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Abstract— Accurate and robust facial landmark track-
ing is a crucial step for face recognition and affect
analysis systems. We often want to not only detect facial
landmarks in images but to be able to track them reliably
and consistently over time. Recently there has been an
increase in research interest in facial landmark detection,
especially in cascaded regression based methods such as
the Supervised Descent Method (SDM). However, while
facial landmark detection in images has improved signifi-
cantly, comparably very little attention has been given to
the task of landmark detection/tracking in videos. In our
work we present a novel initialization procedure that can
help with cascaded regression based facial landmark de-
tection and tracking. Our initialization technique exploits
the fact that cascaded regression is sensitive to initializa-
tion noise, especially in the presence of out-of-plane head
pose variation, e.g. when a person is looking down when
reading or during fast head motion. Our approach allows
to learn good candidates for initialization, that we exploit
in our tracking framework. We evaluate our technique
on 300VW dataset – a large publicly available corpus
of in-the-wild videos and demonstrate its effectiveness
for a number of cascaded-regression landmark detection
approaches.

I. INTRODUCTION

Accurate and robust facial landmark tracking is

critical in many facial analysis applications [4]. This

includes facial behavior analysis, human-computer and

human-robot interaction, affective computing, lip read-

ing, and surveillance. Many of these applications also

require not only to detect landmarks in images but also

track these landmarks over time in videos.

While facial landmark detection has improved sig-

nificantly in the past years, comparably very little

attention has been given to the task of landmark

detection/tracking in videos [8]. This is especially

true for difficult to track in-the-wild scenarios that

contain large head motion, occlusion, and changes in

illumination.

While cascaded regression [26], [9], [29] has been

very popular for image-based landmark detection due
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frame 2 with different initial bounding boxes

Fig. 1: Visualization of initial bounding boxes and

landmark predictions in 5 frames of a testing video.

The second row shows the second frame with different

initial bounding boxes in larger scale.

to its accuracy, the predicted landmarks are often

unstable and the performance depends a lot on initial-

ization (see Figure 1), meaning that even a small per-

turbation in initial landmark locations lead to largely

different convergence. Furthermore, this often results

in ”jittery” tracking in videos.

In our work we present a novel initialization proce-

dure that can help with regression based facial land-

mark detection and tracking. Our approach enables

smart initialization of the model based on landmark

detections in the previous frame, with a linear scaling

of time complexity. We demonstrate the benefit of our

approach on 300VW [18] – a large publicly available

dataset of in-the-wild videos. Furthermore, we demon-

strate how our approach can be used to initialize a

range of modern landmark detection methods, with

improved results for all of them.

The paper is structured as follows: we first present

the relevant previous work (Section II); in Section

III we describe the cascaded regression model we

use; this is followed by a discussion of our proposed

initialization strategy in Section IV; we then describe

our experimental procedure and results in Sections V

and VI.
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II. RELATED WORK

Most of the previous work on facial landmark

detection has concentrated on detecting landmarks in

still images [16], [15], [24]. We review the work done

in this domain by first reviewing the currently very

popular cascaded regression methods. We continue by

discussing the model (re)initialization strategies used

to make the facial landmark detections more robust,

and finally we survey the methods that have been

proposed to track facial landmarks in videos.

A. Cascaded regression

Arguably, the most popular method for facial land-

mark detection at the moment is the cascaded re-

gression framework [9], [26], [21]. In this framework

facial landmark detection is updated in a cascaded

fashion. That is, the landmark detection is continually

improved by applying a regressor on appearance given

the current landmark estimate as performed by Cao

et al. in explicit shape regression [7]. Other cascaded

regression approaches include the Supervised Descent

Method (SDM) [26] which uses SIFT [13] features

with linear regression to compute the shape update.

Coarse-to-Fine Shape Searching (CFSS) [29] model

attempts to avoid a local optima in cascaded regression

by performing a coarse to fine shape search. Project

out Cascaded regression (PO-CR) [21] presents an

alternative formulation of cascaded regression in the

Projected Out space and updates the shape model

parameters rather than predicting landmark locations

directly. Robust Cascaded Pose Regression (RCPR)

[6] was proposed to improve the accuracy of cascaded

regression to outliers by detecting occlusions explicitly

and using robust shape-indexed features.

