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Head pose and gesture offer several key conversational grounding cues and are used exten-
sively in face-to-face interaction among people. When recognizing visual feedback, people
use more than their visual perception. Knowledge about the current topic and expectations
from previous utterances help guide our visual perception in recognizing nonverbal cues. In
this chapter, we investigate how dialogue context from an embodied conversational agent
(ECA) can improve visual recognition of user gestures. We present a recognition framework
which (1) extracts contextual features from an ECA’s dialogue manager, (2) computes a pre-
diction of head nod and head shakes, and (3) integrates the contextual predictions with the
visual observation of a vision-based head gesture recognizer. We found a subset of lexical,
prosodic, timing and gesture features that are easily available in most ECA architectures and
can be used to learn how to predict user feedback. Using a discriminative approach to con-
textual prediction and multi-modal integration, we were able to improve the performance of
head gesture detection even when the topic of the test set was significantly different than the
training set.
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1.1 Introduction

During face-to-face conversation, people use visual feedback to communicate relevant infor-
mation and to synchronize rhythm between participants. A good example of nonverbal feed-
back is head nodding and its use for visual grounding, turn-taking and answering yes/no
questions. When recognizing visual feedback, people use more than their visual perception.
Knowledge about the current topic and expectations from previous utterances help guide our
visual perception in recognizing nonverbal cues. Our goal is to equip an embodied conver-
sational agent (ECA) with the ability to use contextual information for performing visual
feedback recognition much in the same way people do.

In the last decade, many ECAs have been developed for face-to-face interaction. A key
component of these systems is the dialogue manager, which usually provides a history of the
past events, the current state, and an agenda of future actions. The dialogue manager uses
these contextual information sources to decide which verbal or nonverbal action the agent
should perform next. This is called context-based synthesis.

Contextual information has proven useful for aiding speech recognition. In Lemon et al.
(2002), the grammar of the speech recognizer dynamically changes depending on the agent’s
previous action or utterance. In a similar fashion, we want to develop a context-based visual
recognition module that builds upon the contextual information available in the dialogue
manager to improve performance.

The use of dialogue context for visual gesture recognition has, to our knowledge, not been
explored before for conversational interaction. In this chapter we present a prediction frame-
work for incorporating dialogue context with vision-based head gesture recognition. The
contextual features are derived from the utterances of the ECA, which is readily available
from the dialogue manager. We highlight four types of contextual features: lexical, prosodic,
timing and gesture, and select a subset for our experiment that were topic independent. We
use a discriminative approach to predict head nods and head shakes from a small set of
recorded interactions. We then combine the contextual predictions with a vision-based recog-
nition algorithm based on the frequency pattern of the user’s head motion. Our context-based
recognition framework allows us to predict, for example, that in certain contexts a glance is
not likely whereas a head shake or nod is (as in Figure 1.1), or that a head nod is not likely
and a head nod misperceived by the vision system can be ignored.

The following section describes related work on gestures with ECAs. Section 1.3 present
a general discussion on how context can be used for different type of visual feedback. Section
1.4 describes the contextual information available in most embodied agent architectures.
Section 1.5 presents our general framework for incorporating contextual information with
visual observations. Section 1.6 shows how we automatically extract a subset of this context
to compute lexical, prosodic, timing and gesture features. Finally, in section 1.7, we describe
context-based head gesture recognition experiments, performed on 16 video recordings of
human participants interacting with a robot.
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Figure 1.1 Contextual recognition of head gestures during face-to-face interaction with a
conversational robot. In this scenario, contextual information from the robot’s spoken utter-
ance helps disambiguating the listener’s visual gesture.

1.2 Background and Related Research

There has been considerable work on gestures with ECAs. Bickmore and Cassell (2004)
developed an ECA that exhibited many gestural capabilities to accompany its spoken con-
versation and could interpret spoken utterances from human users. Sidner et al. (2005) have
investigated how people interact with a humanoid robot. They found that more than half
their participants naturally nodded at the robot’s conversational contributions even though the
robot could not interpret head nods. Nakano et al. (2003) analyzed eye gaze and head nods in
computer–human conversation and found that their subjects were aware of the lack of con-
versational feedback from the ECA. They incorporated their results in an ECA that updated
its dialogue state. Numerous other ECAs (e.g. de Carolis et al. (2001); Traum and Rickel
(2002)) are exploring aspects of gestural behavior in human-ECA interactions. Physically
embodied ECAs—for example, ARMAR II (Dillman et al. 2004, 2002) and Leo (Breazeal et
al. 2004)–have also begun to incorporate the ability to perform articulated body tracking and
recognize human gestures.

