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1 Introduction

Face-to-face communication is highly interactive. Even when only one per-
son speaks at the time, other participants exchange information continuously
amongst themselves and with the speaker through gesture, gaze, posture and
facial expressions. Such affective feedback is an essential and predictable aspect
of natural conversation and its absence can significantly disrupt participants
ability to communicate [3, 22]. During multi-party interactions such as in meet-
ings, information is exchanged between participants using both audio and visual
channels. Visual feedback can range from a simple eye glance to a large arm
gesture or posture change. One important visual cue is head nod during con-
versation. Head nods are used for displaying agreement, grounding information
or during turn-taking [9, 10]. Recognizing these affective gestures is important
for understanding all the information exchanged during a meeting or conversa-
tion, and can be particularly crucial for identifying more subtle factors such as
the effectiveness of communication [19], points of confusion, status relationships
between participants [20], or the diagnosis social disorders [17].

This chapter argues that it is possible to significantly improve state-of-the
art recognition techniques by exploiting regularities in how people communi-
cate. People do not provide affective feedback at random. Rather they react
to the current topic, previous utterances and the speaker’s current verbal and
nonverbal behavior [1]. For example, listeners are far more likely to nod or
shake if the speaker has just asked them a question, and incorporating such
dialogue context can improve recognition performance during human-robot in-
teraction [13]. More generally, speakers and listeners co-produce a range of
lexical, prosodic, and nonverbal patterns. Our goal is to automatically discover
these patterns using only easily observable features of human face-to-face in-
teraction (e.g. prosodic features and eye gaze), and exploit them to improve
recognition accuracy.

This chapter shows that the recognition of affective gestures can be im-
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Figure 1: Contextual recognition of head gestures during face-to-face interaction
with a conversational robot. In this scenario, contextual information from the
robot’s spoken utterance helps disambiguating the listener’s visual gesture.

proved by considering the behaviors of other participants in the conversation.
Specifically, it shows that the multimodal context from the current speaker can
improve the visual recognition of listener gestures. We introduce the idea of
encoding dictionary, a technique for contextual feature representation inspired
by the influence speaker context has on the listener feedback. Automatic selec-
tion of relevant contextual features is performed by looking at individual and
joint influences of context. The final contextual integration is done using a
discriminative sequential model. We show the importance of context in affec-
tive behavior understanding on two different domains: interaction with a robot
and human dyadic interaction. An important contribution of this chapter is
the introduction of co-occurrence graphs which models co-occurrence between
contextual cues such as spoken words and pauses, and affective gestures. By
analyzing these co-occurrence patterns, we show how to automatically select
relevant contextual features and predict when visual gestures are most likely.
Our context-based recognition framework allows us to predict, for example, that
in certain contexts a glance is not likely whereas a head shake or nod is (as in
Figure 1), or that a head nod is not likely and a head nod misperceived by the
vision system can be ignored.
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Figure 2: Simplified architecture for embodied conversational agent. Our
method integrates contextual information from the dialogue manager inside the
visual analysis module.

2 Context Definition

In this section we present how context can be defined during interactions with
an embodied conversational agent such as a robot or virtual human, or during
interactions between two or more human participants.

2.1 Robot and Agent Interactions

Figure 2 is a general view of the architecture for an embodied conversational
agent'. In this architecture, the dialogue manager contains two main subcom-
ponents, an agenda and a history.The agenda keeps a list of all the possible
actions the agent and the user (i.e. human participant) can do next. This list
is updated by the dialogue manager based on its discourse model (prior knowl-
edge) and on the history. Some useful contextual cues can be estimated from
the agenda:

e What will be the next spoken sentence of our embodied agent?
e Are we expecting some specific answers from the user?
e Is the user expected to look at some common space?

The history keeps a log of all the previous events that happened during the
conversation. This information can be used to learn some interesting contextual
cues:

e How did the user answer previous questions (speech or gesture)?

e Does the user seem to understand the last explanation?

'Tn our work we use the COLLAGEN conversation manager [16], but other dialogue man-
agers provide these components as well.



Based on the history, we can build a prior model about the type of visual
feedback shown by the user. Based on the agenda, we can predict the type of
visual feedback that will be shown by the user.

