Neural Ordinary Differential Equations

Ricky Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud

Presented by Chaitanya

Convention

Number of layers are referred to as time (or t) in the following slides except in the case of RNNs

Resnets

 $\mathbf{z}(t+h) = \mathbf{z}(t) + hf(\mathbf{z}, t)$

Where h=1

Resnets

$$\mathbf{z}(t+h) = \mathbf{z}(t) + hf(\mathbf{z}, t)$$

OR

Where h=1

def f(z, t, θ):
 return nnet(z, θ[t])
def resnet(z):
 for t in [1:T]:
 z = z + f(z, t, θ)
 return z

If time was continuous?

 $\frac{d\mathbf{z}}{dt} = f(\mathbf{z}(t), t)$

If time was continuous?

$$\frac{d\mathbf{z}}{dt} = f(\mathbf{z}(t), t)$$
$$\mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt$$

If time was continuous?

$$\frac{d\mathbf{z}}{dt} = f(\mathbf{z}(t), t)$$

def f(z, t, θ):
 return nnet([z, t], θ)

def ODEnet(z, θ):
 return ODESolve(f, z, 0, 1, θ)

$$\mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt$$

Training

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

1) This seems familiar. We can probably backprob through the ODESolver.

Training

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

1) This seems familiar. We can probably backprob through the ODESolver.

Not a good idea. ODESolvers are not perfect. Backprob will take accumulate mor losses over epochs

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

Adjoint sensitivity method (Pontryagin et al., 1962)

$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}$$

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

Adjoint sensitivity method (Pontryagin et al., 1962)

$$\frac{\mathbf{a}(t)}{dt} = \frac{\partial L}{\partial \mathbf{z}(t)}$$
$$\frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$$

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$
$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)} \qquad \frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$$

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)} \qquad \frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$$

Can be solved using an ODE solver

$$L(\mathbf{z}(t_{1})) = L\left(\mathbf{z}(t_{0}) + \int_{t_{0}}^{t_{1}} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_{0}), f, t_{0}, t_{1}, \theta)\right)$$
$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)} \qquad \frac{d\mathbf{a}(t)}{dt} = -\mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$$
Instantaneous analog of chain rule Can be solved using an ODE solver

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}$$

$$\frac{dL}{d\theta} = -\int_{t_1}^{t_0} \mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt$$

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}$$

$$\frac{dL}{d\theta} = -\int_{t_1}^{t_0} \mathbf{a}(t)^{\mathsf{T}} \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt$$
Can be solved
using an ODE
solver.
*Integrated from 0 to
1 in experiments

$$L(\mathbf{z}(t_1)) = L\left(\mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right) = L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

$$\mathbf{a}(t) = \frac{\partial L}{\partial \mathbf{z}(t)}$$

• O(1) Memory gradients: as the activations are not stored at each layer, instead the dynamics are run backwards from the output to input

• O(1) Memory gradients: as the activations are not stored at each layer, instead the dynamics are run backwards from the output to input

Table 1: Performance on MNIST. [†]From LeCun et al. (1998).

	Test Error	# Params	Memory	Time
1-Layer MLP [†]	1.60%	0.24 M	2	-
ResNet	0.41%	0.60 M	$\mathcal{O}(L)$	$\mathcal{O}(L)$
RK-Net	0.47%	0.22 M	$\mathcal{O}(\tilde{L})$	$\mathcal{O}(\tilde{L})$
ODE-Net	0.42%	0.22 M	$\mathcal{O}(1)$	$\mathcal{O}(\tilde{L})$

Depth of ODEs

- It is left to the ODE solver. Hence it can change during training
- Approximately 2-4x the depth of resnet architectures (shown empirically)

NFE- Number of forward evaluations

Explicit Error Control.

ODEsolver's error can be explicitly controlled. Hence trade-off between speed and error is in the user's hand

Cost of evaluation (Forward pass vs Backward Pass)

Unlike, SGD based training methods for neural networks, NeuralODEs have a faster backward pass

Continuous-time models

- Well-defined state at all times
- Dynamics separate from inference
- Irregularly-timed observations.

$$\begin{aligned} \mathbf{z}_{t_0} &\sim p(\mathbf{z}_{t_0}) \\ \mathbf{z}_{t_1}, \mathbf{z}_{t_2}, \dots, \mathbf{z}_{t_N} &= \text{ODESolve}(\mathbf{z}_{t_0}, f, \theta_f, t_0, \dots, t_N) \\ \text{each} \quad \mathbf{x}_{t_i} &\sim p(\mathbf{x} | \mathbf{z}_{t_i}, \theta_{\mathbf{x}}) \end{aligned}$$

http://www.cs.toronto.edu/~rtqichen/pdfs/neural_ode_slides.pdf

Handles unobserved variables and can extrapolate

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation

- ----- Ground Truth
 - Observation
 - Prediction
 - Extrapolation