Head pose and gesture offer several key conversational grounding cues and are used
extensively in face-to-face interaction among people. Stiefelhagen (2002) developed several
successful systems for tracking face pose in meeting rooms and has shown that face pose
is very useful for predicting turn-taking. Takemae et al. (2004) also examined face pose in
conversation and showed that if tracked accurately, face pose is useful in creating a video
summary of a meeting. Siracusa et al. (2003) developed a kiosk front end that uses head pose
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tracking to interpret who was talking to who in conversational setting. The position and ori-
entation of the head can be used to estimate head gaze which is a good estimate of a person’s
attention. When compared with eye gaze, head gaze can be more accurate when dealing with
low resolution images and can be estimated over a larger range than eye gaze (Morency et al.
2002).

Kapoor and Picard (2001)presented a technique to recognize head nods and head shakes
based on two Hidden Markov Models (HMMs) trained and tested using 2D coordinate results
from an eye gaze tracker . Fujie et al. (2004) also used HMMs to perform head nod recog-
nition . In their paper, they combined head gesture detection with prosodic recognition of
Japanese spoken utterances to determine strongly positive, weak positive and negative responses
to yes/no type utterances.

Context has been previously used in computer vision to disambiguate recognition of indi-
vidual objects given the current overall scene category (Torralba et al. 2003). While some
systems (Breazeal et al. 2004; Nakano et al. 2003) have incorporated tracking of fine motion
actions or visual gesture, none have included top-down dialogue context as part of the visual
recognition process.

1.3 Context for Visual Feedback

During face-to-face interactions, people use knowledge about the current dialogue to antici-
pate visual feedback from their interlocutor. Following the definitions of Cassell and Thoris-
son (1999) for nonverbal feedback synthesis, we outline three categories for visual feedback
analysis: (1) content-related feedback, (2) envelope feedback, and (3) emotional feedback.
Contextual information can be used to improve recognition in each category.

CONTENT-RELATED FEEDBACK Content-related feedback is concerned with the content
of the conversation. For example, a person uses head nods or pointing gestures to supplement
or replace a spoken sentence. For this type of feedback, contextual information inferred from
speech can greatly improve the performance of the visual recognition system. For instance,
to know that the embodied agent just asked a yes/no question should indicate to the visual
analysis module a high probability of a head nod or a head shake.

ENVELOPE FEEDBACK Grounding visual cues that occur during conversation fall into the
category of envelope feedback. Such visual cues include eye gaze contact, head nods for
visual grounding, and manual beat gestures. Envelope feedback cues accompany the dialogue
of a conversation much in the same way audio cues like pitch, volume and tone envelope spo-
ken words. Contextual information can improve the recognition of envelope visual feedback
cues. For example, knowledge about when the embodied agent pauses can help to recognize
visual feedback related to face-to-face grounding.

EMOTIONAL FEEDBACK Emotional feedback visual cues indicate the emotional state of
a person. Facial expression is an emotional feedback cue used to show one of the 6 basic
emotions (Ekman 1992) such as happiness or anger. For this kind of feedback, contextual
information can be used to anticipate a person’s facial expression. For example, a person
smiles after receiving a compliment.
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Figure 1.2 Simplified architecture for embodied conversational agent. Our method integrates
contextual information from the dialogue manager inside the visual analysis module.

In general, our goal is to efficiently integrate dialogue context information from an embod-
ied agent with a visual analysis module. We define a visual analysis module as a software
component that can analyze images (or video sequences) and recognize visual feedback of a
human participant during interaction with an embodied agent. The next step is to determine
which information already exists in most ECA architectures.

