grid we can do
it in a sparse grid by skipping every other pixel, followed by
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Fig. 3: Example landmark detection from OpenFace 2.0, note
the ability to deal with profile faces and occlusion.

Fig. 4: Sample gaze estimations on video sequences; green
lines represent the estimated eye gaze vectors, the blue boxes
a 3D bounding box around the head.

a bilinear interpolation to map it back to a dense grid. This
leads to 1.5 times improvement in model speed on images
and videos with minimal loss of accuracy.

2) Implementation details: The PDM used in OpenFace
2.0 was trained on two datasets — LFPW [12] and Helen
[41] training sets. This resulted in a model with 34 non-
rigid and 6 rigid shape parameters. For training the CE-CLM
patch experts we used: Multi-PIE [29], LFPW [12], Helen
[41] training set, and Menpo [76]. We trained a separate set
of patch experts for seven views and four scales (leading
to 28 sets in total). We found optimal results are achieved
when the face is at least 100 pixels ear to ear. Training on
different views allows us to track faces with out of plane
motion and to model self-occlusion due to head rotation. We
first pretrained our model on Multi-PIE, LFPW, and Helen
datasets and finished training on the Menpo dataset, as this
leads to better results [75].

To initialize our CE-CLM model we use our imple-
mentation of the Multi-task Convolutional Neural Network
(MTCNN) face detector [78]. The face detector we use was
trained on WIDER FACE [74] and CelebA [43] datasets.
This is in contrast to OpenFace which used a dlib face
detector [37] which is not able to detect profile or highly
occluded faces. We learned a simple linear mapping from
the bounding box provided by the MTCNN detector to the
one surrounding the 68 facial landmarks. When tracking
landmarks in videos we initialize the CE-CLM model based
on landmark detection in previous frame.

To prevent the tracking drift, we implement a simple four
layer CNN network that reports if the tracking has failed

Fig. 5: Sample eye registrations on 300-W dataset.

based on currently detected landmarks. If our CNN validation
module reports that tracking failed we reinitialize the model
using the MTCNN face detector.

To optimize matrix multiplications required for patch
expert computation and face detection we used the Open-
BLAS7. It allows for specific CPU architecture optimized
computation. This allows us to use Convolutional Neural
Network (CNN) based patch expert computation and face
detection without sacrificing real-time performance on de-
vices without dedicated GPUs. This led to a 2-5 times
(based on CPU architecture) performance improvement when
compared to OpenCV matrix multiplication.

All of the above mentioned performance improvements
and a C++ implementation, allows CE-CLM landmark de-
tection to achieve 30-40Hz frame rates on a quad core
3.5GHz Intel i7-2700K processor, and 20Hz frame rates on a
Surface Pro 3 laptop with a 1.7GHz dual core Intel core i7-
4650U processor, without any GPU support when processing
640×480 px videos. This is 30 times faster than the original
Matlab implementation of CE-CLM [75].

B. Head pose estimation
Our model is able to extract head pose (translation and

orientation) in addition to facial landmark detection. We are
able to do this, as CE-CLM internally uses a 3D representa-
tion of facial landmarks and projects them to the image using
orthographic camera projection. This allows us to accurately
estimate the head pose once the landmarks are detected by
solving the n point in perspective problem [32], see examples
of bounding boxes illustrating head pose in Figure 4.

C. Eye gaze estimation
In order to estimate eye gaze, we use a Constrained Local

Neural Field (CLNF) landmark detector [9], [70] to detect
eyelids, iris, and the pupil. For training the landmark detector
we used the SynthesEyes training dataset [70]. Some sample
registrations can be seen in Figure 5. We use the detected
pupil and eye location to compute the eye gaze vector
individually for each eye. We fire a ray from the camera
origin through the center of the pupil in the image plane
and compute it’s intersection with the eye-ball sphere. This
gives us the pupil location in 3D camera coordinates. The
vector from the 3D eyeball center to the pupil location is our
estimated gaze vector. This is a fast and accurate method for
person independent eye-gaze estimation in webcam images.

