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ABSTRACT
The sheer amount of human-centric multimedia content has led
to increased research on human behavior understanding. Most ex-
isting methods model behavioral sequences without considering
the temporal saliency. This work is motivated by the psychological
observation that temporally selective attention enables the human
perceptual system to process the most relevant information. In this
paper, we introduce a new approach, named Temporally Selective
Attention Model (TSAM), designed to selectively attend to salient
parts of human-centric video sequences. Our TSAM models learn
to recognize a�ective and social states using a new loss function
called speaker-distribution loss. Extensive experiments show that
our model achieves the state-of-the-art performance on rapport
detection and multimodal sentiment analysis. We also show that
our speaker-distribution loss function can generalize to other com-
putational models, improving the prediction performance of deep
averaging network and Long Short Term Memory (LSTM).

CCS CONCEPTS
• Computing methodologies → Neural networks; Supervised
learning by regression; • Human-centered computing → Empir-
ical studies in HCI ;

KEYWORDS
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1 INTRODUCTION
The success of video-sharing and social network websites has led
to greatly increased posting of online multimedia content, with
a large proportion of the these videos being human-centric. The
sheer amount of such data promotes research on behavior under-
standing that can e�ectively discover the a�ective and social states
within human-centric multimedia content. Various applications
can bene�t from this behavior understanding. Multimodal senti-
ment analysis allows for mining large numbers of online videos
to extract the expressed opinions about products or movies [34].
In education, with the advent of online learning platforms, stu-
dents are interacting increasingly remotely with peers and tutors.
Better understanding of the social dynamics during these remote
interactions has the potential to increase engagement and learning
gains [56].

Automatically recognizing a�ective and social states in multi-
media contents has some unique characteristics which bring new
technical challenges. The �rst characteristic of recognizing a�ective
and social states, such as users’ mood, sentiment, or rapport, is that
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Figure 1: An illustration of the attention and encoding steps
in our Temporally Selective Attention Model (TSAM). To
understand the speaker’s a�ect, we �rst identify the task-
relevant parts in the input sequence and then encode the se-
quencewhile �ltering the non-relevant parts (shown as gray
shading). Our TSAM approach allows to recognize a�ect and
social states from unsegmented video sequences.

they are usually perceived over a long period of time. For exam-
ple, previous work trying to recognize rapport, i.e. a harmonious
relationship in which people are coordinated and understand each
other, annotated the ground truth of rapport with a minimum of
30-second time windows [57]. This �rst characteristic brings with
it the technical challenge that not everything happening during
the video-recorded interaction will be relevant to recognize the
a�ective and social states. According to the psychologists [39][29],
the human perceptual system is able to process the most relevant
information by the rapid modulation of temporally selective atten-
tion. Most existing approaches in a�ective multimedia analysis do
not address this issue. Many researchers simply compute summary
statistics of behavior features over the whole video [36]. In recent
emotion recognition approaches, these systems will either work
on very short segments or even individual frames [58], or process
sequentially all available frames in the video sequence without
a temporal attention process [3]. With the recent advances in re-
current neural networks, LSTM (Long Short-Term Memory) [14]
models are gaining popularity in a�ective computing and were
applied to a�ect recognition in multimedia contents [36, 43, 49].
While LSTM models are great at memorizing sequence information,
they do not include an explicit mechanism to perform temporally
selective attention.

A second characteristic of social and a�ective datasets is that
they often contain more than one training sequence with the same
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speaker (or with the same dyad if the dataset contains dyadic social
interactions). The conventional approach for training recognition
models is to ignore this fact and learn the model parameters using
a loss function which sum over all sequences, independent of the
speaker grouping. For example, the square loss function will pe-
nalize di�erences between predictions and ground truth labels for
each training sequence individually and then sum all these squared
di�erences. These conventional loss functions do not take advan-
tage of the natural grouping found in social and a�ective datasets.
For example, when learning a rapport level predictor, predictions
from sequences of a friend dyad should have a di�erent distribution
than if these sequences were from a stranger dyad.