The simplified architecture depicted in Figure 2 highlights the fact that the
dialogue manager already processes contextual information in order to produce
output for the speech and gesture synthesizer. The main idea is to use this
existing information to predict when visual feedback gestures from the user
are likely. Since the dialogue manager is already merging information from
the input devices with the history and the discourse model, the output of the
dialogue manager will contain useful contextual information.

The contextual features should be seen as events or actions that can modify
the interpretation of ambiguous affective behaviors. If a person is clearly smiling
and laughing, then context should not change its interpretation. The same way,
if a person is clearly not moving, a head nod should not be recognized just
because it would be the appropriate time to head nods. Context does not
dictate the interpretation of affective behaviors but give us a tool to better
interpret the ambiguous cases.

We highlight four types of contextual features easily available in the dialogue
manager:

Lexical features Lexical features are computed from the words said by the
embodied agent. By analyzing the word content of the current or next utterance,
one should be able to anticipate certain visual feedback. For example, if the
current spoken utterance started with “Do you”, the interlocutor will most
likely answer using affirmation or negation. In this case, it is also likely to
see visual feedback like a head nod or a head shake. On the other hand, if
the current spoken utterance started with “What”, then it’s unlikely to see the
listener head shake or head nod-other visual feedback gestures (e.g., pointing)
are more likely in this case.

Punctuation We use punctuation features output by the dialogue system as
a proxy for prosody cues. Punctuation features modify how the text-to-speech
engine will pronounce an utterance. Punctuation features can be seen as a
substitute for more complex prosodic processing that are not yet available from
most speech synthesizers. A comma in the middle of a sentence will produce a
short pause, which will most likely trigger some feedback from the listener. A
question mark at the end of the sentence represents a question that should be
answered by the listener. When merged with lexical features, the punctuation
features can help recognize situations (e.g., yes/no questions) where the listener
will most likely use head gestures to answer.

Timing Timing is an important part of spoken language and information about
when a specific word is spoken or when a sentence ends is critical. This informa-
tion can aid the ECA to anticipate visual grounding feedback. People naturally
give visual feedback (e.g., head nods) during pauses of the speaker as well as
just before the pause occurs. In natural language processing (NLP), lexical and



syntactic features are predominant but for face-to-face interaction with an ECA,
timing is also an important feature.

Gesture display Gesture synthesis is a key capability of ECAs and it can
also be leveraged as a context cue for gesture interpretation. As described in
[5], visual feedback synthesis can improve the engagement of the user with the
ECA. The gestures expressed by the ECA influence the type of visual feedback
from the human participant. For example, if the agent makes a deictic gesture,
the user is more likely to look at the location that the ECA is pointing to.

2.2 Human Interactions

Communication is a joint activity and social scientists have long argued that
it cannot be properly recognized and understood by focusing on participants
in isolation but rather one must see individual behaviors within the context of
the group or dyad [4, 7]. Translating this proscription to the domain of gesture
recognition, this argues that features outside of the person-of-interest should
correlate with their behavior, and representing and exploiting these contextual
features should improve recognition accuracy. Here, we explore this idea within
the domain of dyadic and multi-party conversations, specifically we consider
whether adding contextual information about a speaker’s behavior improves
the ability to detect feedback gestures produced by listeners.

Our goal is to quantify the relationship between contextual information and
visual gestures by looking at the time distribution of visual gestures given a
contextual event. In our case, a contextual event can be a spoken word, a pause
or the end of a sentence. If a relationship exists between a contextual event and
a specific visual gesture (e.g., head nod) then we will expect to see a structure
in the relative distribution. If no relationship exist, the relative distribution
should be random.