D. Facial expression recognition
OpenFace 2.0 recognizes facial expressions through de-

tecting facial action unit (AU) intensity and presence. We use

7http://www.openblas.net
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AU Full name Illustration
AU1 INNER BROW RAISER

AU2 OUTER BROW RAISER

AU4 BROW LOWERER

AU5 UPPER LID RAISER

AU6 CHEEK RAISER

AU7 LID TIGHTENER

AU9 NOSE WRINKLER

AU10 UPPER LIP RAISER

AU12 LIP CORNER PULLER

AU14 DIMPLER

AU15 LIP CORNER DEPRESSOR

AU17 CHIN RAISER

AU20 LIP STRETCHED

AU23 LIP TIGHTENER

AU25 LIPS PART

AU26 JAW DROP

AU28 LIP SUCK

AU45 BLINK

TABLE II: List of AUs in OpenFace 2.0. We predict intensity
and presence of all AUs, except for AU28, for which only
presence predictions are made.

a method based on a recent AU recognition framework by
Baltrušaitis et al. [8], that uses linear kernel Support Vector
Machines. OpenFace 2.0 contains a direct implementation
with a couple of changes that adapt it to work better on
natural video sequences using person specific normalization
and prediction correction [8], [11]. While initially this may
appear as a simple and outdated model for AU recognition,
our experiments demonstrate how competitive it is even when
compared to recent deep learning methods (see Table VI),
while retaining a distinct speed advantage.

As features we use the concatenation of dimensionality
reduced HOGs [26] from similarity aligned 112× 112 pixel
face image and facial shape features (from CE-CLM). In
order to account for personal differences when processing
videos the median value of the features is subtracted from
the current frame. To correct for person specific bias in
AU intensity prediction, we take the lowest nth percentile
(learned on validation data) of the predictions on a specific
person and subtract it from all of the predictions [11].

Our models are trained on DISFA [48], SEMAINE [51],
BP4D [80], UNBC-McMaster [44], Bosphorus [59] and
FERA 2011 [66] datasets. Where the AU labels overlap
across multiple datasets we train on them jointly. This leads
to OpenFace 2.0 recognizing the AUs listed in Table II.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate each of our OpenFace 2.0 sub-
systems: facial landmark detection, head pose estimation,
eye gaze estimation, and facial action unit recognition. For
each of our experiments we also include comparisons with
a number of recently proposed approaches for tackling the
same problems (although none of them tackle all of them
at once). In all cases, except for facial action units (due

(a) 68 landmarks (b) 49 landmarks

Fig. 7: Fitting on IJB-FL using OpenFace 2.0 and comparing
against recent landmark detection methods. None of the
approaches were trained on IJB-FL, allowing to evaluate
ability to generalize.

to lack of overlapping AU categories across datasets), we
perform cross-dataset experiments, allowing to better judge
the generalization of our toolkit.

A. Landmark detection

We evaluate our OpenFace 2.0 toolkit in a facial landmark
detection task and compare it to a number of recent baselines
in a cross-dataset evaluation setup. For all of the baselines,
we used the code or executables provided by the authors.

Datasets The facial landmark detection capability was
evaluated on two publicly available datasets: IJB-FL [36],
and 300VW [60] test set. IJB-FL [36] is a landmark-
annotated subset of IJB-A [38] — a face recognition bench-
mark. It contains labels for 180 images (128 frontal and 52
profile faces). This is a challenging subset containing images
in non-frontal pose, with heavy occlusion and poor image
quality. 300VW [60] test set contains 64 videos labeled
for 68 facial landmarks for every frame. The test videos
are categorized into three types: 1) laboratory and natural-
istic well-lit conditions; 2) unconstrained conditions such as
varied illumination, dark rooms and overexposed shots; 3)
completely unconstrained conditions including illumination
and occlusions such as occlusions by hand.