Recent work has also used deep learning techniques

in a cascaded regression framework to both extract

the visual features and to perform the model param-

eter update. Coarse-to-Fine Auto-encoder Networks

(CFAN) [28] use visual features extracted by an auto-

encoder together with linear regression. Sun et al.

[19] proposed a Convolutional Neural Network (CNN)

based cascaded regression approach for sparse land-

mark detection, however while their approach is robust

it is not very accurate. More recently a Mnemonic

Descent Method has been proposed, which performs

cascaded regression using a CNN to extract visual

features and a Recurrent Neural Network to perform

the parameter update[20].

Our work builds on top of these advances in cas-

caded regression and presents a way of making them

more accurate in case of landmark detection in difficult

videos.

B. Reinitialization

While very accurate, cascaded regression is often

not very stable. Slight differences in initialization may

lead to drastically different predicted landmarks (see

Figure 1). Several strategies have been proposed to

deal with this issue . Cao et al. [7] and Dollár et al.

[9] propose to use a set of different initializations to

perform the inference and take the median of their

outputs as the final prediction. An extension to this,

called smart restarts, has been proposed by Burgos-

Artizzu et al.[6] where the cascade is restarted if it

starts drifting from the consensus just after a few

iterations. While the above approaches perform the

same initialization strategy irrespective of an image or

expected location of the landmarks our work proposes

smart sampling based on face orientation.

A number of alternative approaches have been pro-

posed to use initially detected head pose [27], facial

landmarks [28] or both [10] to reduce the search

space for following landmark detection. However, all

of these approaches have been designed with static

images in mind and do not consider the temporal

consistency required for tracking landmarks in videos.

Applying them could lead to jittery and non smooth

tracking.

C. Video landmark detection

The majority of work on facial landmark detection

so far has concentrated on images. Tracking landmarks

in videos, especially in-the-wild, has been less ex-

plored and has mostly concentrate on qualitative as-

sessments on short videos due to a lack of benchmark

datasets [8]. However, with the recent availability of

the 300 Videos in the Wild (300VW) dataset [18],

there have been a number of methods evaluated for

the task of facial landmark tracking under difficult

scenarios.

Chrysos et al. [8] evaluate a number of modern fa-

cial landmark detection methods in tracking pipelines

based on face detection, model free tracking, and

hybrid methods. They find that model free tracking

(tracking of initially detected landmarks). rather than

re-detecting landmarks each frame, leads to similar

performance, with hybrid approaches leading to only

a marginal increase in performance. However, they

find that model free trackers do not show good perfor-

mance in very difficult scenarios including occlusions,

and large pose and illumination variation.

Majority of facial landmark tracking methods fall

into one of two categories [8]: face detection in every

frame followed by landmark detection; face detection

in first frame followed by landmark detection in suc-

cessive frames using the fitting result from previous

frame (with potential re-detection upon failure) [2],

[3]. Majority of approaches use the latter method that

does not exploit the temporal nature of the video

and does not enforce any temporal consistency. For

example, Rajamanoharan et al. [14] use a multi-view

Constrained Local Model and initialize it from pre-

viously detected landmarks. Such initialization tech-

nique is also used by Wu and Ji [25]. Uricar et al.

[23] enforce the temporal consistency of face detection

using a Kalman Filter, before applying fine grained
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landmark detection, but they do not consider the

consistency of finally detected facial landmarks. We

take the landmark detection in videos one step further

by introducing a method for robust landmark detection

in particularly difficult videos.

III. CASCADED REGRESSION

In this session, we describe Cascaded regression

approaches to landmark detection. The problem of

predicting facial landmark can be treated as updating a

current shape iteratively from an initial shape towards

ground truth landmarks. Cascaded regression treats

each such iterative update as a regression problem

and learns a mapping from current shape estimate and

the corresponding appearance to ground truth shape.

Xiong et al. [26] provides theoretical guarantees for

the estimated shape moving closer to ground truth

shape through iterations. During training cascaded

regression learns a set of regressors – typically one for

each iteration. During testing, it applies the regressors

for shape estimation in a cascading manner until

convergence or after reaching the maximum number

of iterations.

