Do Neural Network Cross-modal Mappings Really Bridge Modalities? Guillem Collell, Marie-Francine Moens ACL 2018

Cross-modal mappings

Objective: Learn a mapping function from representations of one modality to another.

Applications:

- Cross-modal retrieval (e.g. image search)
- Zero-shot learning
- Word translation
- Building multimodal representations

Desirable(?) property: Mapped representations should have a similar *neighborhood structure* to the true target representations.

Approach

Instead of using similarity metrics like

- MSE loss
- Cosine similarity
- Max-margin loss

Measure the similarities of the **neighborhood structures** of sets of vectors.

New metric: mean nearest neighbor overlap

- Count the (average) proportion of neighbors that appear in the neighborhoods of two vectors.a representation and its mapping.

Example

if the 3 (= K) nearest neighbors of v_{cat} in V are $\{v_{dog}, v_{tiger}, v_{lion}\}$ and those of z_{cat} in Z are $\{z_{mouse}, z_{tiger}, z_{lion}\}$, the NNO³ (v_{cat}, z_{cat}) is 2.

$$\boldsymbol{mNNO}^{K}(V,Z) = \frac{1}{KN} \sum_{i=1}^{N} NNO^{K}(v_i, z_i) \quad (1)$$

with $NNO^{K}(v_i, z_i) = |NN^{K}(v_i) \cap NN^{K}(z_i)|$, where $NN^{K}(v_i)$ and $NN^{K}(z_i)$ are the indexes of the K nearest neighbors of v_i and z_i , respectively.

Results

Evaluated mappings between images and text and vice versa.

- Mapped representations have more similar neighborhood structures with the original representations, instead of the target representations.

Discussion points

- What kind of similarity constraints should be used for learning coordinated multimodal representations?
- Could this be applied to multimodal learning with missing modalities?
- Is the "desirable property" always desirable?