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Abstract
Various forms of psychotic disorders, including schizophrenia,
can influence how we speak. Therefore, clinicians assess speech
and language behaviors of their patients. While it is difficult
for humans to quantify speech behaviors precisely, acoustic
descriptors, such as tenseness of voice and speech rate, can
be quantified automatically. In this work, we identify previ-
ously unstudied acoustic descriptors related to the severity of
psychotic symptoms within a clinical population (N=29). Our
dataset consists of semi-structured interviews between patients
and clinicians. Psychotic disorders are often characterized by
two groups of symptoms: negative and positive. While negative
symptoms are also prevalent in disorders such as depression,
positive symptoms in psychotic disorders have rarely been stud-
ied from an acoustic and computational perspective. Our ex-
periments show relationships between psychotic symptoms and
acoustic descriptors related to voice quality consistency, varia-
tion of speech rate and volume, vowel space, and a parameter of
glottal flow. Further, we show that certain acoustic descriptors
can track a patient’s state from admission to discharge. Finally,
we demonstrate that measures from the Brief Psychiatric Rating
Scale (BPRS) can be estimated with acoustic descriptors.
Index Terms: psychotic disorders, acoustic descriptors, brief
psychiatric rating scale

1. Introduction
Many people are affected by a psychotic disorder during their
lifetimes or know someone who is. For schizophrenia alone,
23.6 million cases were reported globally in 2013 [1]. Psychotic
disorders affect how we speak [2] and how we express ourselves
with facial expressions [3, 4]. Thus, medical assessments have
included speech-related descriptors for a long time [5, 6]. Such
differences in speech might be difficult for humans to assess
objectively, but can be captured by computational acoustic de-
scriptors. This brings the opportunity to support clinicians in
assessing symptoms and allow for better decision-making.

Work on this topic is limited, and many computational
acoustic descriptors have not been studied with clinical psy-
chotic patients, including articulation rate, vowel space [7],
speech volume, and glottal flow parameters. While an early
measure of voice tenseness was associated with schizophre-
nia [8], more recent robust measures of voice quality such as
peak slope [9] have not been investigated. Psychotic disor-
ders are described by positive symptoms, exaggerations of nor-
mal functions (e.g., grandiosity and hallucination), and negative

symptoms, declines of normal functions (e.g., emotional with-
drawal and motor retardation) [10, 11]. While speech-related
behaviors of negative symptoms have been studied through
work on depression and PTSD, positive symptoms have not
been paid much attention in computational studies.

In this work, we perform a computational study of acous-
tic descriptors to understand psychotic disorders and their pos-
itive symptoms better. This study is performed on a dataset of
semi-structured interviews between clinical psychotic patients
and clinicians. We investigate the following questions.

Q1: What are the acoustic descriptors related to overall psy-
chotic severity? What are the acoustic descriptors related
to specific positive symptoms?

Q2: Can we estimate positive symptoms and overall severity
of psychotic disorders with acoustic descriptors?

2. Related Work
While the research community has studied how psychotic in-
dividuals perceive, e.g., speech [12] and emotions [13], there
is less research on whether they express themselves differently
through speech and language.

In a within-patient study of patients diagnosed with
schizophrenia, a decrease of the fundamental frequency (pitch)
and a better pronunciation of vowels, i.e., the first and second
formants were closer to a reference pronunciation, were ob-
served at discharge compared to admission [8]. In the same
study, a tendency toward a more tense voice was observed for
patients with schizophrenia, while the opposite has been seen
in depressed patients at discharge [8]. Compared to this within-
patient study, our paper investigates more acoustic descriptors,
including a more robust estimator of voice tenseness, between
patients. An exhibition of inadequate speech behaviors, e.g., in
volume, in rate, and in pitch variation, was found in children
diagnosed with schizophrenia compared to a control group of
the same size and demographic [2]. The same study observed
that children with schizophrenia were not identifiable by a sin-
gle speech behavior, but that they often deviated more from
the norm on many speech-related behaviors, e.g., speaking too
loudly or too quietly. In contrast to our work, all speech- and
language-related behaviors were manually assessed.