Let I = {I1, I2, . . . , IN} denote N training images,

S∗ = {S∗
1 , S

∗
2 , . . . , S

∗
N} denote the corresponding

ground truth shapes, and S0 = {S0
1 , S

0
2 , . . . , S

0
N}

denote the initial shapes. Cascaded regression learns

a mapping fk at iteration k (k ∈ {1, 2, . . . ,K}) such

that the error between shape estimation Sk
i at the kth

iteration and ground truth shape S∗
i is minimized,

where the i means the ith image in training data.

To estimate mapping given all training data, the least

square error minimization problem is formulated as

follows:

min
N∑

i=1

‖S∗
i − Sk

i −ΔSk
i ‖2 (1)

where ΔSk
i = fk(Sk

i ), f
k is a function that models

relations between shape estimation at kth iteration

and ground truth shape. Usually, f involves extracting

appearance features from an image at the current shape

Sk
i and applying a linear operation on them. Note that

in cascaded regression, each iteration learns a different

f and updates the shape estimate at iteration k by

applying fk on it.

In testing, the shape estimation at iteration k is

updated by adding the movement of landmarks ap-

proximated by f . The update function is as follows:

Sk+1
i = Sk

i + f(Sk
i ) (2)

In recent years there have been a number of cas-

caded regression methods proposed that show excel-

lent performance in predicting facial landmarks in

images [26], [7], [29], [22]. We will briefly discuss

one of the most popular cascaded regression methods

– Supervised Descent Method.

A. Supervised Descent Method (SDM)

In order to minimize the l2 error between current

and ground truth shapes in Equation 1, the elements

need to be differentiable and the Hessian matrix and

Jacobian matrix of the objective function have to be

calculated [26]. This is often not analytically possible

and/or very computationally expensive. SDM circum-

vents these difficulties by using a linear function

to approximate relations between current shapes and

ground truth shapes, without explicitly solving the

least squares problem.

ΔSk
i = f(Sk

i ) = Rkφk(Sk
i ) + bk (3)

Above, Rk term is the linear mapping that should be

learned at iteration k so as to minimize the least square

loss in Equation 1, bk is a bias term that is also learned

at iteration k, φk is the feature extraction function

which takes the current shape estimate Sk
i as input

and outputs the features extracted at the shape. Scale

invariant feature transform (SIFT) [13] features are

commonly used in cascaded regression, with different

scales used at different iterations [26], [22].

During testing, the shape estimation at iteration k is

updated by applying the linear mapping Rk and bias

term bk on it. The update function is then performed

using Equation 2.

By directly learning a linear mapping from current

shape estimations to ground truth shapes, SDM is

computationally efficient. [26] shows that it leads to

good performance on several applications such as

facial landmark detection. However, as seen in Figure

1 the model performance is very sensitive to noise in

model initialization.

IV. ENSEMBLE INITIALIZATION CASCADED

REGRESSION

Usually cascaded regression is performed from a

single bounding box detection of a face, which is

used to initialize the landmark locations based on an

assumed mean face. However this sometimes leads

to unstable performance as an initialization a couple

of pixels away can lead to drastically different land-

mark detections. Ensemble fitting can help avoid such

outliers by averaging a number of predictions from

different initializations. In this section, we discuss two

such ensemble learning algorithms, namely ensemble

initialization and constrained ensemble initialization.

In regular cascade regression, given a video V with

F frames, each frame’s landmarks are initialized as

xi
0 and updated by sequentially applying the update

rule described in Equation 2 to arrive at the prediction

result for each frame Xp = {xi
p}. In ensemble setting,

each frame is initialized M times. Let xi
0m denote

the mth initialization of the ith frame in video V .