As our interest is in producing online (real-time) recognition systems, we fo-
cus on contextual features that would be readily available to a real-time system
(i.e, surface behaviors rather than the privileged mental state of individual par-
ticipants). We define context as the set of events happening from other sources
than the person of interest. For example, in a multi-party conversation between
four people, we define context for one participant as the set of events coming
from the three other participants. Since our goal in this chapter is to recognize
affective gestures, we focus on context events related to spoken utterances:

Prosody Prosody refers to the rhythm, pitch and intonation of speech. Several
studies have demonstrated that listener feedback is correlated with a speaker’s
prosody [14]. For example, Ward and Tsukahara [21] show that short listener
backchannels (listener utterances like “ok” or “uh-huh” given during a speaker’s
utterance) are associated with a lowering of pitch over some interval. We encode
the following prosodic features, including standard linguistic annotations and
the prosodic features suggested by Ward and Tsukahara [21]:



e Downslopes in pitch continuing for at least 40ms

e Regions of pitch lower than the 26th percentile continuing for at least
110ms (i.e., lowness)

e Utterances longer than 700ms

e Drop or rise in energy of speech (i.e., energy edge)

e Fast drop or rise in energy of speech (i.e., energy fast edge)

e Vowel volume (i.e., vowels are usually spoken softer)

e Lengthened words (e.g., “I li::ke it”)

e Emphasized or slowly uttered words (e.g., “ex_a_c_tly”)

e Words spoken with continuing intonation

e Words spoken with falling intonation (e.g., end of an utterance)

e Words spoken with rising intonation (i.e., question mark)

Pauses Listener feedback often follows speaker pauses or filled pauses such as
“um” (see [6]). To capture these possible associations, we use the following
contextual features:

e Pause in speech (i.e., no speech)

e Filled pause (e.g. “um”)

Gaze and Gestures Gestures performed by the speaker are often correlated
with listener feedback [4]. Eye gaze, in particular, has often been implicated as
eliciting listener feedback. Thus, we encode the following contextual feature:

e Speaker looking at the listener

3 Context and Affective Behaviors

To study the relationship between context and affective gestures we look at the
annotations from the AMI meeting corpus [8]. This corpus contains 46 meetings
with annotated head gestures and spoken words of all four participants?. Each
meeting varies between 20-40 minutes. The corpus contains follow-up meetings
with the same participants. These series usually contain 3 or 4 meetings.
Participants were video recorded using a frontal camera and a close-talking
microphone. The video sequences were manually annotated with spoken words,

2The corpus contains a larger number of meetings but we used only the meetings that had
both head gestures and spoken words annotated
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Figure 3: Examples of co-occurrence graphs. When analyzing this relation-
ship between head nods and contextual events, three temporal patterns appear:
ignition, transition and negation.

punctuation and head gestures (head nods and head shakes). The dataset con-
tains 9745 head nods and 1279 head shakes. In our analysis, we used a total
of 184 sequences (some meetings had only 3 participants annotated with head
gestures).

3.1 Co-Occurrence Graphs

Our goal is to analyze the relationship between contextual events and affective
gestures. Our approach is to create a co-occurrence graph for each contextual
event and each possible type of affective gesture. The co-occurrence graph,
centered at the contextual event, represents how many visual gesture instances
happened around that event. The co-occurrence graphs can be seen as temporal
generalization of the co-occurrence matrices introduced by Haralick et al. [11].

For each instance of a contextual event, we slide a window of 0.1 second
from -30 second before the event to 30 seconds after the event. If a visual
gesture happens during a specific time window, the corresponding bin in the co-
occurrence graph is incremented. By doing this for each instance of a specific
contextual event, we get a time distribution of visual gesture given the con-
textual event. Figures 3 shows examples of co-occurrence graphs for different
contextual events.
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Figure 4: Cumulative number of head nods (Y axis) in function of the time
alignment with all contextual events (X axis): spoken words, prosodic and tim-
ing. We can observe a relationship between contextual events and head nods
between -5 and 5 seconds.
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Figure 5: Schematic representation of the three patterns observed when analyz-
ing co-occurrence of head nods and contextual events: (left) ignition pattern,
(middle) transition pattern and (right) negative pattern.

Figures 4 show cumulative co-occurrence graphs for head nods . The cumu-
lative co-occurrence graph for head nods shows an interesting point: most of the
relationship between head nods and contextual event seems to happen between
-5 and 5 seconds. Past this time, the relationship seems mostly random.

3.2 Patterns in Co-occurrence Graphs

By observing the co-occurrence graphs of Figure 3, three patterns appear: igni-
tion, transition and negation. These patterns are illustrated in Figure 5.

e Ignition pattern The first pattern is the ignition pattern (left) where
a contextual event positively influence visual gesture. This type of rela-
tionship means that a visual gesture is more likely to happen around the
contextual event. This is true for the period which represents the end of
a sentence. This is also true for positive feed such as the word “yeah”.