In this paper, we propose a novel approach, named Temporally
Selective Attention Model (TSAM), designed to infer the social and
a�ective states in unsegmented multimedia contents (see Figure 1).
TSAM’s attention mechanism localizes the task-relevant part of
the input sequence and �lters out the noisy time-steps. Our TSAM
approach is composed of three components: the attention module,
the encoding module and the speaker-distribution loss. The attention
module localizes the task-relevant part from the input sequence,
allowing us to �lter out the noisy or irrelevant time-steps. The
encoding module integrates the attention scores to represent the
sequence. Finally, our speaker-distribution loss function encourages
the model predictions for a speci�c speaker (or dyad) to follow the
same distribution of that speaker’s ground truth labels.

In summary, our proposed temporally selective attention model
has the following advantages over prior work:

(1) It automatically localizes the task-relevant parts from the
unsegmented multimedia sequences, improving the per-
formance for a�ective and social state recognition.

(2) The attention scores, inferred by our TSAM model, are
easily interpretable and allow to identify the relevant input
observations.

(3) Our proposed speaker-distribution loss function takes ad-
vantage of speaker’s individual label distribution during
training. Our experiments show that it generalizes to other
computational models.

(4) Our TSAM model outperforms previous state-of-the-art
algorithms for two multimedia datasets: multimodal senti-
ment analysis with monadic interactions and rapport level
estimation with dyadic interactions. We also show gener-
alization of our attention and encoding modules on the
widely popular task of text-only sentiment analysis.

The structure of this paper is as follows. We �rst discuss the
related work in Section 2. Our model is introduced in Section 3.
In Section 4 and 5, we evaluate our model and compare it to the
baseline methods. The paper is concluded in Section 6.

2 RELATEDWORK
2.0.1 A�ective Computing. A�ective phenomena such as emo-

tions, moods, and personality modulate our everyday interactions
with our friends, family members and colleagues [40]. In the broad
sense, a�ective phenomena include a large number of processes,
states, and traits. Of these, emotions are often characterized as
relatively short-term reactions to an event, and are contrasted to
moods which are also less event-centric. Preferences, attitudes and

sentiments often represent a judgment or disposition toward a spe-
ci�c object or stimulus. In the community of multimedia a�ective
computing, emotion recognition and sentiment analysis are the most
widely-studied research areas.

Automatic emotion recognition performs a�ect classi�cation from
a prede�ned taxonomy of emotions. It plays a crucial role in tasks
within a�ect-sensitive human computer interaction (HCI) systems,
customer services, intelligent automobile systems, and entertain-
ment industries [55]. Most researchers studying emotion recogni-
tion use audio [37][48][12], video [17], physiological signals [22],
or the combination of multiple modalities [18][28].

Sentiment analysis [30] is a widely studied topic in natural lan-
guage processing. Functionally, research in sentiment analysis can
be split into word-level sentiment word identi�cation [8], document-
level opinion mining [9], and aspect-level sentiment classi�cation
[27]. Early work [45][15] was mostly based on hand-crafted sen-
timent lexicons, which are hard to collect. The recent trend of
deep learning has enabled various kinds of neural network models
for sentiment classi�cation. This includes semantic composition-
ality [42], sentiment embeddings [47], and memory network [46].
With the advent of mobile social media, people are sharing ever-
greater quantities of video, image and audio data, in addition to
text. As such, there is an increasing number of datasets explicitly
designed for multimodal sentiment analysis, including YouTube[25],
MOUD[33], ICT-MMMO[51], and MOSI[53]. As such, there is also
a growing body of work concerned with multimodal sentiment
analysis [35][54]. The state-of-the-art performance is achieved by
Wang et al. [50] that aims to improve the generalizability of neural
networks across datasets.

2.0.2 Social Interaction. Recent work has also studied various as-
pects of interpersonal social dynamics, in addition to intrapersonal
a�ect modeling. Zhao et al. [57] developed a dyadic rapport detec-
tor for reciprocal peer tutoring. Based on the human-annotated
social strategies, this paper focused on the discovery of temporally
co-occurring and contingent behavioral patterns that signal inter-
personal rapport. Neubauer et al. [26] proposed a method to assess
team behaviors that develop resilience to stress by utilizing nonver-
bal and linguistic measures from team members. Damian et al. [6]
explored how automatic behavioural feedback loops during social
interactions might enable users to improve their behavior quality
by analyzing their behaviours in real time. Moreover, multimodal
interaction analysis have been proposed for health care systems,
e.g. detection of early stages of dementia [20].