More recently, second formant variation was linked to the
severity of negative symptoms [11], e.g., blunted affect and
emotional withdrawal, among patients with schizophrenia [14].
Besides the second formant, the first formant showed a similar
but not statistically significant trend. In other disorders, more
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severe negative symptoms have been linked to a smaller vowel
space for self-reported PTSD compared to a control group [7],
i.e., similar first and second formants for different vowels, and
to a more tense voice in self-reported depression [15]. Even
though these two studies are based on many individuals, the in-
dividuals are not clinically diagnosed and are not hospitalized,
i.e., we expect milder symptoms.

We contrast with previous research by investigating robust
computational measures of acoustic descriptors, which have not
been studied previously in psychotic disorders. Besides estab-
lishing relationships between acoustic descriptors and symp-
toms, we also investigate automatic estimation of psychotic
severity, with a focus on positive symptoms.

3. Methods
Our dataset consists of audio and video recordings of 29 semi-
structured interviews between clinicians and 20 unique psy-
chotic individuals who are hospitalized in an inpatient service
at a psychiatric hospital. The semi-structured interview pro-
tocol was designed to reflect the daily clinical encounters by
patients and their clinicians. This dataset is a significant ex-
pansion of a previously-published dataset used to study facial
expressions of psychotic patients [4]. Our new dataset includes
multiple interviews from the same patient from admission to
discharge to analyze temporal changes. While most patients are
diagnosed with schizophrenia, some are diagnosed with bipo-
lar or with mania. The average duration of these interviews is
8.33 minutes (SD=4.22). Of the 29 interviews, 17 interviews
are with male and 12 interviews are with female patients. They
are recorded using head-mounted microphones and one web-
cam for each facing the upper body of the patient and clinician.

After each of the interviews, the patients are assessed us-
ing the 24-item version of the Brief Psychiatric Rating Scale
(BPRS) [6]. It was designed to measure the severity of rela-
tively independent symptoms often found in psychiatric disor-
ders [16]. The BPRS total score (M=42.4, SD=13.6) is the sum
of all BPRS items, which are scored on an ordinal scale from
1 (not present) to 7 (extremely severe). Therefore, BPRS total
ranges theoretically from 24 to 168. In our analysis, we focus on
the total score as well as on positive items [10]. Further, we omit
BPRS items that do not vary in our patient population (SD<1).
This leaves the following six positive BPRS items: grandios-
ity, elevated mood, hallucination, unusual thoughts, excitement,
and motor hyperactivity.

3.1. Speaker Diarization

A first step when computing acoustic descriptors is speaker di-
arization. Our experimental setup includes head-mounted mi-
crophones designed to reduced cross-over speech. Even in these
good recording setups, we hear the other person talking. In
this paper, we explore manual annotations and an automatic di-
arization for speaker diarization. The experiments with manual
diarization allow studying computational acoustic indicators in
the ideal case. Experiments using automatic diarization allow
us to get closer to our goal of building decision support tools.

Our automatic speaker diarization is based on the time
delay of arrival (TDOA). Since we have only two speakers
each wearing a head-mounted microphone, we can distinguish
speakers by TDOA between the two audio signals as estimated
by the generalized cross-correlation with phase transform [17].
Patient and clinician, who are spatially separated by the record-
ing setup, are approximately 3 meters apart. Therefore, we ex-

pect a delay of 8ms between the audio signals. TDOA might not
be reliably estimated when the other microphone does not pick
up an audio signal. Therefore, we rely on TDOA only if a voice
is detected [18] in both audio signals. If TDOA is less than 5ms,
and if a voice is detected in both signals, we assume that both
patient and clinician are speaking. If speech is detected in one
signal only, we assume that the corresponding person is speak-
ing. A recording problem during six of the interviews made it
impossible to recover the audio signal from the clinician micro-
phone. For this reason, experiments with automatic diarization
are performed on 23 interviews.