0 560 1600 15‘00 2600 2500
Figure 6: Top 25 contextual features. Horizontal axis: maximum number of
time a head nod happened in a window or + /-5 seconds around the contextual

feature.

e Transition pattern The second pattern is the transition pattern (mid-
dle) where a contextual event represents a mid-point between two phrases.
This type of relations will bring a high likelihood around or before the
event but right after the event this likelihood will be lower. Two good ex-
amples of this type of events are the comma and the word “and”. These
events will usually occur in the middle of a sentence, between two con-
stituents.

e Negative pattern The last pattern is the “negative” pattern (right)
where a contextual event negatively influence a visual gesture. This type
of relations means that a visual gesture is unlikely to happen after this
event. The words “the” and “to” are two good examples of this type of
patterns. These words do not bring visual feedback and usually following
one of these words will be a large number of other spoken words.

The analysis of the co-occurrence graphs shown in Figure 3 confirm our intu-
ition that the context is related to visual feedback (e.g., head nods). Also, these
co-occurrence graphs contains patterns that can potentially help to recognize
when a specific gesture is more likely.

3.3 Co-occurrence Ranking of
Contextual Features

A good contextual feature is an event (1) that happens on a regular basis so
that there is a good chance to see this same event in a new meeting, and (2)



that is related to visual feedback. One criterium that includes both advantages
is the maximum number of co-occurrence between the contextual event and the
visual gesture. This criteria is equal to the maximum peak of each co-occurrence
graphs.

Figure 6 shows the top 25 contextual features. The top feature is the period,
which usually represent the end of a sentence. This goes with our intuition that
people usually do grounding gesture at the end of a sentence. Also the second
feature is the comma which represents a pause in a sentence. Pauses are also
good timing for grounding gesture. The other top contextual features are more
interesting since they are lexical features and bring interesting questions as why
they are related with visual gestures.

4 Leaning Relevant Context

4.1 Sequential Probabilistic Model

A sequential probabilistic model takes as input a sequence of observation fea-
tures (e.g., the speaker features) and returns a sequence of probabilities (i.e.,
probability of listener backchannel). Two of the most popular sequential mod-
els are Hidden Markov Model (HMM) [15] and Conditional Random Field
(CRF) [12]. One of the main difference between these two models is that CRF
is discriminative (i.e., tries to find the best way to differentiate cases where the
listener gives backchannel to cases where it does not) while HMM is generative
(i.e., tries to find the best way to generalize the samples from the cases where
the listener gives backchannel without looking at the cases where the listener
did not give backchannel). Our prediction model is designed to work with both
types of sequential probabilistic models.

Sequential probabilistic models such as HMM and CRF have some con-
straints that need to be understood and addressed before using them:

e Limited learning The more informative your features are, the better
your sequential model will perform. If the input features are too noisy
(e.g., direct signal from microphone), it will make it harder for the HMM
or CRF to learn the important part of the signal. Also, because of the
pre-processing your input features to highlight their influences on your
label (e.g., listener backchannel) you improve your chance of success.

e Over-fitting The more complex your model is, the more training data it
needs. Every input feature that you add increases its complexity and at
the same time its need for a larger training set. Since we usually have a
limited set of training sequences, it is important to keep the number of
input features low.

In our prediction model we directly addressed these issues by focusing on
the feature representation and feature selection problems:
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e Encoding dictionary To address the limited learning constraint of se-
quential models, we suggest to use more than binary encoding to represent
input features. Our encoding dictionary contains a series of encoding tem-
plates that were designed to model different relationship between a speaker
feature (e.g., a speaker in not currently speaking) and listener backchan-
nel. The encoding dictionary and its usage are described in Section 4.2.

e Automatic feature and encoding selection Because of the over-fitting
problem happening when too many uncorrelated features (i.e., features
that do not influence listener backchannel) are used, we suggest two tech-
niques for automatic feature and encoding selection based on co-occurence
statistics and performances evaluation on a validation dataset. Our fea-
ture selection algorithms are described in Section 4.3.