For the whole video, the initial shapes are denoted

as X0 = {xi
0m}. After feeding X0 into the cascaded

regression model, we have M×F predictions, denoted

699699699699699



Algorithm 1 Select a shape based on mean shape

1: procedure MEANSHAPE

2: shapeNum ← # candidate shapes

3: S ← {Ss} where s = {1, · · · , shapeNum}
4: SMean ← mean of elements in S

5: distance ← {}
6: selectedShapes ← {}
7: for s ← {0, · · · , shapeNum−1} do
8: distance ← insert getDistance(Ss, SMean)
9: end for

10: dMean ← mean of distance

11: dStd ← standard deviation of distance

12: for s ← {0, · · · , shapeNum−1} do
13: if distance[s]− dMean ≤ α ∗ dStd then
14: selectedShapes ← insert Ss

15: end if
16: end for
17: finalShape ← mean of selectedShapes

18: return finalShape

19: end procedure
20: procedure GETDISTANCE

21: a ← shape matrix
22: b ← shape matrix
23: return Euclidean distance between a and b

24: end procedure

as Xp = {xi
pm}. We call the M predictions of each

frame as candidate predictions of that frame since

they are used for computing a final prediction by the

selection algorithms that we will illustrate next.

A. Ensemble Initialization

Ensemble initialization exploits the information

given by multiple candidates of a certain frame with-

out knowing the prediction of previous or consecutive

frames. The algorithm uses the shape and votes for

shapes that have mean or median Euclidean distance

to the mean of provided shapes.

That is, given the predicted shapes of frame i, Xi
p =

{xi
pm}, Ensemble selection algorithm first computes

the mean shape of all provided shapes, Xi
mean. Then a

distance vector is formed by computing the Euclidean

distance between every shape and the mean shape.

Let Dist = {distipm} denote the Euclidean distance

between the mth predicted shape and Xi
mean of the

ith frame. Ensemble selection algorithm chooses the

shape that has either median distip or mean distip
in Dist. To choose a shape that has mean distip
in Dist, one can first compute the mean and stan-

dard deviation of Dist, denoted as dmean, dstd, and

then select shapes whose distip is within α times

of standard deviation of Dist. Let Si
p = {sipm if

distipm − dmean ≤ α · dstd}, α is a hyper-parameter

that can be optimized through validation. The final

shape can then be computed by calculating the mean

of shapes in Si
p. The process is illustrated in detail in

Algorithm 1.

B. Constrained Ensemble Initialization

In practice ensemble initialization leads to more

accurate landmark detection. Theoretically, the more

bounding boxes, the more candidates are provided

for final inference, and thus the higher possibility

to produce good result, assuming a good selection

method exists. However, running too many predictions

for a single frame leads to a high computational cost.

This leads us to a desire to reduce the number of

initializations for efficiency. Existing methods [30]

find the number of initializations that balance compu-

tational efficiency and model accuracy. However, they

treat the contribution of each initialization in the same

way.

Experimentally, we observed that different bound-

ing boxes, even with same distance from the ground

truth, lead to very different predictions. This is espe-

cially true for non-frontal faces, where a good initial

bounding box is crucial for an accurate prediction.

An example of this is presented in Figure 1. Where,

initializations below the ground truth, consistently

outperform initializations above it. This is the case

for majority of images with downwards head pose.

We further explore the relationship between the

head pose, initial bounding box positions provided by

a face detector, and cascade regression accuracy in

an experiment. First, the detected bounding boxes are

often biased based on the head pose of the person,

for example if the person is looking towards right, the

detected bounding box tends to be biased to the left,

with the opposite effect for leftwards facing pose. The

same effect also appears in upwards and downwards

head poses. In our experiments, we find that shifting

bounding boxes appropriately, allowed us to increase

or decrease landmark detection accuracy.

We thus propose a method to select useful bounding

boxes based on head pose. We manually fix the

bounding box of certain locations based on head

pose estimation. Let P = {p1, p2, . . . , pm} denote

m head pose categories, B = {b1, b2, . . . , bw} denote

available bounding boxes that are placed at different

directions of a given initial bounding box, ri = pj , j =
{1, 2, . . . ,m} denote the head pose of the ith frame

in a video which falls in one of m pose categories. A

set of bounding boxes B(ri) = {bi1, bi2, . . . , biq} is

then selected based on the estimated head pose in the

previous frame.

We propose two methods to select bounding boxes

based on head pose. One method is to manually match

head pose with a set of selected bounding boxes

based on hypothesis that the selected bounding box

should be at the opposite direction of face direction.