2.1 Recurrent Neural Networks
Recurrent neural networks (RNNs) are a generalization of feed-
forward neural networks sharing weights on variable lengths of
sequences. Gated Recurrent Unit (GRU) [4] and Long Short-Term
Memory (LSTM) [14] are among the most popular architectures
due to their e�ective solutions to the vanishing gradient problem.
Speci�cally, LSTM can keep long-term memory by training proper
gating weights. The fundamental idea, using a memory cell updat-
ing and storing the information, makes LSTM capture long-distance
dependencies more e�ectively than standard RNNs. Its e�ectiveness
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Figure 2: The framework of the temporally selective attention model. The attention module selects the attended steps with
attention weights. The encoding module encodes the time-steps, and represent the sequence by integrating the attention
weights over all encoded steps. The prediction is determined based on the sequence representation.

has been empirically shown on a wide range of problems, includ-
ing machine translation [44], speech recognition [13], dependency
parsing [10], and video activity detection [24], etc.

2.2 Attention Models
Attention mechanisms are an e�ective way for neural networks
to enhance their capability and interpretability. In visual question
answering, attention networks allow the model to locate the objects
and concepts referred to in the question [52]. In summarization
and machine translation, an attention-based encoder is developed
to learn a latent alignment over the input text [38][1]. In aspect-
level sentiment analysis, the attention gates enable the model to
concentrate on the key parts of a sentence, given the aspect.

Pei et al. [31] is the recent work most relevant this paper. They de-
ployed the attention mechanism to RNNs. The recurrent attention-
gated units accumulate the summative hidden states, and represent
the sequence as the last state. In their model, if a time-step is as-
signed with a high attention value during the temporal encoding,
the model would forget the previous time-steps. Our model avoids
such information information loss since our encoding module en-
codes the sequence with weighted attention.

3 TEMPORALLY SELECTIVE ATTENTION
MODEL

In this section, we discuss our Temporally Selective Attention Model
(TSAM) for social and a�ective state recognition. The temporally
selective attention mechanism enables our model to localize the

task-relevant part of the input sequence. Figure 2 shows an overview
of our framework. Our TSAM model consists of three components:
(1) an attention module that determines the attention scores indi-
cating the relevance of each time-step, (2) an encoding module that
represents the whole sequence by integrating the attention weights,
(3) the speaker-distribution loss function that shapes the predictive
distribution to take advantage of natural speaker grouping in the
training set.

To formally de�ne our TSAM approach, we will focus on regres-
sion problems where the a�ective or social state is described with
a real-value. As shown later in our experiments, our TSAM models
can easily be extended to classi�cations tasks with a discrete set
of state labels. We de�ne the input sequence as X = {x1, · · · , xT }
where xt ∈ RD is the feature vector representing the t-th time-step
and T is the sequence length. Our model predicts the real-value
a�ective or social state y ∈ R.

In this section, we �rst present our attention module to identify
relevant parts in unsegmented sequences. Then we discuss how to
obtain the sequence representation through a detailed discussion
of each module in the framework. Finally, we present the speaker-
distribution loss and compare it to the standard square loss function.

3.1 Attention Module
Since not every time-step of the sequence is relevant for the pre-
diction, the model should extract the salient parts from the noisy
time-steps. For example, to detect the dyadic rapport, the model is
expected to deal with 30-second video segments of conversation,
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containing 900 frames (at an average frame rate of 30 fps). The at-
tention mechanism helps the model to select the salient time-steps
by explicitly assigning attention weights.

Our attention module takes advantage of bi-directional Long-
Short Term Memory (LSTM) network to preprocess the sequence.
LSTM is able to process an input sequence via the recursive appli-
cation of a transition function. To address the problem of vanishing
gradient, the LSTM model uses a memory cell and a hidden state
variable that are passed from one unit to the next one.

Let the dimensionality of the hidden state variable for both for-
ward and backward LSTMs be DH . The hidden state output of each
time-step is denoted as hat = [

−→
h a
t ;
←−
h a
t ] ∈ R2DH , the concatena-

tion of hidden outputs of the left-to-right LSTM
−→
h a
t ∈ RDH and

the right-to-left LSTM
←−
h a
t ∈ RDH .