Baselines We compared our approach to other facial
landmark detection algorithms whose implementations are
available online and which have been trained to detect the
same facial landmarks (or their subsets). CFSS [83] —
Coarse to Fine Shape Search is a recent cascaded regression
approach. PO-CR [64] — is another recent cascaded regres-
sion approach that updates the shape model parameters rather
than predicting landmark locations directly in a projected-
out space. CLNF [9] is an extension of the Constrained
Local Model that uses Continuous Conditional Neural Fields
as patch experts, this model is included in the OpenFace
toolbox. DRMF [5] — Discriminative Response Map Fitting
performs regression on patch expert response maps directly
rather than using optimization over the parameter space.
3DDFA [84] — 3D Dense Face Alignment has shown great
performance on facial landmark detection in profile images.
CFAN [77] — Coarse-to-Fine Auto-encoder Network, uses
cascaded regression on auto-encoder visual features. SDM
[72] — Supervised Descent Method is a very popular
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(a) Category 1 (b) Category 2 (c) Category 3

Fig. 6: Fitting on the 300VW dataset using OpenFace 2.0 and recently proposed landmark detection approaches. We only
report performance on 49 landmarks as that allows us to compare to more baselines. All of the methods except for iCCR
were not trained or validated on 300VW dataset.

Method Yaw Pitch Roll Mean Median
CLM [57] 3.0 3.5 2.3 2.9 2.0
Chehra [5] 3.8 4.6 2.8 3.8 2.5
OpenFace 2.8 3.3 2.3 2.8 2.0
OpenFace 2.0 2.4 3.2 2.4 2.6 1.8

TABLE III: Head pose estimation results on the BU dataset.
Measured in mean absolute degree error. Note that BU
dataset only contains RGB images so no comparison against
CLM-Z and Regression forests was performed.

Method Yaw Pitch Roll Mean
Reg. forests [25] 7.2 9.4 7.5 8.0
CLM-Z [10] 5.1 3.9 4.6 4.6
CLM [57] 4.8 4.2 4.5 4.5
Chehra [5] 13.9 14.7 10.3 13.0
OpenFace 3.6 3.6 3.6 3.6
OpenFace 2.0 3.1 3.5 3.1 3.2

TABLE IV: Head pose estimation results on ICT-3DHP.
Measured in mean absolute degree error.

cascaded regression approach. iCCR [56] — is a facial
landmark tracking approach for videos that adapts to the
particular person it tracks

Results of IJB-FL experiment can be seen in Figure 7,
while results on 300VW Figure 6. Note how OpenFace 2.0
outperforms all of the baselines in both of the experiments.

B. Head pose estimation
To measure performance on a head pose estimation task

we used two publicly available datasets with existing ground

MODEL GAZE ERROR
EyeTab [71] 47.1

CNN on UT [79] 13.91
CNN on SynthesEyes [70] 13.55

CNN on SynthesEyes + UT [70] 11.12
OpenFace 9.96

UnityEyes [69] 9.95
OpenFace 2.0 9.10

TABLE V: Results comparing our method to previous work
for cross dataset gaze estimation on MPIIGaze [79], measure
in mean absolute degree error.

truth head pose data: BU [16] and ICT-3DHP [10].
For comparison, we report the results of using Chehra

framework [5], CLM [57], CLM-Z [10], Regression Forests
[24], and OpenFace [8]. The results can be see in Table III
and Table IV. It can be seen that our approach demonstrates
state-of-the-art performance on both of the datasets.

C. Eye gaze estimation
We evaluated the ability of OpenFace 2.0 to estimate eye

gaze vectors by evaluating it on the challenging MPIIGaze
dataset [79] intended to evaluate appearance based gaze
estimation. MPIIGaze was collected in realistic laptop use
scenarios and poses a challenging and practically-relevant
task for eye gaze estimation. Sample images from the dataset
can be seen in the right column of Figure 4. We evaluated
our approach on a 750 face image subset of the dataset. We
performed our experiments in a cross-dataset fashion and
compared to baselines not trained on the MPIIGaze dataset.

We compared our model in a to a CNN proposed by Zhang
et al. [79], to EyeTab geometry based model [71] and a k-
NN approach based on the UnityEyes dataset [69]. The error
rates of our model can be seen in Table V. It can be seen that
our model shows state-of-the-art performance on the task for
cross-dataset eye gaze estimation.

D. Action unit recognition
We evaluate our model for AU prediction against a set

of recent baselines, and demonstrate the benefits of such a
simple approach. As there are no recent free tools we could
compare to our system (and commercial tools do not allow
for public comparisons), so we compare general methods
used, instead of toolkits.