1.4 Context from Dialogue Manager

Figure 1.2 is a general view of the architecture for an embodied conversational agent 1. In
this architecture, the dialogue manager contains two main subcomponents, an agenda and a
history.The agenda keeps a list of all the possible actions the agent and the user (i.e. human
participant) can do next. This list is updated by the dialogue manager based on its discourse
model (prior knowledge) and on the history. Some useful contextual cues can be estimated
from the agenda:

• What will be the next spoken sentence of our embodied agent?

• Are we expecting some specific answers from the user?

• Is the user expected to look at some common space?

The history keeps a log of all the previous events that happened during the conversation.
This information can be used to learn some interesting contextual cues:

• How did the user answer previous questions (speech or gesture)?

• Does the user seem to understand the last explanation?

1In our work we use the COLLAGEN conversation manager (Rich et al. 2001), but other dialogue managers
provide these components as well.
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Based on the history, we can build a prior model about the type of visual feedback shown
by the user. Based on the agenda, we can predict the type of visual feedback that will be
shown by the user.

The simplified architecture depicted in Figure 1.2 highlights the fact that the dialogue
manager already processes contextual information in order to produce output for the speech
and gesture synthesizer. The main idea is to use this existing information to predict when
visual feedback gestures from the user are likely. Since the dialogue manager is already
merging information from the input devices with the history and the discourse model, the
output of the dialogue manager will contain useful contextual information.

We highlight four types of contextual features easily available in the dialogue manager:

LEXICAL FEATURES Lexical features are computed from the words said by the embodied
agent. By analyzing the word content of the current or next utterance, one should be able to
anticipate certain visual feedback. For example, if the current spoken utterance started with
“Do you”, the interlocutor will most likely answer using affirmation or negation. In this case,
it is also likely to see visual feedback like a head nod or a head shake. On the other hand, if
the current spoken utterance started with “What”, then it’s unlikely to see the listener head
shake or head nod–other visual feedback gestures (e.g., pointing) are more likely in this case.

PROSODY AND PUNCTUATION Prosody can also be an important cue to predict gesture
displays. We use punctuation features output by the dialogue system as a proxy for prosody
cues. Punctuation features modify how the text-to-speech engine will pronounce an utterance.
Punctuation features can be seen as a substitute for more complex prosodic processing that
are not yet available from most speech synthesizers. A comma in the middle of a sentence
will produce a short pause, which will most likely trigger some feedback from the listener.
A question mark at the end of the sentence represents a question that should be answered by
the listener. When merged with lexical features, the punctuation features can help recognize
situations (e.g., yes/no questions) where the listener will most likely use head gestures to
answer.

TIMING Timing is an important part of spoken language and information about when a
specific word is spoken or when a sentence ends is critical. This information can aid the
ECA to anticipate visual grounding feedback. People naturally give visual feedback (e.g.,
head nods) during pauses of the speaker as well as just before the pause occurs. In natural
language processing (NLP), lexical and syntactic features are predominant but for face-to-
face interaction with an ECA, timing is also an important feature.

GESTURE DISPLAY Gesture synthesis is a key capability of ECAs and it can also be lever-
aged as a context cue for gesture interpretation. As described in Cassell and Thorisson (1999),
visual feedback synthesis can improve the engagement of the user with the ECA. The gestures
expressed by the ECA influence the type of visual feedback from the human participant. For
example, if the agent makes a deictic gesture, the user is more likely to look at the location
that the ECA is pointing to.

The following section presents our framework for integrating contextual information with
the visual observations and Section 1.6 describes how we can automatically extract lexical,
prosodic, timing and gesture features from the dialogue system.
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Figure 1.3 Framework for context-based gesture recognition. The contextual predictor trans-
lates contextual features into a likelihood measure, similar to the visual recognizer output.
The multi-modal integrator fuses these visual and contextual likelihood measures. The sys-
tem manager is a generalization of the dialogue manager (conversational interactions) and
the window manager (window system interactions).

1.5 Framework for Context-based Gesture Recognition

We use a two-stage discriminative classification scheme to integrate interaction context with
visual observations and detect gestures. A two-stage scheme allows us the freedom to train
the context predictor and vision-based recognizer independently, potentially using corpora
collected at different times. Figure 1.3 depicts our complete framework.