−→
h a
t and

←−
h a
t are calculated as

following: ( −→
it←−
it

)
= σ

( −→
Wixt +

−→
U i
−→
h a
t−1 +

−→
bi

←−
Wixt +

←−
U i
←−
h a
t−1 +

←−
bi

)
(1)( −→

ft←−
ft

)
= σ

( −→
Wf xt +

−→
U f
−→
h a
t−1 +

−→
bf←−
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←−
U f
←−
h a
t−1 +

←−
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)
(2)( −→ot←−ot

)
= σ

( −→
Woxt +

−→
Uo
−→
h a
t−1 +

−→
bo

←−
Woxt +

←−
Uo
←−
h a
t−1 +

←−
bo

)
(3)( −→ut←−ut

)
= tanh

( −→
Wuxt +

−→
Uu
−→
h a
t−1 +

−→
bu

←−
Wuxt +

←−
Uu
←−
h a
t−1 +

←−
bu

)
(4)( −→

Ct←−
Ct

)
=

( −→
ft ×
−−−→
Ct−1 +

−→
it × −→ut←−

ft ×
←−−−
Ct−1 +

←−
it ×←−ut

)
(5)( −→

h a
t←−

h a
t

)
=

( −→ot × tanh(−→Ct )
←−ot × tanh(

←−
Ct )

)
(6)

where × denotes the element-wise product, and σ (·) denotes the
sigmoid function. (−→it ,

←−
it ), (
−→
ft ,
←−
ft ), (−→ot ,←−ot ) are the input gates, for-

get gates, and output gates respectively.
{−→
Wz ,
←−
Wz ,
−→
Uz ,
←−
Uz ,
−→
bz ,

←−
bz

}
z∈{i,f ,o,u } are the LSTM parameters.

−→
Ct ,
←−
Ct are the memory

cells at time-step t .
Collecting the processed sequence, the attention weight vector

a ∈ RT is then computed as:

a = so f tmax(Haᵀwa ), (7)

where Ha ∈ R2DH×T is the matrix composed by the hidden vectors
[ha1 , · · · , h

a
T ]. wa ∈ R2DH is the projection vector which will be

jointly trained with LSTM parameters. The element at in vector a
represents the attention weight for step t .

3.2 Encoding Module
In this section, we train a second bi-directional LSTM to encode the
all the sequence observations from X. Let the hidden state outputs
of the bi-LSTM be [h1, · · · , hT ], where ht = [

−→
h t ;
←−
h t ] denotes the

outputs of the t-th LSTM unit calculated similar to Equation (1) -
(6).

Unlike most prior work using the last output hT of the LSTM,
our model represents X as the attention-weighted combination of

all outputs computed from the encoding module. We derive the
�nal representation s of the sequence as:

s =
T∑
t=1

atht . (8)

As for prediction, we calculate the predicted score ŷ by projecting
the representation to a real-value scalar:

ŷ = wᵀs s + bs . (9)

3.3 Speaker-Distribution Loss Function
In this section, we introduce a new loss function for regression
models named Speaker-Distribution Loss (SDL). The intuition be-
hind this loss function is to take advantage of the natural grouping
often present in a�ective and social datasets. These datasets will
often contain more than one labeled sequence for each speaker.
For social interaction datasets, the same dyad may have more than
one labeled sequence. Our speaker-distribution loss function takes
advantage of this natural grouping to improve the distribution of
the predicted labels.

A second motivating factor of our speaker-distribution loss func-
tion is that we observed empirically that common loss functions
such as square loss may end up being too conservative in their pre-
diction and always predict the average sequence label. Our speaker-
distribution loss function encourages the model’s predictions to
follow the same distribution as the training data. A regression model
which always predict the average label will be penalized (unless
all training samples have the same label). Our speaker-distribution
loss function goes a step further by performing this enforcement
in a speaker-spci�c manner. The model’s predictions for a spe-
ci�c speaker (or dyad) should follow the same distribution of that
speaker’s ground truth labels.