This method does not depend on training data and

thus can be applied directly on various existing facial

landmarks prediction algorithms.

However, different facial landmarks prediction al-

gorithms may have a different pattern between head

pose and expected bounding boxes. Thus, we further
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propose an algorithm to learn such matching from

training data. The algorithm first computes prediction

from all available bounding boxes for every frame

in a training video and then computes error of these

predictions from their corresponding ground truths.

Let E ∈ Rn×w denote the errors for n frames and

w bounding boxes. We generate a ranking for each

bounding box for each frame based on error values in

ascending order. Then summarize for every bounding

box, how many times it has been ranked as k for a

certain head pose pj , where k = {1, 2, . . . , w}, j =

{1, 2, . . . ,m}. Then, by using similar approach as top-

k precision, we sort the bounding boxes in descending

order of total number of times being ranked as top-k
for every head pose category, and select fixed number

of bounding boxes for every head pose category. This

also allows us to control the number of initializations

we want to perform allowing for a trade-off between

computational cost and accuracy.

Since we are predicting landmarks in videos, we

propose to use the prediction of previous frame to

compute head pose and used as the estimated head

pose for next frame. By using this temporal informa-

tion in videos, constrained ensemble initialization can

be applied without extra computational cost, making it

a good fit for any facial landmark detection algorithms

for videos. To estimate the head pose from detected

landmarks we use an assumed mean face shape and

solve the Perspective-n-Point problem.

Lastly, the constrained ensemble initialization can

be run with a consistent time complexity as O(NM),

where N is the number of initializations and M is the

complexity of the landmark detector. In practice, the

number of initializations in our constrained method

does not exceed 15. Besides, the proposed method

is universal across different state-of-the-art landmark

detection methods and is able to improve the perfor-

mance of recent SDM, PO-CR, and Chehra methods.

We also believe that it could be applied on other recent

landmark estimation methods.

V. EXPERIMENTS

A. Dataset

This section describes the dataset we used for facial

landmark tracking. 300VW [18] has 114 videos and

training and testing split provided with the dataset. 50

videos are used for training. The rest of the videos are

in the test set and are categorized in three scenarios.

The first scenario includes videos in laboratory and

well-lit conditions, with people displaying arbitrary

expressions and head poses. The second scenario

consists of videos of people recorded in unconstrained

conditions such as varied illumination, dark rooms

and overexposed shots. The third scenario focuses on

completely unconstrained conditions including illumi-

nation and occlusions such as occlusions by hand.

For additional training data we used the popu-

lar 300W meta dataset [16]. 300W consists of four

datasets, namely Helen [12], LFPW [5], AFW [31]

and iBug [17]. Helen has 2330, LFPW 1024, AWL

337, and iBUG 135 images.

We used all four 300W datasets in addition to sub-

sampled frames from video 300VW training dataset

for our model training. For testing, we evaluated our

model on all of the three categories of video testing

set.

B. Face Detector

For tracking facial landmarks in videos we per-

formed face detection in every frame using HOG-

SVM face detector from the dlib library [11], which

has been corrected to produce bounding boxes for the

outline of the face encapsulating the 49 landmarks of

interest. For images that HOG-SVM fails to detect

a face region, we search for a bounding box in the

nearest frames. The HOG-SVM face detection gives

exactly one detection of bounding box for one frame.

C. Landmark Detectors

To explore our initialization strategies we used three

modern facial landmark detection algorithms: SDM
[26] implemented in the Intraface toolkit; our re-

implementation of SDM based on the Menpo toolkit

[1]; Discriminative Response Map Fitting (DRMF)

implemented in the Chehra toolkit [2]; and Project-
out Cascaded Regression (PO-CR) – a state-of-the-

art cascaded regression approach [22]. Since these

algorithms were trained without using 300VW dataset,

we further train an SDM model by using the 300VW

dataset.

D. SDM Landmark Detector

We trained and SDM model using the Menpo tool-

box [1] on the full 300W dataset and subset of frames

from 300VW video training set (we choose 1 frame

from every 100). Since in videos, consecutive frames

are very similar, using all of them could lead to over-

fitting. Validation shows that subsampling rate of 0.01

leads to good performance. For every training image,

10 perturbations of bounding boxes are generated by

adding the noise distribution of our face detector. We

assume that the noise can be modeled using a Gaussian

on the of scale and translation errors between the

detected bounding boxes and ground truth bounding

boxes. Note that the bounding boxes generated in

training is different from bounding boxes in testing in

which ensemble or constrained ensemble initialization

methods are used.

