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Convention

Number of layers are referred to as time (or t) in the following slides except in the
case of RNNs



Resnets

Z(t+ h) = z(t) + hf(z, 1)

Where h=1
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OR

def ¢z, t, 8):
return nnet(z, 06[t])

def resnet(z):
tor € 18 ETI:
z =2z + 1Tz, T, 8)
return z
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If time was continuous?

def f(z, t, 0):

(Cil_: — f(Z(t), t) return nnet([z, t], 6)

def ODEnet(z, 6):
return ODESolve(f, z, 0, 1, ©)

z(t1) = z(ty) + ttl f(z(t),t,0)dt



Training

L(z(t))) = ( z(to) / f(z z‘Hdt) L (ODESolve(z(ty), f,to,t1,0))

1) This seems familiar. We can probably backprob through the ODESolver.



Training

t

L(z(t)) = L (z(t()) + f(z(t),t, H)dt.) = L (ODESolve(z(ty). f,to,t1,0))

to

1) This seems familiar. We can probably backprob through the ODESolver.

Not a good idea. ODESolvers are not perfect. Backprob will take accumulate mor
losses over epochs



How do we train this model then?

L(z( ( z(to) / f(z(t),t,0) dt) = L (ODESolve(z(ty). f,to,t1,0))

Adjoint sensitivity method (Pontryagin et al., 1962)

a(t) = 9L/oa(t)
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How do we train this model then?

L(z( ( z(to) / f(z(t),t,0) dt) = L (ODESolve(z(ty), f,to, t1,0))
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Can be solved using an
ODE solver
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chain rule ODE solver
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How do we train this model then?

L(z(t))) = ( z(to) / f(z(t),t,0) dt) = L (ODESolve(z(ty). f,to,t1,0))

dL v Of(z(t),t,0)
— ST a1 = =l B L dt
a(t) = 9L/oa(1) %= AT
da(t) _ . 0f(a(t),t0) /\
dt =) 0z

Used to update Can be solved
parameters of f using an ODE

_ solver.

Instantaneous analog Can be solved using an

: *Integrated from O to
of chain rule ODE solver 1 in experiments



Advantages

e O(1) Memory gradients: as the activations are not stored at each layer,
instead the dynamics are run backwards from the output to input
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Advantages

e O(1) Memory gradients: as the activations are not stored at each layer,
instead the dynamics are run backwards from the output to input

Table 1: Performance on MNIST. "From LeCun
et al. (1998).

Test Error # Params Memory  Time

1-Layer MLPT  1.60% 0.24 M 2 -
ResNet 0.41% 0.60 M O(L) O(L)

RK-Net 0.47% 0.22M O(L) O(L)
ODE-Net 0.42% 022M ©OQ1) O(L)




Advantages

Depth of ODEs

e |tis left to the ODE solver. Hence it can change during training
e Approximately 2-4x the depth of resnet architectures - (shown empirically)
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Advantages

Explicit Error Control.

ODEsolver’s error can be explicitly controlled. Hence trade-off between speed and

error is in the user’'s hand
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Advantages

Cost of evaluation (Forward pass vs Backward Pass)

Unlike, SGD based training methods for neural networks, NeuralODEs have a
faster backward pass
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Continuous-time models

ODE Solve(z,, f,0f,to, ..., tN)

* Well-defined state at all times
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* Dynamics separate from
inference
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@ @ * Irregularly-timed observations.

Zg, ~ p(zto)
ity s Ztgs - - s Tty = ODESolve(zy,, f,0¢,%0,...,iN)
each xy, ~ p(x|z4,,0x)

http://www.cs.toronto.edu/~rtgichen/pdfs/neural_ode_slides.pdf



Handles unobserved variables and can extrapolate

RNN encoder q(Ze |0,

Latent space

—

Data space
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(b) Latent Neural Ordinary Differential Equation
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=== Ground Truth (’\\

e Observation e
= Prediction
== Extrapolation