Our context-based recognition framework has three main components: vision-based rec-
ognizer, contextual predictor and multi-modal integrator. In the vision-based gesture recog-
nizer, we compute likelihood measurements of head gestures. In the contextual predictor,
we learn a measure of the likelihood of certain visual gestures given the current contex-
tual feature values. In the multi-modal integrator, we merge context-based predictions with
observations from the vision-based recognizer to compute the final recognition estimates of
the visual feedback.

The input of the contextual predictor is a feature vector x j created from the concatenation
of all contextual features at frame j. Each contextual value is a real value encoding a specific
aspect of the current context. For example, one contextual feature can be a binary value (0
or 1) telling if the last spoken utterance contained a question mark. The details on how these
contextual features are encoded are described in Section 1.6.

The contextual predictor should output a likelihood measurement at the same frame rate
as the vision-based recognizer so the multi-modal integrator can merge both measurements.
For this reason, feature vectors xj should also be computed at every frame j (even though
the contextual features do not directly depend on the input images). One of the advantages
of our late-fusion approach is that, if the contextual information and the feature vectors are
temporarily unavailable, then the multi-modal integrator can recognize gestures using only
measurements made by the vision-based recognizer. It is worth noting that the likelihood
measurements can be a probabilities or a “confidence” measurement (as output by SVMs).
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As shown in Figure 1.3, the vision-based gesture recognizer takes inputs from a visual
pre-processing module. The main task of this module is to track head gaze using an adaptive
view-based appearance model (see Morency et al. (2003) for details). This approach has the
advantage of being able to track subtle movements of the head for a long periods of time.
While the tracker recovers the full 3-D position and velocity of the head, we found features
based on angular velocities were sufficient for gesture recognition.

The multi-modal integrator merges context-based predictions with observations from
the vision-based recognizer. We adopt a late fusion approach because data acquisition for
the contextual predictor is greatly simplified with this approach, and initial experiments
suggested performance was equivalent to an early, single-stage integration scheme. Most
recorded interactions between human participants and conversational robots do not include
estimated head position; a late fusion framework gives us the opportunity to train the contex-
tual predictor on a larger data set of linguistic features.

Our integration component takes as input the margins from the contextual predictor
described earlier in this section and the visual observations from the vision-based head ges-
ture recognizer, and recognizes whether a head gesture has been expressed by the human
participant. The output from the integrator is further sent to the dialogue manager or the
window manager so it can be used to decide the next action of the ECA.

In our experiment, we used Support Vector Machines (SVMs) to train the contextual
predictor and the multi-modal integrator.

SVM Using Support Vector Machine (SVM), we estimate the likelihood measurement of a
specific visual gesture using the margin of the feature vector x j . During training, the SVM
finds a subset of feature vectors,called support vectors, that optimally define the boundary
between labels. The margin m(xj) of a feature vector xj can be seen as the distance between
the xj and the boundary, inside a kernel space K. The margin m(x j) can easily be computed
given the learned set of support vectors xk, the associated set of labels yk and weights wk,
and the bias b:

m(x) =
l∑

k=1

ykwkK(xk, xj) + b (1.1)

where l is the number of support vectors and K(xk, xj) is the kernel function. In our experi-
ments, we used a radial basis function (RBF) kernel:

K(xk, xj) = e−γ‖xk−xj‖2
(1.2)

where γ is the kernel smoothing parameter learned automatically using cross-validation on
our training set.

1.6 Contextual Features

In this section we describe how contextual information is processed to compute feature vec-
tors xj . In our framework, contextual information is inferred from the input and output events
of the dialogue manager (see Figure 1.3 and Section 1.5).

We tested two approaches to send event information to the contextual predictor: (1) an
active approach where the system manager is modified to send a copy of each relevant event to
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the contextual predictor, and (2) a passive approach where an external module listens at all the
input and output events processed by the system manager and a copy of the relevant events is
sent to the contextual predictor. In the contextual predictor, a pre-processing module receives
the contextual events and outputs contextual features. Note that each event is accompanied
by a timestamp and optionally a duration estimate.