We trained a 6 iteration model that operates on

3 scales, with the scale staying the same for two

iterations. The scales are in increasing order through-

out training, which allows the model to check the

landmark regions at increasingly larger scales and thus

obtain more detailed information.
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Fig. 2: Head pose categories. The head rotation space

is divided into 8 categories using horizontal, vertical

lines and lines with slope 1 and -1.

Fig. 3: 8 available bounding boxes for a certain scale

noise. The bounding boxes are generated by shifting

the same amount of noise from detected bounding box

toward 8 directions: top-left, top, top-right, left, right,

bottom-left, bottom, bottom-right.

E. Initialization experiments

We compare the initialization methods - single,

ensemble, and constrained ensemble initialization.

For single initialization we use the initial bounding

box obtained from the face detector. For ensemble

initialization, we shifted the original bounding box by

a fixed amount of noise in 8 directions: top-left, top,

top-right, left, right, bottom-left, bottom and bottom-

right. To account for scaling noise we also up-scale

and downscale the shifted bounding boxes, leading to

a total of 24 initial bounding boxes.

In the ensemble initialization experiment, the me-

dian position of each landmark from the predicted

landmarks of 24 initial bounding box was computed

and used as a final prediction for that landmark.

For constrained ensemble initialization, we find the

pattern between face rotation and bounding boxes that

produce good predictions. Specifically, we manually

set the face rotation into 8 categories: looking to-

wards top-left, top, top-right, left, right, bottom-left,

bottom and bottom-right. Figure 2 shows the 8 rota-

tion categories. We denote them as {r1, r2, . . . , r8}.
Then for each rotation category, we fix a subset

of bounding boxes for multiple initialization. We

denote bounding boxes as in Figure 3. For one

scale, there are {b1, b2, . . . , b8} bounding boxes. In

total, we use 3 scales, with positive and negative

rotation category bounding boxes
1 {b2, b3, b5, b6, b9}
2 {b2, b3, b5, b6, b8, b9}
3 {b2, b3, b5, b6, b8, b9}
4 {b3, b5, b6, b8, b9}
5 {b1, b4, b5, b7, b8}
6 {b1, b2, b4, b5, b7, b8}
7 {b1, b2, b4, b5, b7, b8}
8 {b1, b2, b4, b5, b7}

TABLE I: The correspondence of head pose and

bounding boxes used as initialization for ensemble

initialization

rotation
category

number of
samples

bounding boxes

1 83 {b2, b3, b5, b6, b9}
2 79 {b2, b3, b5, b8, b9}
3 100 {b2, b3, b5, b8, b9}
4 45 {b3, b5, b6, b8, b9}
5 44 {b1, b4, b5, b7, b8}
6 50 {b1, b2, b4, b5, b7}
7 98 {b1, b2, b4, b5, b7}
8 142 {b1, b4, b6, b7, b8}

TABLE II: The correspondence of head pose and

bounding boxes used as initialization for ensemble

initialization through learning with fixed number of

selected bounding boxes.

noise to the fixed 8 bounding boxes. So there are

in total 24 bounding boxes {b1, b2, . . . , b24} where

{b1, . . . , b8}, {b9, . . . , b16}, {b17, . . . , b24} belong to

no scale, positive scale, negative scale transformation

respectively. The correspondence of face rotation and

bounding boxes for no scale transformation used for

predicting results are shown in table I. Bounding boxes

of different scale noise go to the same labels as

bounding boxes of no scale noise.

In the ensemble initialization, we manually select

suitable bounding boxes for a certain face rotation

based on hypothesis and observations from training

data. Since training data is available, we also per-

formed learning on training data to exactly discover

the most informative bounding boxes.

