Neural Ordinary Differential
Equations

Ricky Chen, Yulia Rubanova, Jesse Bettencourt,
David Duvenaud

Presen ted by
Chaitanya

Convention

Number of layers are referred to as time (or t) in the following slides except in the
case of RNNs

Resnets

Z(t+ h) = z(t) + hf(z, 1)

Where h=1

Resnets

Z(t+ h) = z(t) + hf(z, 1)

Where h=1

OR

def ¢z, t, 8):
return nnet(z, 06[t])

def resnet(z):
tor € 18 ETI:
z =2z + 1Tz, T, 8)
return z

If time was continuous?

% — f(Z(t),t)

If time was continuous?

% — f(Z(t),t)

t

z(t) = z(to) + | f(z(t),t,0)dt

to

If time was continuous?

def f(z, t, 0):

(Cil_: — f(Z(t), t) return nnet([z, t], 6)

def ODEnet(z, 6):
return ODESolve(f, z, 0, 1, ©)

z(t1) = z(ty) + ttl f(z(t),t,0)dt

Training

L(z(t))) = (z(to) / f(z z‘Hdt) L (ODESolve(z(ty), f,to,t1,0))

1) This seems familiar. We can probably backprob through the ODESolver.

Training

t

L(z(t)) = L (z(t()) + f(z(t),t, H)dt.) = L (ODESolve(z(ty). f,to,t1,0))

to

1) This seems familiar. We can probably backprob through the ODESolver.

Not a good idea. ODESolvers are not perfect. Backprob will take accumulate mor
losses over epochs

How do we train this model then?

L(z((z(to) / f(z(t),t,0) dt) = L (ODESolve(z(ty). f,to,t1,0))

Adjoint sensitivity method (Pontryagin et al., 1962)

a(t) = 9L/oa(t)

How do we train this model then?

L(z((z(to) / f(z(t),t,0) dt) = L (ODESolve(z(ty), f,to, t1,0))

Adjoint sensitivity method (Pontryagin et al., 1962)
a(t) = 9L/oa(t)

da(t) - / Ta.f(z(t)ﬂ t, 9)

dt a(t) 0z

How do we train this model then?

L(z(t)) = L <z(t0) + | f(z(t),t,@)dt) = L (ODESolve(z(ty). f,to,t1,0))

to

a(t) —_— f)L/(‘)z(t) dzgt) - _a(t)Taf(ng;,t,H)

How do we train this model then?

L(z((z(to) / f(z(t),t,0) dt) = L (ODESolve(z(ty), f,to, t1,0))
T da(t) _ o xOf(a(t),t.0)
a(t) = 9L/oa(t) = —a(t)’ -

S

Can be solved using an
ODE solver

How do we train this model then?

L(z(t))) (z(to) / f(z(t),t,0) dt) = L (ODESolve(z(ty). f,to,t1,0))

a(t) —_— ({)L/(‘)Z(t) d?iit) - _a(t)Taf(Zg;,t,e)

TN

Instantaneous analog of Can be solved using an
chain rule ODE solver

How do we train this model then?

t

L(z(t)) = L (z(to) + f(z(t),t, H)dt) = L (ODESolve(z(ty). f,to,t1,0))

to
dL v Of(z(t),t,0)
— OL/¢ : — = — atT' ——dt
a(t) = OL/aa(z) | el
da:l(tt) _ _a(t)-r(')f(z(atz),t,ﬁ)
Instantaneous analog Can be solved using an

of chain rule ODE solver

How do we train this model then?

L(z(t))) = (z(to) / f(z(t),t,0) dt) = L (ODESolve(z(ty). f,to,t1,0))

: dL 2 of(z(t),t,0
a(t) = OL/oa(t G| awr T
dz(f) = —a(t)Taf(zg;’t’e) \
Can be solved
/\ using an ODE
_ solver.
Instantaneous analog Can be solved using an

: *Integrated from O to
of chain rule ODE solver 1 in experiments

How do we train this model then?

L(z(t))) = (z(to) / f(z(t),t,0) dt) = L (ODESolve(z(ty). f,to,t1,0))

dL v Of(z(t),t,0)
— ST a1 = =l B L dt
a(t) = 9L/oa(1) %= AT
da(t) _ . 0f(a(t),t0) /\
dt =) 0z

Used to update Can be solved
parameters of f using an ODE

_ solver.

Instantaneous analog Can be solved using an

: *Integrated from O to
of chain rule ODE solver 1 in experiments

Advantages

e O(1) Memory gradients: as the activations are not stored at each layer,
instead the dynamics are run backwards from the output to input

Advantages

e O(1)Men b ach layer,
instead tf o \ N put

:(t;\')

.’J(t()) ;({H-l) State

. alli+1) Ad]0|nt State
G)
a(to) Do (. I\/.

) / l)Z\‘t-i,l I A

i v L altn)
. f)L + /)Z(tiﬁl/x.
0z(to) | a(t;) ‘ oL

'; dz(tn)

i i ! —
to ti tit1 tn

Advantages

e O(1) Memory gradients: as the activations are not stored at each layer,
instead the dynamics are run backwards from the output to input

Table 1: Performance on MNIST. "From LeCun
et al. (1998).

Test Error # Params Memory Time

1-Layer MLPT 1.60% 0.24 M 2 -
ResNet 0.41% 0.60 M O(L) O(L)

RK-Net 0.47% 0.22M O(L) O(L)
ODE-Net 0.42% 022M ©OQ1) O(L)

Advantages

Depth of ODEs

e |tis left to the ODE solver. Hence it can change during training
e Approximately 2-4x the depth of resnet architectures - (shown empirically)

et
2
o

NFE- Number of
forward evaluations

bt
N
w

et
o
o

NFE Forward

™
wn

0 25 50 75 100

(d) Training Epoch

Advantages

Explicit Error Control.

ODEsolver’s error can be explicitly controlled. Hence trade-off between speed and

error is in the user’'s hand
le-0
° ! - le-1

le-2
tolerance
le-3

B le-4

g
(o}

Relative Time
o

o
(=)

le-5

0 50 100 150

(b) NFE Forward

Advantages

Cost of evaluation (Forward pass vs Backward Pass)

Unlike, SGD based training methods for neural networks, NeuralODEs have a
faster backward pass

150 . m 1e-0
o N
© le-1
< 100
< le-2
:
le-3

w el e
L . le-4
Z |

% 50 100 150 °°

(c) NFE Forward

Continuous-time models

ODE Solve(z,, f,0f,to, ..., tN)

* Well-defined state at all times

1
PRl ey
i
V4
)/
t‘\‘
.é
\
|
zi
\
\
\
\
)
]
,/
]
)
s s S e "y ey s s’ @R

* Dynamics separate from
inference

|
|
! |
v .
@ @ * Irregularly-timed observations.

Zg, ~ p(zto)
ity s Ztgs - - s Tty = ODESolve(zy,, f,0¢,%0,...,iN)
each xy, ~ p(x|z4,,0x)

http://www.cs.toronto.edu/~rtgichen/pdfs/neural_ode_slides.pdf

Handles unobserved variables and can extrapolate

RNN encoder q(Ze |0,

Latent space

—

Data space

A
I
| |
I

———d-»

- —~6—[B-679 @@o
n

@ — » —& @ -0 & L
t() tl tN tN—{-l tj\,[t() tl tN tN+1 t]\[
- > - >

Observed Unobserved Prediction Extrapolation

Time W .\M

(b) Latent Neural Ordinary Differential Equation
& - 9

=== Ground Truth (’\\

e Observation e
= Prediction
== Extrapolation