In our framework, complex events are split into smaller sub-events to increase the expres-
siveness of our contextual features and to have a consistent event formatting. For example,
the next spoken utterance event sent from the conversational manager will be split into sub-
events including words, word pairs and punctuation elements. These sub-events will include
the original event information (timestamp and duration) as well as the relative timing of the
sub-event.

The computation of contextual features should be fast so that context-based recognition
can happen online in real-time. We use two types of functions to encode contextual features
from events: (1) binary functions and (2) ramp functions.

A contextual feature encoded using a binary function will return 1 when the event starts
and 0 when it ends. This type of encoding supposes that we know the duration of the event
or that we have a constant representing the average duration. It is well suited for contextual
features that are less time sensitive. For example, the presence of the word pair “do you” in
an utterance is a good indication of a yes/no question but the exact position of this word pair
is not as relevant.

A ramp function is a simple way to encode the time since an event happened. We experi-
mented with both negative slope (from 1 to 0) and positive slope (from 0 to 1) but did not see
any significant difference between the two types of slopes. A ramp function is well suited for
contextual features that are more time sensitive. For example, a grounding gesture such as a
head nod is most likely to happen closer to the end of a sentence than the beginning.

The following sub-section gives specific examples of our general framework for contex-
tual feature encoding applied to conversational interfaces.

1.6.1 Conversational Interfaces

The contextual predictor receives the avatar’s spoken utterance and automatically processes
them to compute contextual features. Four types of contextual features are computed: lexical
features, prosody and punctuation features, timing information, and gesture displays. In our
implementation, the lexical feature relies on extracted word pair (two words that occur next
to each other, and in a particular order) since they can efficiently be computed given the
transcript of the utterance.

While a range of word pairs may be relevant to context-based recognition, we currently
focus on the single phrase “do you”. We found this feature is an effective predictor of a yes/no
question in many of our training dialogues. Other word pair features will probably be useful
as well (for example, “have you, will you, did you”), and could be learned from a set of
candidate word pair features using a feature selection algorithm.

We extract word pairs from the utterance and set the following binary feature:

f“do you” =

{
1 if word pair “do you” is present

0 if word pair “do you” is not present
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Figure 1.4 Prediction of head nods and head shakes based on 3 contextual features:
(1) distance to end-of-utterance when ECA is speaking, (2) type of utterance and (3) lexical
bigram feature. We can see that the contextual predictor learned that head nods should hap-
pen near or at the end of an utterance or during a pause while head shakes are most likely at
the end of a question.
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The punctuation feature and gesture feature are coded similarly:

f? =

{
1 if the sentence ends with “?”

0 otherwise

flook left =

{
1 if a “look left” gesture happened during the utterance

0 otherwise

The timing contextual feature ft represents proximity to the end of the utterance. The
intuition is that verbal and non-verbal feedback most likely occurs at pauses or just before.
This feature can easily be computed given only two values: t 0, the utterance start-time, and
δt, the estimated duration of the utterance. Given these two values for the current utterance,
we can estimate ft at time t using:

ft(t) =

{
1 −

∣∣∣ t−t0
δt

∣∣∣ if t ≤ t0 + δt

0 if t > t0 + δt

We selected our features so that they are topic independent. This means that we should
be able to learn how to predict visual gestures from a small set of interactions and then use
this knowledge on a new set of interactions with a different topic discussed by the human
participant and the ECA. However, different classes of dialogues might have different key
features, and ultimately these should be learned using a feature selection algorithm (this is a
topic of future work).

The contextual features are evaluated for every frame acquired by the vision-based recog-
nizer module. The lexical, punctuation and gesture features are evaluated based on the current
spoken utterance. A specific utterance is active until the next spoken utterance starts, which
means that in-between pauses are considered to be part of the previous utterance. The top
three graphs of Figure 1.4 show how two sample utterances from our user study (described
in Section 1.7) will be coded for the word pair “do you”, the question mark and the timing
feature.

A total of 236 utterances were processed to train the multi-class SVM used by our contex-
tual predictor. Positive and negative samples were selected from the same data set based on
manual transcription of head nods and head shakes. Test data was withheld during evaluation
in all experiments in this chapter.