We calculate the diarization error rate (DER) of the auto-
matic approach, over all interviews, based on the manual anno-
tations. It is suggested to use a 250ms no-score collar around
the annotated segment boundaries [19]. However, this would
remove a significant amount of our annotations. Without this
collar, we reach a DER of 20.10%, which is still comparable to
DERs in similar settings [20] with the collar.

3.2. Computational Acoustic Descriptors

As mentioned in Section 2, limited prior work has investigated
computational acoustic descriptors in interviews with psychotic
patients. We use descriptors inspired from work on depression
and PTSD behavior analysis [7, 15]. Our descriptors include the
first Mel-frequency cepstral coefficient (MFCC0) as a measure
of volume, vowel space [7], formants (F1 and F2), fundamental
frequency, voice quality descriptors from COVAREP [21], and
articulation rate from Praat [22].

We remove parts of the audio signals where the patient is
not voicing [23] since many descriptors can only be estimated
for voicing. On average, we have 3.14 minutes (SD=2.08) of
voicing for the patients. Then, we compute descriptive statistics
of our descriptors, i.e., median and interquartile range (IQR).
These two statistics are used because they are robust against
outliers, which might occur due to the diarization.

Articulation rate is the ratio of the number of syllables and
the phonation time over all speech segments according to the
diarization. The variation of articulation rate is the IQR of the
articulation rates per speech segment. We do not calculate the
median for fundamental frequency or formants because they
have only shown to be indicative in within-patient studies [8].
Speech volume (median of MFCC0) is not used because it has
been shown to be sensitive to the recording environment. This
leads to 12 acoustic descriptors for computational analysis. All
descriptors are mean-centered and normalized by their standard
deviation.

3.3. Automatic Estimation of BPRS Items

In Q2 we want to estimate BPRS items. Since we have not
too many interviews, we choose linear support vector regression
(SVR) to estimate BPRS items. Experiments are performed in
a speaker-independent fashion using the leave-one-patient-out
method. Hyperparameters of the linear SVR, including descrip-
tor selection, are determined automatically using a nested leave-
one-patient-out validation on the training set.

For each training partition, we find a suitable subset of
descriptors by conducting a greedy forward selection on the
minimizing criteria−corr(Y, Ŷ ) (Pearson’s linear correlation),
where Ŷ are the estimated scores and Y the corresponding
ground truth scores. The maximum number of descriptors is
restricted to five descriptors to prevent over-fitting. During the
descriptor selection, we validate the SVR’s penalty parameter
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Figure 1: Correlations between acoustic descriptors and BPRS
total score on our dataset. Descriptors colored in blue have
also been studied in previous work. Median PS is marked dif-
ferently because an early descriptor of tenseness [25] has been
investigated, but the opposite result was observed [8].

C (between 0.001 and 100) with Bayesian optimization [24],
which uses a Gaussian process to model −corr(Y, Ŷ ) of the
nested leave-one-patient-out validation.

We use two evaluation metrics in our experiments: Pear-
son’s correlation coefficient (r) and the mean absolute error
(MAE). Before these two metrics are calculated, estimations
are clipped to valid BPRS scores. For comparison, we calculate
the MAE of a naive mean estimation (MAEnaive) as a baseline,
where the mean is calculated on each training fold.

4. Results and Discussion
In this section, we present our experiments to study the two re-
search questions previously introduced: (Q1) correlation analy-
sis of acoustic descriptor with positive BPRS items and BPRS
total score, and (Q2) models to estimate BPRS items based on
computational descriptors.

4.1. Q1 - Acoustic Descriptors of Psychotic Symptoms

We investigate acoustic descriptors related to the BPRS total
score and positive BPRS items. Since the relationship between
acoustic descriptors and BPRS might be non-linear, we use
Spearman’s rank correlation coefficient ρ. All descriptors are
based on manual diarization to use all 29 interviews. Our signif-
icant correlation results (p < 0.05) are summarized in Figure 1
and Table 1. In the next paragraphs, we discuss these results.