The following two sections describe our encoding dictionary and feature se-
lection algorithm.

4.2 Encoding Dictionary

The goal of the encoding dictionary is to propose a series of encoding tem-
plates that capture the coarse relationship between speaker features and listener
backchannel. These encoding templates will help to represent long-range depen-
dencies (when the influence of an input feature decay slowly, possibly with a
delay) that are otherwise hard to learn using a sequential probabilistic model.
An example of a long-range dependency will be the effect of low-pitch regions on
backchannel feedback with an average delay of 0.7 seconds (observed by Ward
and Tsukahara citeward00). In our framework, the prediction model will pick
an encoding template with a 0.5 seconds delay and the exact alignment will be
learned by the sequential probabilistic model which will also take into account
the influence of other input features.

The Figure 7 shows the 13 encoding templates used in our experiments.
These encoding templates were selected to represent a wide range of ways that
a speaker feature can influence the listener backchannel. These encoding tem-
plates were also selected because they can easily be implemented in real-time
since the only needed information is the start time of the speaker feature. Only
the binary feature also uses the end time. In all cases, no knowledge of the
future is needed.

The three main types of encoding templates are:

e Binary encoding This encoding is designed for speaker features which in-
fluence on listener backchannel is constraint to the duration of the speaker
feature.

e Step function This encoding is a generalization of binary encoding by
adding two parameters: width of the encoded feature and delay between
the start of the feature and its encoded version. This encoding is useful if
the feature influence on backchannel is constant but with a certain delay
and duration.

11
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Figure 7: Encoding dictionary. This figure shows the different encoding
templates used by our context-based approach. Each encoding template was
selected to express a different relationship between contextual features and vi-
sual feedback. This encoding dictionary gives a more powerful set of input
features to the sequential probabilistic model and improves the performance of
our context-based recognizer.

e Ramp function This encoding linearly decreases for a set period of time
(i.e., width parameter). This encoding is useful if the feature influence on
backchannel is changing over time.

It is important to note that a feature can have an individual influence on
backchannel and/or a joint influence. An individual influence means the input
feature directly influences listener backchannel. For example, a long pause can
by itself trigger backchannel feedback from the listener. A joint influence means
that more than one feature is involved in triggering the feedback. For example,
saying the word “and” followed by a look back at the listener can trigger listener
feedback. This also means that a feature may need to be encoded more than
one way since it may have a individual influence as well as one or more joint
influences.

One way to use the encoding dictionary with a small set of features is to
encode each input feature with each encoding template. We tested this approach
in our experiment with a set of 12 features (see Section 5) but because of the
problem of over-fitting, a better approach is to select the optimal subset of
input features and encoding templates. The following section describes our
feature selection algorithm.

4.3 Joint Feature Selection

Given the subset of features that performed best when trained individually,
we now build the complete set of feature hypothesis to be used by the joint
feature selection process. This set represents each feature encoded with all

12
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Figure 8: Joint feature selection. This figure illustrates the feature encoding
process using our encoding dictionary as well as two iterations of our joint feature
selection algorithm. The goal of joint selection is to find a subset of features
that best complement each other for recognition of listener visual feedback.

possible encoding templates from our dictionary. The goal of joint selection is
to find a subset of features that best complements each other for prediction of
backchannel. Figure 8 shows the first two iterations of our algorithm.

The algorithm starts with the complete set of feature hypothesis and an
empty set of best features. At each iteration, the best feature hypothesis is
selected and added to the best feature set. For each feature hypothesis, a
sequential model is trained and evaluated using the feature hypothesis and all
features previously selected in the best feature set. While the first iteration of
this process is really similar to the individual selection, every iteration afterward
will select a feature that best complement the current best features set. Note
that during the joint selection process, the same feature can be selected more
than once with different encodings. The procedure stops when the performance
starts decreasing.

5 Examples of Affective Behavior Understand-
ing

In this section, we show the importance of context in affective behavior under-

standing on two different domains: interaction with a robot and human dyadic

interactions. Our hypothesis is that the inclusion of contextual information
within the affective gesture recognizer will increase the number of recognized

13



Figure 9: Mel, the interactive robot, can present the iGlassware demo (table and
copper cup on its right) or talk about its own dialog and sensorimotor abilities.

gestures while reducing the number of false detections. In both domains we
compares two different configurations: (1) using the vision-only approach, and
(2) combining the contextual information with the results of the visual approach
(multi-modal integration).

