

Multimodal ML Reading Group

UT

Transformer

Exp

Discussio

Universal Transformer [1]

Yao-Hung Hubert Tsai

Machine Learning Department, Carnegie Mellon University

April 17, 2019

Transformer

UT

Transformer

Transionner

Evn

- Designed for Sequence tasks.
- Core:
 - Scaled Dot-Product Attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^\top}{\sqrt{d_k}})V$$

Transformer

UT

Transformer

Exp

- Concurrently process all inputs in a sequence.
 - Easy parallelization and faster training (cf. RNN).
 - Superb in handling long-term dependency.
- Fail to generalize in tasks that RNN succeeds.
 - Copying strings/ logical inference tasks.
 - Hypothesis: These tasks benefit from the recurrent inductive bias of RNN.
- Research Question
 - Can we integrate the recurrent inductive bias into Vanilla Transformer?

Universal Transformer

UT

Transformer

UT Exp

- High Level: Bring recurrent inductive bias into Transformer.
- Vanilla Transformer:
 - Fixed stack of distinct (attention) layers.
- Universal Transformer:
 - Dynamic stack of identical (attention) layers.

Universal Transformer

UT

Transformer

1141151011110

UT

Discussion

■ *T* is determined by adaptive computation time (ACT) [2].

UT

Transformer

Exp

Discussion

Model	10K ex	amples	1K examples					
	train single	train joint	train single	train joint				
Previous best results:								
QRNet (Seo et al., 2016)	0.3 (0/20)	-	-	-				
Sparse DNC (Rae et al., 2016)	-	2.9 (1/20)	-	-				
GA+MAGE Dhingra et al. (2017)	-	-	8.7 (5/20)	-				
MemN2N Sukhbaatar et al. (2015)	-	-	-	12.4 (11/20)				
	Our Resu	lts:						
Transformer (Vaswani et al., 2017)	15.2 (10/20)	22.1 (12/20)	21.8 (5/20)	26.8 (14/20)				
Universal Transformer (this work)	0.23 (0/20)	0.47 (0/20)	5.31 (5/20)	8.50 (8/20)				
UT w/ dynamic halting (this work)	0.21 (0/20)	0.29 (0/20)	4.55 (3/20)	7.78 (5/20)				

Table 1: Average error and number of failed tasks (> 5% error) out of 20 (in parentheses; lower is better in both cases) on the bAbI dataset under the different training/evaluation setups. We indicate state-of-the-art where available for each, or '-' otherwise.

UT

Transformer

Exp

Model	Number of attractors						
Model	0	1	2	3	4	5	Total
Pre	vious bes	t results (Yogatan	a et al., 2	2018):		
Best Stack-RNN	0.994	0.979	0.965	0.935	0.916	0.880	0.992
Best LSTM	0.993	0.972	0.950	0.922	0.900	0.842	0.991
Best Attention	0.994	0.977	0.959	0.929	0.907	0.842	0.992
		Our r	esults:				
Transformer	0.973	0.941	0.932	0.917	0.901	0.883	0.962
Universal Transformer	0.993	0.971	0.969	0.940	0.921	0.892	0.992
UT w/ ACT	0.994	0.969	0.967	0.944	0.932	0.907	0.992
Δ (UT w/ ACT - Best)	0	-0.008	0.002	0.009	0.016	0.027	-

Table 2: Accuracy on the subject-verb agreement number prediction task (higher is better).

Model	LM Per	plexity & (Ad	RC Accuracy			
110000	control	dev	test	control	dev	test
Neural Cache (Grave et al., 2016)	129	139	-	-	-	-
Dhingra et al. Dhingra et al. (2018)	-	-	-	-	-	0.5569
Transformer	142 (0.19)	5122 (0.0)	7321 (0.0)	0.4102	0.4401	0.3988
LSTM	138 (0.23)	4966 (0.0)	5174 (0.0)	0.1103	0.2316	0.2007
UT base, 6 steps (fixed)	131 (0.32)	279 (0.18)	319 (0.17)	0.4801	0.5422	0.5216
UT w/ dynamic halting	130 (0.32)	134 (0.22)	142 (0.19)	0.4603	0.5831	0.5625
UT base, 8 steps (fixed)	129(0.32)	192 (0.21)	202 (0.18)	-	-	-
UT base, 9 steps (fixed)	129(0.33)	214 (0.21)	239 (0.17)	-	-	-

Table 3: LAMBADA language modeling (LM) perplexity (lower better) with accuracy in parentheses (higher better), and Reading Comprehension (RC) accuracy results (higher better). '-' indicates no reported results in that setting.