First, by running the algorithm proposed in Section

IV-B, we obtain the statistics of a number of top-3

rankings of each bounding box b = {b1, b2, . . . , bw}
for each frame in training data. By further choosing

5 bounding boxes from top-3 rankings, we obtain the

matching of bounding boxes and head pose shown in

Table II

VI. RESULTS AND DISCUSSION

A. Ensemble Initialization

In this section we show the results of using a

single initialization versus ensemble initialization. As

an error metric we used the Area Under the Curve

of the cumulative error curve on the 300VW test

dataset. For easy comparison with other baseline fa-

cial landmark detection methods such as SDM and

Project-out Cascaded Regression, we used the 49 point
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baseline multiple
initialization

Chehra 0.0522 0.0538
IntraFace 0.0479 0.0500

SDM* 0.0485 0.0570
PO-CR 0.0605 0.0614

TABLE III: AUC of Chehra, IntraFace, SDM and PO-

CR using single initialization and ensemble initializa-

tion. SDM* means we used our implementation of

SDM based on Menpo code [1].

single
initialization

ensemble
initialization

constrained
ensemble

initialization
Chehra 0.0522 0.0538 0.0558

IntraFace 0.0479 0.0500 0.0521
SDM* 0.0485 0.0570 0.0540
PO-CR 0.0606 0.0614 0.0620

TABLE IV: AUC of Chehra, IntraFace, SDM and PO-

CR using single initialization, ensemble initialization

and constrained ensemble initialization. SDM* means

we used our implementation of SDM based on Menpo

code [1].

configuration for computing cumulative error curve of

predicted landmarks. Table III shows the results of

our experiment and it can be seen that for all of the

methods, multiple initialization achieves larger AUC

than the single initialization method.

B. Constrained Ensemble Initialization

Table IV shows the experiment results of using

single initialization, ensemble initialization and con-

strained ensemble initialization. We can see from the

table that Chehra, IntraFace and PO-CR have the

highest prediction AUC when using our proposed

constrained ensemble initialization, while SDM has a

slightly larger AUC when using ensemble initializa-

tion.

C. Constrained Ensemble Initialization Through
Learning

Table V shows the AUC of each method on four

facial landmark prediction algorithms. We can see that

Chehra, IntraFace and PO-CR achieve higher AUC

when using learned initial bounding boxes. While

SDM using selected initializations performs better

than using learned initializations. The results confirm

our hypothesis on the relation of head pose and initial

bounding box and demonstrate the effectiveness of our

constrained initialization method.

We further choose some testing results where con-

strained ensemble initialization and ensemble initial-

ization succeed single initialization and constrained

ensemble initialization achieves the smallest predic-

tion error. The visualization is shown in Figure 4.

single
initial-
ization

constrainted
ensemble

initialization

constrained
ensemble

initialization with
learning

Chehra 0.0522 0.0558 0.0562
IntraFace 0.0479 0.0521 0.0551
SDM* 0.0485 0.0540 0.0534
PO-CR 0.0606 0.0620 0.0640

TABLE V: AUC of Chehra, IntraFace, SDM and PO-

CR using single initialization, constrainted ensemble

initialization and constrained ensemble initialization

through learning. SDM* means we used our imple-

mentation of SDM based on Menpo code [1].

Fig. 4: Visualization of landmark predictions us-

ing single initialization, ensemble initialization and

constrained ensemble initialization. The first column

shows predictions using single initialization. The sec-

ond column shows results using ensemble initializa-

tion. The third column shows results using constrained

ensemble initialization.

D. Discussion

Our results demonstrate the importance of selecting

the right initialization locations when performing cas-

caded regression. This is especially important when

performing landmark detection in videos with high

pose variability – as is the case in 300VW.

We also demonstrate how our constrained initial-

ization technique can lead to fewer ”false positives”

in landmark detection, leading to better overall perfor-

mance.

VII. CONCLUSIONS

In our work we present a novel model initialization

procedure that can help with cascaded regression

based facial landmark detection and tracking. Our

approach enables smart initialization of the model

based based on landmark detections in the previous

frame. We demonstrate the benefit of our approach on

300VW [18] – a large publicly available dataset of in-
the-wild videos. Furthermore, we demonstrate how our

approach can be used to initialize a range of modern

landmark detection methods, with improved results for

all of them.
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