ProblemFormulation Suppose we are given a training setD =
{(X1,y1), · · · , (Xn ,yn )} containing n sequences Xi with variable
lengths and their corresponding labels yi . The traditional way of
calculating the loss function is to aggregate the square distances
of all pairs of prediction and ground-truth (ŷi ,yi ). Here we de�ne
“discrepancy” of ŷ and y as the square distance measurement, i.e.
δ (ŷ,y) = ‖ŷ − y‖2. The square loss can be written as:

L = 1
n

n∑
i=1

δ (ŷi ,yi ) =
1
n

n∑
i=1
‖ŷi − yi ‖2. (10)

Although Equation (10) is the common choice for most regression
tasks, minimizing it does not always guarantee high correlation
between predictions and ground-truth values. As the square penalty
is sensitive to minor changes of the distance, it is highly possible to
induce conservative predictions that close to the mean values ŷi ≈
1
n

∑k
i=1 yi with small variations. To deal with this, some models (e.g.

SVR [41]) relax the penalty by adding a slack term or decreasing
the penalty order. Such methods introduce hyper-parameters, e.g.
slack weights and tolerant threshold, making the model harder to
tune.

Speaker-Distribution Loss To overcome the potential prob-
lems of square loss, we propose the Speaker-Distribution Loss. To
help us with notation, we de�ne an utility function S(i) which re-
turns all indices of the sequences from the same speaker (or dyad).
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If speaker information is not available, then this function will re-
turn all sequence indices from the training set (in our experiments,
we call this loss Global-Distribution Loss). The core component of
our Speaker-Distribution Loss is the Dexpected function which com-
pares the distribution of the model predictions with the distribution
of the ground truth labels for the same speaker (or dyad). Formally,
we de�ne Dexpected function as:

Dexpected =
1
n2

n∑
i=1

∑
j ∈S (i)

δ (ŷi ,yj ). (11)

Then, our speaker-distribution loss is de�ned as the square loss
divided by our Dexpected function:

LSDL =
1
n

∑
i δ (ŷi ,yi )

1
n2

∑
i
∑
j ∈S (i) δ (ŷi ,yj )

=
n
∑
i δ (ŷi ,yi )∑

i
∑
j ∈S (i) δ (ŷi ,yj )

(12)

The numerator part of our speaker-distribution loss function
will minimize the squared distance between predicted and ground
truth labels (ŷi and yi ), where these distances are computed inde-
pendently of other training sequences. The denominator part of
our speaker-distribution loss function will enforce the distributions
of predicted and ground truth labels to be closer. This enforcement
is performed by grouping sequences per speaker (or per dyads).

Our TSAM approach is not constrained to regression problems.
For classi�cation tasks, LSDL can be easily rede�ned by changing
the discrepancy function to cross-entropy error.

4 EXPERIMENTAL SETUP
To show the e�ectiveness of our model, we experiment on a�ect
state and social state datasets with unimodal and multimodal set-
tings. In the experiment, our model is evaluated on three di�er-
ent tasks: interpersonal rapport detection, multimodal sentiment
analysis, and text sentiment analysis. While the main focus of our
approach is regression tasks given our speaker-distribution loss
function, we also show generalization when using our attention
and encoding modules for classi�cation. In general, We expect to
study the following research questions:
(1) How well does our model generalize to di�erent tasks, from
regression (rapport detection and multimodal sentiment analysis)
to classi�cation (multimodal and text sentiment analysis)?
(2) How does our model perform in multimodal and unimodal set-
tings?
(3) Are attention weights able to select the task-relevant time-steps?
(4) In which cases does the speaker-distribution loss improve over
the square loss?

4.1 Datasets
4.1.1 Rapport Dataset. The “Rapport in Peer Tutoring” dataset

(RPT or Rapport dataset for short) was collected to understand the
dynamics of rapport formation and the impact of rapport on peer
tutoring and learning. RPT is comprised of audio and video data
from 14 dyads of students in two hour-long peer tutoring sessions,
for a total of 28 hours of data. We followed a similar experimental
setup as the “Rapport 2013” [56] dataset. However, unlike “Rapport
2013”, the students worked together via a live video chat software,
and they were all dyads of strangers prior to the �rst session, unlike
the friends and strangers in [56]. Half of the dyads were pairs of

boys and half were pairs of girls, with a mean age of 13.5. The
RPT corpus was segmented into 30-second "thin-slices" (3,363 in
total), which were given to naive observers on Amazon Mechanical
Turk to rate the rapport for the dyad in each slice. Each Turker
was shown a de�nition of rapport and asked to rate the rapport in
10 randomly selected video slices on a 7-point Likert scale, with
1 being very low rapport, and a 7 being very high rapport. Each
slice was rated by 3 Turkers, with an average Krippendor�’s alpha
across all Turkers’ slices of 0.61, and the average rating used as the
�nal measure of rapport.