Baselines Continuous Conditional Neural Fields (CCNF)
model is a temporal approach for AU intensity estima-
tion [6] based on non-negative matrix factorization features
around facial landmark points. Iterative Regularized Kernel
Regression IRKR [53] is a recently proposed kernel learning
method for AU intensity estimation. It is an iterative nonlin-
ear feature selection method with a Lasso-regularized version
of Metric Regularized Kernel Regression. A generative latent
tree (LT) model was proposed by Kaltwang et al. [34].
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TABLE VI: Comparing our model to baselines on the DISFA dataset, results reported as Pearson Correlation Coefficient.
(1) used a different fold split. Notes: (2) used 9-fold testing. (3) used leave-one-person-out testing.

Method AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Mean
IRKR [53](1) 0.70 0.68 0.68 0.49 0.65 0.43 0.83 0.34 0.35 0.21 0.86 0.62 0.57

LT [34](2) 0.41 0.44 0.50 0.29 0.55 0.32 0.76 0.11 0.31 0.16 0.82 0.49 0.43
CNN [30] 0.60 0.53 0.64 0.38 0.55 0.59 0.85 0.22 0.37 0.15 0.88 0.60 0.53

D-CNN [82] 0.49 0.39 0.62 0.44 0.53 0.55 0.85 0.25 0.41 0.19 0.87 0.59 0.51
CCNF [6](3) 0.48 0.50 0.52 0.48 0.45 0.36 0.70 0.41 0.39 0.11 0.89 0.57 0.49

OpenFace 2.0 (SVR-HOG) 0.64 0.50 0.70 0.67 0.59 0.54 0.85 0.39 0.49 0.22 0.85 0.67 0.59

The model demonstrates good performance under noisy
input. Finally, we included two recent Convolutional Neural
Network (CNN) baselines. The shallow four-layer model
proposed by Gudi et al. [30], and a deeper CNN model
used by Zhao et al. [82] (called ConvNet in their work).
The CNN model proposed by Gudi et al. [30], consists of
three convolutional layers, the Zhao et al. D-CNN model uses
five convolutional layers followed by two fully-connected
layers and a final linear layer. SVR-HOG is the method
used in OpenFace 2.0. For all methods we report results
from relevant papers, except for CNN and D-CNN models
which we re-implemented. In case of SVR-HOG, CNN, and
D-CNN we used 5-fold person-independent testing.

Results can be found in Table VI, it can be seen that
an SVR-HOG approach employed by OpenFace 2.0 out-
performs the more complex and recent approaches for AU
detection on this challenging dataset.

We also compare OpenFace 2.0 with OpenFace for AU
detection accuracy. The average concordance correlation
coefficient (CCC) on DISFA validation set across 12 AUs
of OpenFace is 0.70, while using OpenFace 2.0 it is 0.73.

V. INTERFACE

OpenFace 2.0 is an easy to use toolbox for the analysis of
facial behavior. There are two main ways of using OpenFace
2.0: Graphical User Interface (for Windows), and command
line (for Windows, Ubuntu, and Mac OS X). As the source
code is available it is also possible to integrate it in any C++,
C♯, or Matlab based project. To make the system easier to
use we provide sample Matlab scripts that demonstrate how
to extract, save, read and visualize each of the behaviors.

OpenFace 2.0 can operate on real-time data video feeds
from a webcam, recorded video files, image sequences and
individual images. It is possible to save the outputs of the
processed data as CSV files in case of facial landmarks,
shape parameters, head pose, action units, and gaze vectors.

VI. CONCLUSION

In this paper we presented OpenFace 2.0 – an extension
to the OpenFace real-time facial behavior analysis system.
OpenFace 2.0 is a useful tool for the computer vision,
machine learning and affective computing communities and
will stimulate research in facial behavior analysis an under-
standing. Furthermore, the future development of the tool
will continue and it will attempt to incorporate the newest
and most reliable approaches for the problem at hand while
releasing the source code and retaining its real-time capacity.

We hope that this tool will encourage other researchers in
the field to share their code.
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