Speech volume: IQR of MFCC0, a measure related to the
variation of speech volume, correlates positively with BPRS to-
tal score. In line with our result, it has been observed that pa-
tients diagnosed with schizophrenia deviate more from the norm
for speech volume and other descriptors [2]. Individual positive
items show no correlation with a variation in speech volume.

Articulation rate: We do not observe any correlations be-
tween articulation rate and BPRS. However, IQR of articulation
rate correlates negatively with the BPRS total score and many
positive items. For children with schizophrenia, it was observed

Table 1: Significant correlations of acoustic descriptors for all
positive BPRS items (p < 0.05).

Positive symptom Acoustic descriptor ρ

Hallucinations Median PS 0.43
IQR F1 −0.40
IQR F2 −0.37

Unusual thoughts IQR PS 0.56
Median PS 0.52
Vowel space 0.41
IQR F2 −0.45
IQR F1 −0.55

Elevated mood Median PS 0.40
IQR F2 −0.38
IQR F1 −0.47
IQR articulation rate −0.62

Grandiosity IQR articulation rate −0.40
IQR F1 −0.44
IQR F2 −0.44

Excitement Vowel space 0.40
IQR articulation rate −0.52

Motor hyperactivity Vowel space 0.45
Median QOQ −0.39
IQR articulation rate −0.46

that they have a more excessive variation in speech rate [2]. We
found the opposite to be the case for our dataset.

Glottal flow: Quasi-open-quotient (QOQ) [26] measures
the ratio of the opening time of the vocal folds. Median and IQR
of QOQ correlate negatively with the BPRS total score. Larger
BPRS total scores tend to be related to a smaller QOQ range and
a shorter opening time of the vocal folds. The range of QOQ
is often reduced for people with functional dysphonias [26], in
combination with a low QOQ speaking loudly requires more
effort and sounds more “stalled” [26].

Voice quality: Peak slope (PS) [9], a voice quality descrip-
tor related to the breathy-modal-tense spectrum, correlates posi-
tively with many BPRS items. This indicates a more tense voice
for more severe symptoms. A more tense voice was associated
with clinical [8] and self-reported [15] depression, but the oppo-
site was reported for patients with schizophrenia [8]. While the
contradicting study observed less tense voice based on an early
tenseness measure [25], this change was not statistically signif-
icant. IQR of PS also correlates positively with many BPRS
items. A variation in breathy-modal-tense voice seems to be as
indicative as the actual voice quality. A positive correlation of
IQR of PS indicates that more severe symptoms tend to be as-
sociated with a less consistent voice quality. The consistency of
voice quality has to our knowledge never been studied compu-
tationally in any clinical study.

Vowel space: It was found that vowel space correlates neg-
atively with self-reported depression [7]. Depression is mainly
characterized by negative symptoms. For positive items, e.g.,
excitement and motor hyperactivity, we observe a positive cor-
relation with vowel space. This indicates that it is important
to analyze positive and negative symptoms separately since ef-
fects could average out, i.e., we do not observe a correlation
with overall symptoms.

Formants: IQR of the first two formants correlates neg-
atively with almost all BPRS items, i.e., a smaller range cor-
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Figure 2: BPRS total (solid line) and acoustic descriptors
(dashed lines) from admission to discharge for one patient.

relates with more severe symptoms. This has previously been
observed for the variation of the second formant and indicated
for the first formant for negative symptoms [14]. The first and
second formant are mainly influenced by the position of the
tongue and the extension of the jaw. It could be argued that psy-
chotic patients with more severe symptoms do not move their
tongue [14] and mouth as much.

We further investigate within-patient differences from ad-
mission to discharge for one patient. While, some acoustic de-
scriptors, such as pitch in in-between studies, might seem to be
indicative due to, e.g., a gender bias in a dataset, they might not
be indicative in within-studies. Therefore, we would like to see
that previously unstudied descriptors behave similarly over time
as BPRS total within a patient from admission to discharge. For
this, we plot the two peak slope statistics because they have the
strongest correlations with BPRS total. As can be seen in Fig-
ure 2, peak slope’s statistics behave similarly to BPRS total for
this patient.