UT

Transformer

. . _

Exp

Model	Сору		Rev	erse	Addition	
Model	char-acc	seq-acc	char-acc	seq-acc	char-acc	seq-acc
LSTM	0.45	0.09	0.66	0.11	0.08	0.0
Transformer	0.53	0.03	0.13	0.06	0.07	0.0
Universal Transformer	0.91	0.35	0.96	0.46	0.34	0.02
Neural GPU*	1.0	1.0	1.0	1.0	1.0	1.0

Table 4: Accuracy (higher better) on the algorithmic tasks. *Note that the Neural GPU was trained with a special curriculum to obtain the perfect result, while other models are trained without any curriculum.

	Сору		Dou	ıble	Reverse	
Model	char-acc	seq-acc	char-acc	seq-acc	char-acc	seq-acc
LSTM	0.78	0.11	0.51	0.047	0.91	0.32
Transformer	0.98	0.63	0.94	0.55	0.81	0.26
Universal Transformer	1.0	1.0	1.0	1.0	1.0	1.0

Table 5: Character-level (char-acc) and sequence-level accuracy (seq-acc) results on the Memorization LTE tasks, with maximum length of 55.

	Program		Con	trol	Addition	
Model	char-acc	seq-acc	char-acc	seq-acc	char-acc	seq-acc
LSTM	0.53	0.12	0.68	0.21	0.83	0.11
Transformer	0.71	0.29	0.93	0.66	1.0	1.0
Universal Transformer	0.89	0.63	1.0	1.0	1.0	1.0

Table 6: Character-level (*char-acc*) and sequence-level accuracy (*seq-acc*) results on the Program Evaluation LTE tasks with maximum nesting of 2 and length of 5.

UT

Transformer

Exp

Model	BLEU
Universal Transformer small	26.8
Transformer base (Vaswani et al., 2017)	28.0
Weighted Transformer base (Ahmed et al., 2017)	28.4
Universal Transformer base	28.9

Table 7: Machine translation results on the WMT14 En-De translation task trained on 8xP100 GPUs in comparable training setups. All *base* results have the same number of parameters.

Conclusion

UT

Transformer

.....

Exp

- Universal Transformer (UT) introduces recurrent inductive bias into parallel-in-time computation models (Vanilla Transformers).
- Succeed in many tasks that Vanilla Transformers fail.

Truth

UT

Transformer

1101101011110

Ехр

Discussion

Very unstable.

- E.g., 5-layer fails, 6-layer works, and 7-layer fails again.
- Not happen in identical-layer-RNN/ -TCN [3].
- Connection
 - Neural ODE [4].

$$x^T = f(x^{T-1})$$

■ Fixed-point representations for sequence (can be found in identical-layer-RNN/ -TCN). And the representations have analytical form, which equals to forwarding infinite-depth layers.

References

UT

Transformer

M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Ł. Kaiser, "Universal transformers," arXiv preprint arXiv:1807.03819, 2018.

A. Graves, G. Wayne, and I. Danihelka, "Neural turing machines," arXiv preprint arXiv:1410.5401, 2014.

S. Bai, J. Z. Kolter, and V. Koltun, "Trellis networks for sequence modeling," arXiv preprint arXiv:1810.06682, 2018.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, "Neural ordinary differential equations," in *Advances in Neural Information Processing Systems*, pp. 6571–6583, 2018.

UT

Transformer

U I

Ехр

Discussion

The End

