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What is Multi-view Data?
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Image excerpted from: Xu, C., Tao, D. and Xu, C., 2013. A survey on multi-view learning. arXiv preprint arXiv:1304.5634.



Multi-view Representation Learning
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Image excerpted from: Li, Y., Yang, M. and Zhang, Z.M., 2018. A Survey of Multi-View Representation Learning. IEEE Transactions on Knowledge and Data Engineering.




Multi-view Representation Learning
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A nice survey if you want to dig into it:
A Survey of Multi-View Representation Learning

https://arxiv.org/pdf/1610.01206.pdf

Image excerpted from: Li, Y., Yang, M. and Zhang, Z.M., 2018. A Survey of Multi-View Representation Learning. IEEE Transactions on Knowledge and Data Engineering.



What previous models achieve

CCA: Paired-data, one-to-one associations, linear relationships
DCCA: Paired-data, one-to-one associations, non-linear relationships

CDMCA: Graph data, many-to-many associations, linear relationships

Authors of this paper: We need a many-to-many, non-linear model!



PMvGE: the Model Input

Data points from D different views:

X = {(a?l}dl)s (:E'Zad'Z)a seey (:Bna dn)}
d; € {1,2, ..., D}

Observed links (link weights) between the data points

W = {w;j, (3,7) € [n] x [n]}



PMvGE: the Model Parameters

We first define a similarity score parametrized by neural nets and a symmetric
matrix @ to regulate the connections between views

. dj d; d;
pij = ol % %) - exp((£i) (i), £ (x;))
These scores are normalized to get association probabilities

Hij
Zi;éj Hij

Pe = (xi zj) {zi}hoy) =



PMvGE: the Generative Modelling Process

First we drawn a random non-negative integer T from a particular Poisson process
T ~ Poisson(X),A =)
We then draw from the link distribution we have ozlzjfined previously T times
st ~ P(e; = (wz‘,wj)‘{xk}iyzl),t = Lopls

Then wij is defined as the number of times link (z:,z;) appeared

T
Wij = E Het:(w,’,wj)
=1



PMvGE: the Objective Function

From previous generative process, it turns out w;; follows a Poisson distribution:

w;j ~ Poisson(u;;)

Hence it has the PMF

s €Xp(—pij
Pluy) = - )
ij-

Taking the log likelihood for the entire dataset we have

log P({wi;}, (4,5) € ) =log [[ P(w)
(2,7)EZn

= Z Wi log Hij — Hij — log(wl.]')
(4,7)EIn



PMvGE: the Objective Function - continued

For optimization purposes, we could throw away the last term that is not related to
parameters

b({zr ), {wij o, ¥) = Z wij log pi; — Hij

(4,9)EZn

Then we can maximize this objective to perform MLE of model parameters.

- . loss.backward()
Yay! Mission accomplished! o
optimizer.step()



PMvGE: Optimization

e (Can we go ahead and perform SGD on the log likelihood?

No, because that way we cannot enforce symmetry of «

We need an alternating iterative algorithm that optimizes «,v .
First fix @ and do SGD on ¥ : some mini-batch sampling details involved

Then update o analytically: see equation (11) in the paper



PMvGE: “Your model is a special case of my model”

CCA...
MLP...

CDMCA...
Your model is @
\ Wecial cas?

of my model



Multi-Entity Variational Autoencoder
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What if our views are not naturally separated?

E.g. We have bounding boxes of objects and we treat them each as a view

What if we don’t have bounding boxes?

What if our views are just mixed together?




Multi-Entity VAE: Picking Multiple Representations
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Multi-Entity VAE: Disentangling Between Objects
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Multi-Entity VAE: Disentangling Within Objects
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Thanks!