4.2. Q2 - Automatic Estimation of BPRS Items

Table 2 summarizes the estimation results for all positive BPRS
items as well as the BPRS total score. Except for hallucina-
tions and unusual thoughts, we can estimate the BPRS items
well (high correlation and lower MAE than baseline). BPRS
specifies to assess these two items based on only what individ-
uals say not on how they speak. While we observe correlations
with these two items, see Table 1, a linear SVR is in our case not
able to estimate these two items well. All well estimable BPRS
items have some relation to acoustic descriptors. While motor
hyperactivity might not at first glance appear to be related to
acoustic descriptors, the BPRS manual specifically advises tak-
ing rapid speech into account for it.

The performance comparison between descriptors based on
the two diarization systems is summarized in Table 3. Even
though all models are trained on descriptors based on manual
diarization, we see a very similar performance with descriptors
derived from the automatic diarization. This indicates that even
though our automatic diarization is not perfect, we can robustly
estimate our descriptors.

5. Conclusion
We discovered several acoustic descriptors related to psychotic
symptoms while studying our first research question (Q1).
Among them are a less consistent voice quality (larger variation

Table 2: Estimated generalization error of BPRS items on 29
interviews. ∗ and ∗∗ mark significantly smaller absolute errors
(p < 0.05 and p < 0.01, Wilcoxon signed rank test).

BPRS item rour MAEour MAEnaive

Hallucinations 0.27 1.00∗ 1.34
Unusual thoughts 0.00 1.12 1.01
Elevated mood 0.73 0.64∗ 1.12
Grandiosity 0.81 0.36∗∗ 0.67
Excitement 0.71 0.60 0.91
Motor hyperactivity 0.74 0.55∗∗ 0.94

Total 0.57 9.73 12.47

Table 3: Performance comparison between descriptors based
on manual (m) and automatic (a) diarization of 23 interviews.
∗ and ∗∗ mark significantly smaller absolute errors (p < 0.05
and p < 0.01, Wilcoxon signed rank test).

BPRS item rour MAEour MAEnaive

m a m a

Hallucinations 0.23 0.29 1.15 1.84 1.44
Unusual thoughts 0.12 0.19 1.09 1.17 1.10
Elevated mood 0.78 0.68 0.62∗ 0.80∗ 1.21
Grandiosity 0.82 0.80 0.41∗∗ 0.46∗∗ 0.77
Excitement 0.76 0.72 0.53∗ 0.69 0.94
Motor hyperact. 0.73 0.67 0.51∗∗ 0.84 0.92

Total 0.47 0.49 11.02 10.35 12.56

in tenseness), a larger variation in speech volume, less variation
in the opening time of vocal folds, a larger vowel space, and a
smaller variation of speech rate. We also observe a smaller vari-
ation in formants for the overall severity and positive symptoms,
which has been found in prior work for negative symptoms [14].
For tenseness of voice, our observations are in line with studies
of depression and PTSD [7, 15]: a more tense voice is asso-
ciated with more severe symptoms. We see small differences
between positive symptoms and the overall severity. Namely,
no variation in speech volume, not as prominent tense voice
and not as prominent reduced variation in formants for posi-
tive symptoms. Compared to previous work on depression [7],
which observed a smaller vowel space for more severe negative
symptoms, we observe the opposite for the severity of positive
symptoms. This emphasizes that positive and negative symp-
toms should be studied separately.

Based on these computational acoustic descriptors, we train
models to estimate BPRS (Q2). For several of the BPRS items,
we can robustly estimate the scores. Since we are able to
achieve good performance even with automatic diarization, we
can provide models to estimate BPRS items without the need
of any manual annotations. One simple future work would be
to contextualize these acoustic descriptors with the behaviors
from the clinicians, including the sentiment and intimacy of the
questions.
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