4.1.2 MOSI. The Multimodal Opinion Sentiment Intensity (MOSI)
dataset [53] is proposed as a benchmark for multimodal sentiment
intensity analysis. This dataset is collected from YouTube movie
reviews and it contains 2,199 video segments from 89 distinctive
speakers. Sentiment intensity is de�ned from strongly negative to
strongly positive with a linear scale from −3 to 3. The sentiment
intensity of each video segment is annotated by �ve online workers
from Amazon Mechanical Turk website and the �nal rating is the
average of all 5 workers. Three di�erent modalities: audio, video,
and text, are provided.

4.1.3 IMDB Movie Review. To evaluate our model on text, we
leverage the IMDB dataset [23], which is a benchmark for sentiment
analysis. This corpus contains 50,000 movie reviews taken from
IMDB, each comprised of several sentences. 25,000 instances are
labeled as training data and 25,000 instances are labeled as test data.
There are two types of labels (positive and negative), and they are
balanced in both the training and test set.

4.2 Comparison Methods
To answer the research questions, we compare the following meth-
ods in our experiments:

TAGM [31]: TAGM (Temporal Attention-Gated Model) is the
latest attention model for sequence classi�cation. It is speci�cally
designed for salience detection. Di�erent from our work, TAGM
developed the recurrent attention-gated units to accumulate the
summative hidden states and learn the sequence representation as
the last time-step.

DAN [16]: DAN (Deep Averaging Network) is a deep neural
network that models a sequence by averaging the embeddings
associated with an input sequence. DAN is a simpli�ed model that
weights each time-step equally. By comparing our model with DAN,
we can study the necessity of our attention mechanism.

Bi-LSTM andBi-GRU: LSTM [14] and GRU [4] are now popular
techniques for sequence modelling. In the experiments, we will test
the bi-directional LSTM and GRU. The number of hidden states are
set to be same as our model.

The state-of-the-art methods: We compare our model to the
state-of-the-art results for each dataset.

- SAL-CNN [50]: SAL (Select-Additive Learning) is designed
f or improving the generalizability of multimodal sentiment
analysis. SAL-CNN speci�cally addresses the confounding
factor problem for convolutional neural networks.

- PVEC [21] and SA-LSTM [5]: PVEC (Paragraph Vectors)
and SA-LSTM (Sequence Autoencoder initialized LSTM)
are able to learn the text representation with unlabeled
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Audio Video A + V
MAE Pearson MAE Pearson MAE Pearson

Baselines

DAN 1.006 0.413 1.236 0.204 0.979 0.431
Bi-GRU 1.057 0.304 1.130 0.224 1.006 0.337

Bi-LSTM 1.103 0.346 1.282 0.180 1.101 0.347
TAGM [31] 1.331 0.297 1.251 0.203 1.124 0.323

Our Models

TSAM w/o Att 1.189 0.450 1.466 0.183 1.178 0.466
SL-TSAM 0.967 0.351 1.029 0.065 0.968 0.355

GDL-TSAM 0.956 0.483 1.092 0.175 0.936 0.486
TSAM 0.937 0.489 1.005 0.336 0.894 0.512
Human MAE: 1.183

Table 1: The regression performance on Rapport dataset. All models are trained with the speaker-distribution loss. Pearson’s
Correlation (higher is better) and MAE (lower is better) are the evaluation metrics. The rapport scores are between 1 and 7.
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Figure 3: Comparing e�ect of square loss and proposed speaker-distribution loss. Figure (a) and (b) shows the model perfor-
mances under Pearson’s correlation and MAE respectively. We report the fused results (A + V) for all methods.

corpus. Both methods achieve strong performance for text
classi�cation bene�tting from the pretraining strategy on
external data.

Our proposed model with its variants:

- TSAM: Our proposed Temporally Selective Attention Model
with speaker-distribution loss as described in Section 3.

- SL-TSAM: Our proposed model with the square loss.
- GDL-TSAM: Our proposed model with the global-distribution

loss as described in Section 3.3.
- TSAMw/oAttention: To test the e�ect of attention weights

in our model, we remove the attention module. The weight
of every frame is a constant 1

T . The sequence representa-
tion of Equation (8) is substituted as s = 1

T
∑T
t=1 ht .