5.1 Robot Demonstration

The following experiment demonstrates how contextual features inferred from
an agent’s spoken dialogue can improve head nod and head shake recognition.
The experiment compares the performance of the vision-only recognizer with
the context-only prediction and with multi-modal integration.

Human participants were video recorded while interacting with the robot (see
Figure 9). The vision-based head tracking and head gesture recognition was run
online (~18Hz). The robot’s conversational model, based on COLLAGEN [16],
determines the next activity on the agenda using a predefined set of engage-
ment rules, originally based on human—human interaction [18]. Each interac-
tion lasted between 2 and 5 minutes. During each interaction, we also recorded
the results of the vision-based head gesture recognizer as well as the contextual
cues (spoken utterances with start time and duration) from the dialogue man-
ager. These contextual cues were later automatically processed to create the
contextual features (see Section 2.1) necessary for the contextual predictor. For
ground truth, we hand labeled each video sequence to determine exactly when
the participant nodded or shook his/her head. A total of 274 head nods and
14 head shakes were naturally performed by the participants while interacting

14
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Figure 10: Results for robot demonstration: head nod recognition curves when
varying the detection threshold. For a fixed false positive rate of 0.0409 (oper-
ating point), the context-based approach improves head nod recognition from
72.5% (vision only) to 90.4%.

with the robot.

Figure 10 shows head nod detection results for all 9 subjects used during
testing. The ROC curves present the detection performance each recognition
algorithm when varying the detection threshold. The area under the curve for
each techniques are 0.9482 for the vision only, 0.7691 for the predictor and
0.9678 for the integrator. For head shakes, theareas under the curve for each
techniques are 0.9780 for the vision only, 0.4961 for the predictor and 0.9872 for
the integrator.

Table 1 summarizes the results for head nods and head shakes understanding
by computing the true positive rates for the fixed negative rate of 0.1. Using
a standard analysis of variance (ANOVA) on all the subjects, results on the
head nod detection task showed a significant difference among the means of
the 3 methods of detection: F(1,8) = 62.40, p < 0.001, d = 0.97. Pairwise
comparisons show a significant difference between all pairs, with p < 0.001,
p = 0.0015, and p < 0.001 for vision-predictor, vision-integrator, and predictor-
integrator respectively. A larger number of samples would be necessary to see
the same significance in head shakes.

15



Vision Predictor Integrator
Head nods 81% 23% 93%
Head shakes  83% 10% 98%

Table 1: True detection rates for a fix false positive rate of 0.1.

Figure 11: Setup for Human dyadic storytelling. This study of face-to-face
narrative discourse (i.e., quasi-monologic storytelling) included 76 subjects. The
speaker was instructed to retell the stories portrayed in two video clips to the
listener.

5.2 Human Dyadic Story Telling

Data is drawn from a study of face-to-face narrative discourse (’quasi-monologic’
storytelling). 76 subjects from the general Los Angeles area participated in this
study. Participants in groups of two entered the laboratory and were told they
were participating in a study to evaluate a communicative technology. Subjects
were randomly assigned the role of speaker and listener. The speaker viewed a
short segment of a video clip taken from the Edge Training Systems, Inc. Sexual
Harassment Awareness video. After the speaker finished viewing the video, the
listener was led back into the computer room, where the speaker was instructed
to retell the stories portrayed in the clips to the listener. The listener was
asked to not talk during the story retelling. Elicited stories were approximately
two minutes in length on average. Participants were debriefed individually and
dismissed.

We collected synchronized multimodal data from each participant includ-
ing voice and upper-body movements. Both the speaker and listener wore a
lightweight headset with microphone. Three Panasonic PV-GS180 camcorders
were used to videotape the experiment: one was placed in front the speaker,
one in front of the listener, and one was attached to the ceiling to record both
speaker and listener

Our first experiment compared the performance of our context-based recog-
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Figure 12: Results for human dyadic storytelling: ROC curves of head nod
recognition comparing our context-based approach to a vision-only approach.