4.3 Feature Extraction
For visual features, we use OpenFace [2] to extract facial appear-
ance features. We perform a similarity transform from the currently
facial landmarks to a representation of frontal landmarks from a
neutral expression. We then extract Histograms of Oriented Gra-
dients (HOGs) features [11] from the aligned face. This leads to a
4,464 dimensional vector describing the face. In order to reduce
the feature dimensionality, we use PCA to keep 95% of explained
variability, leading a basis of 1,391 dimensions.

For acoustic features, we utilize COVAREP [7] (version 1.4.1) to
extract commonly used speech features, such as Mel-Frequency
Cepstral Coe�cients (MFCCs) and prosodic/voice quality features.

For text, the words are represented as the pretrained Glove [32]
word embedding.

4.4 Evaluation Metrics
We evaluate the regression tasks with Mean Absolute Error (MAE)
and Pearson’s Correlation and evaluate the classi�cation tasks with
accuracy.

4.5 Training
Our model is trained in an end-to-end fashion with Adam [19] as
the optimizer. When minimizing Equation (12), we use minibatch
scheme to approximate the expected discrepancy of Equation (11),
i.e. summation over predictions and ground truth values within the
minibatch.

5 RESULTS AND DISCUSSION
5.1 Rapport Detection
We perform a speaker-independent leave-one-dyad-out cross test-
ing following the leave-one-dyad-out cross validation. The system
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Audio Video Text A + V + T
MAE Pearson MAE Pearson MAE Pearson MAE Pearson

DAN 1.362 0.133 1.342 0.146 1.288 0.434 1.265 0.446
Bi-GRU 1.367 0.108 1.384 0.106 1.212 0.474 1.208 0.485

Bi-LSTM 1.374 0.131 1.376 0.132 1.157 0.499 1.124 0.512
TAGM [31] 1.348 0.169 1.390 0.051 1.068 0.590 1.035 0.587

TSAM w/o Att 1.373 0.127 1.363 0.170 1.076 0.578 1.014 0.596
TSAM 1.366 0.136 1.360 0.172 0.986 0.630 0.967 0.641

Table 2: Multimodal sentiment regression results on MOSI dataset.
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(a) Dyad 1.
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(b) Dyad 2.

Figure 4: Illustration of the predictions of square loss and
proposed speaker-distribution loss. Figures show the pre-
diction curves of speaker-distribution loss and square loss
from two dyads, as well as the ground truth. The datapoints
on the curves represent predicted/ground truth values of a
30-second slice. All slices are predicted independently, and
the curves are plotted by connecting the predictions/ground
truths in chronological order.

outputs the testing predictions when it reaches the best perfor-
mance on the validation dyad. In this way, the splits of the dataset
is disjoint with respect to speakers.

For each method, we report a simple fusion model that fuses
the results from two modalities with linear combination: Pf used =
αPA + (1 − α)PV , where Pi is the prediction value of modality i ,
and α is the learnable coe�cient.

5.1.1 Performance of Regression. Table 1 presents the regres-
sion performance on the Rapport dataset. In general, our model
achieves the best results in both unimodal and multimodal settings.
In comparison with TSAM w/o Att, we can see that the attention
mechanism improves the model performance. Although training

Audio Video Text A + V + T
DAN 0.572 0.628 0.650 0.692

Bi-GRU 0.591 0.586 0.710 0.714
Bi-LSTM 0.584 0.578 0.668 0.691

TAGM [31] 0.579 0.597 0.713 0.716
SAL-CNN [50] 0.618 0.636 0.732 0.730
TSAM w/o Att 0.588 0.615 0.723 0.744

TSAM 0.609 0.618 0.745 0.751
Table 3: Multimodal sentiment classi�cation results on
MOSI dataset.

TSAM with square loss has competitive MAE scores, the Pearson’s
Correlation drops dramatically. Furthermore, the superiority of
TSAM over GDL-TSAM veri�es the importance of natural grouping
of speaker-aware social states.

All models achieve better results with acoustic features than with
visual features. Also, the combination results under the multimodal
setting outperform the unimodal results. It is interesting to note
that the MAE of human raters is larger than most models. It might
be because that raters have their own preferences of rating scales.