Recognizer Area | EER

Context-based | 83.2% | 76.5%
Vision-only 74.9% | 69.4%

Table 2: Quantitative comparison between our context-based approach and a
vision-only approach (same as Figure 12). The table shows both the area under
the curve and the equal error rate (EER).

nition framework with a vision-only recognizer. Figure 12 shows the ROC curve
for both approaches. The ROC curves present the detection performance for
both recognition algorithms when varying the detection threshold. The two
quantitative methods used to evaluate ROC curves are area under the curve
and equal error rate. Table 2 shows the quantitative evaluation using both
error criteria. The use of context improves recognition from 74.9% to 83.2%.
Pairwise two-tailed t-test comparison show a significant difference for both er-
ror criteria, with p = 0.021 and p = 0.012 for the area under the curve and the
equal error rate respectively.

As described in Section 4, our context-based recognition framework uses two
types of feature selections: individual feature selection and joint feature selection
(see Section 4.3 for details). It is very interesting to look at the features and
encoding selected after both processes:

e Vowel volume using ramp encoding with a width 0.5 second and a delay
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Feature selection Area EER

Joint + Individual | 83.2% | 76.5%
Individual only 79.1% | 72.0%

Table 3: Quantitative evaluation showing the gain in performance when using
both individual and joint feature selection.

of 0.5 seconds
e Speaker looking at the listener using a binary
e Pause using step encoding with a width 2.0 second and no delay

e Low pitch using ramp encoding with a width 0.5 second and no delay

These are the four features-encoding pairs selected after the joint feature
selection process which stopped when validation performance started decreasing.
We can see that only one feature was selected with binary encoding, suggesting
that the use of the encoding dictionary was important. The first selected feature
Vowel volume used an encoding with a ramp and a delay of 0.5 seconds, meaning
that its influence on head nods is asynchronous and decreases over time. The
second selected feature is related to the eye gaze of the speaker, confirming
the importance of our multimodal context. The third and fourth features have
also been reported by Ward and Tsukahara [21] as good predictive features for
backchannel feedback. No lexical feature was selected by the joint selection
algorithm. This result means that visual gesture recognition can be improved
using only prosodic cues, pauses and speaker visual display.

The second and third experiments were designed to understand the influence
of feature selection and encoding dictionary on the context-based recognition
framework. Table 3 compares the recognition performance when using or not
using the joint feature selection after the individual feature selection. Table 4
compares the recognition performance when using the complete encoding dic-
tionary to using only binary encoding. This last comparison was done after the
individual feature selection.

We can see from both Table 3 and 4 that the gain performance of our context-
based recognition algorithm is directly related to the joint feature selection and
the encoding dictionary. By using the encoding dictionary instead of the usual
binary encoding, the performance improves from 76.1% to 79.1%. And by using
the joint feature selection, the performance improves again from 79.1% to 83.2%.

Our experiments show that by using joint feature selection and an encoding
dictionary, contextual information from other participant significantly improve
the performance of vision-based gesture recognition.

18



Feature encoding | Area | EER

Dictionary 79.1% | 72.0%
Binary 76.1% | 69.9%

Table 4: Quantitative evaluation showing the gain in performance when using
the encoding dictionary for feature representation.

6 Conclusion

Our results show that contextual information from other human participants can
improve visual gesture recognition. We presented a context-based recognition
framework that represents contextual features based on an encoding dictionary
and automatically selects the optimal features based on individual and joint in-
fluence. By using simple prosodic, pauses and visual display contextual features
available in real-time, we were able to improve the performance of the vision-
only head gesture recognizer from 74.9% to 83.4%. An important contribution
of this chapter was our contextual representation based on co-occurrence graphs
which models co-occurrence between contextual cues such as spoken words and
pauses, and visual head gestures. By analyzing these co-occurrence patterns
we automatically selected relevant contextual features and predicted when vi-
sual gestures was most likely. Recognizing these visual gestures is important
for understanding the full meaning of a meeting or conversation, and can be
particularly crucial for identifying more subtle factors such as the effectiveness
of communication or diagnosis social disorders. Another important direction
for future research is the use of context in emotion encoding, as was shown by
Barrett and Kensinger [2].
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