5.1.2 E�ect of Speaker-Distribution Loss. We study the e�ect
of speaker-distribution loss proposed in Section 3.3. The speaker-
distribution loss and the square loss are compared across di�erent
models in Figure 3. All models trained with the speaker-distribution
loss consistently outperform the square loss under Pearson’s corre-
lation. Most models gain huge improvements of more than 10%. On
the other side, using speaker-distribution loss does not signi�cantly
a�ect the performance in terms of MAE. Although the objective
of square loss is to minimize the pairwise discrepancy (which cor-
responds with the MAE metric), the speaker-distribution loss is
capable of achieving similar e�ects.

To investigate the prediction properties of speaker-distribution
loss, we illustrate the prediction curves of our model when trained
with two losses in Figure 4. Each datapoint on the curve represents
the prediction value of a 30-second slice. The ground truth curve is
also plotted as reference. Not only does the speaker-distribution loss
curve �t the distribution of ground truth better, it also produces
more distinguishable outputs to avoid conservation predictions
(always average rating). Dyad 1 (Figure 4(a)) especially re�ects this
observation.

5.1.3 Visualization of A�ended Frames. In this experiment, we
visualize the task-relevant frames the attention module captures.



Conference’17, July 2017, Washington, DC, USA

Attention	Weight

0.00

0.01

0.02

0.03

0.04

0.05

Time

Figure 5: Visualization of attention weights of an 30-second slice in Rapport dataset. The arrow shows the change of attention
weights with respect to time. Red denotes highweights while green denotes lowweights. Representative frames from di�erent
parts are illustrated.

DAN Bi-GRU Bi-LSTM TAGM PVEC [21] SA-LSTM [5] TSAM w/o Att TSAM
Accuracy 0.894 0.890 0.887 0.905 0.926 0.928 0.898 0.917

Table 4: The binary classi�cation performance on the IMDB dataset. The state-of-the-art methods, SA-LSTM [5] and PVEC
[21] utilize the unlabeled corpus to train the text representation. Other methods are trained with the labeled reviews.

Figure 5 presents an example slice with the learned attention weights
of time-steps. We use the color variations to indicate the magni-
tudes of attention weights. Compared with the unattended frames
(green), the attended part (red) corresponds to the frames showing
good interactions of two speakers which are signs for high rapport.

5.2 Multimodal Sentiment Analysis
We conduct both binary classi�cation and regression experiments
for multimodal sentiment analysis on MOSI dataset.

5.2.1 Binary Classification and Regression. The results of binary
classi�cation and regression are presented in Table 3 and 2. These
tables show that TSAM achieves the best performance among all
models with multimodal fusion and text modality. Consistent with
the results in rapport detection, our full model TSAM consistently
outperforms the one without attention.

5.3 Text Sentiment Analysis
We perform a binary classi�cation task on IMDB movie review
dataset. In this experiment, we show generalization using our at-
tention and encoding modules for written language.

5.3.1 Results on Binary Classification. The experimental results
on IMDB dataset are reported in Table 4. In this experiment, we
include the state-of-the-art methods, SA-LSTM [5] and PVEC [21],
which utilize external review documents to pre-train the text rep-
resentation. Although less data are used for training, our model
achieves comparable results. Moreover, with the same amount of
resources (using the labeled corpus only), our model outperforms
the other baselines.

5.3.2 Visualization of A�ended Words. We illustrate the top-20
most attended words in Figure 6. As the sentence lengthT varies in
the corpus, the attention weight of a word is normalized by dividing

0
10
20
30
40
50
60

Regularized	Attention

Figure 6: The top-20 attended words. We calculate the mean
regularized attention weights of the words. All attended
words are sentiment words.

the expected weight 1
T . Then we can measure the importance of

a word in sentiment analysis by calculating the mean normalized
attention over all time-steps where it appears. We can see that all
the top ranked attended words are sentiment words that express
the individual attitude.

6 CONCLUSIONS
In this paper, we propose an temporally selective attention model
for social and a�ective state recognition. The attention mechanism
combined with the encoding module enables our model to attend
to salient parts of human-centric video sequences. Taking the ad-
vantage of natural grouping of speaker-aware labels, we develop
a speaker-distribution loss for model training. In the experiments,
our model achieves the state-of-the-art performance on di�erent
tasks with both unimodal and multimodal settings.
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