Figure 1.4 also displays the output of our trained contextual predictor for anticipating
head nods and head shakes during the dialogue between the robot and a human participant.
Positive margins represent a high likelihood for the gesture. It is noteworthy that the con-
textual predictor automatically learned that head nods are more likely to occur around the
end of an utterance or during a pause, while head shakes are more likely to occur after the
completion of an utterance. It also learned that head shakes are directly correlated with the
type of utterance (a head shake will most likely follow a question), and that head nods can
happen at the end of a question (i.e., to represent an affirmative answer) and can also happen
at the end of a normal statement (i.e., to ground the spoken utterance).
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Figure 1.5 Mel, the interactive robot, can present the iGlassware demo (table and copper cup
on its right) or talk about its own dialog and sensorimotor abilities.

1.7 Context-based Head Gesture Recognition

The following experiment demonstrates how contextual features inferred from an agent’s
spoken dialogue can improve head nod and head shake recognition. The experiment com-
pares the performance of the vision-only recognizer with the context-only prediction and
with multi-modal integration.

For this experiment, a first data set was used to train the contextual predictor and the
multi-modal integrator (the same data set as described in Section 1.5), while a second data set
with a different topic was used to evaluate the head gesture recognition performance. In the
training data set, the robot interacted with the participant by demonstrating its own abilities
and characteristics. This data set, called Self, contains 7 interactions. The test data set, called
iGlass, consists of nine interactions of the robot describing the iGlassware invention (∼340
utterances).

For both data sets, human participants were video recorded while interacting with the
robot (see Figure 1.5). The vision-based head tracking and head gesture recognition was
run online (∼18Hz). The robot’s conversational model, based on COLLAGEN (Rich et al.
2001), determines the next activity on the agenda using a predefined set of engagement rules,
originally based on human–human interaction (Sidner et al. 2005). Each interaction lasted
between 2 and 5 minutes.

During each interaction, we also recorded the results of the vision-based head gesture rec-
ognizer as well as the contextual cues (spoken utterances with start time and duration) from
the dialogue manager. These contextual cues were later automatically processed to create the
contextual features (see Section 1.6.1) necessary for the contextual predictor (see Section
1.5).
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Figure 1.6 Head nod recognition curves when varying the detection threshold.

For ground truth, we hand labeled each video sequence to determine exactly when the
participant nodded or shook his/her head. A total of 274 head nods and 14 head shakes were
naturally performed by the participants while interacting with the robot.

1.7.1 Results

Our hypothesis was that the inclusion of contextual information within the head gesture rec-
ognizer would increase the number of recognized head nods while reducing the number of
false detections. We tested three different configurations: (1) using the vision-only approach,
(2) using only the contextual information as input (contextual predictor), and (3) combining
the contextual information with the results of the visual approach (multi-modal integration).

Figure 1.6 shows head nod detection results for all 9 subjects used during testing. The
ROC curves present the detection performance each recognition algorithm when varying the
detection threshold. The area under the curve for each techniques are 0.9482 for the vision
only, 0.7691 for the predictor and 0.9678 for the integrator.

Figure 1.7 shows head shake detection results for each recognition algorithm when vary-
ing the detection threshold. The areas under the curve for each techniques are 0.9780 for the
vision only, 0.4961 for the predictor and 0.9872 for the integrator.

Table 1.1 summarizes the results from Figures 1.6 and 1.7 by computing the true positive
rates for the fixed negative rate of 0.1. Using a standard analysis of variance (ANOVA) on
all the subjects, results on the head nod detection task showed a significant difference among
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Figure 1.7 Head shake recognition curves when varying the detection threshold.

Table 1.1 True detection rates for a fix false
positive rate of 0.1.

Vision Predictor Integrator

Head nods 81% 23% 93%
Head shakes 83% 10% 98%

the means of the 3 methods of detection: F (1, 8) = 62.40, p < 0.001, d = 0.97. Pairwise
comparisons show a significant difference between all pairs, with p < 0.001, p = 0.0015,
and p < 0.001 for vision-predictor, vision-integrator, and predictor-integrator respectively. A
larger number of samples would be necessary to see the same significance in head shakes.

We computed the true positive rate using the following ratio:

True positive rate =
Number of detected gestures

Total number of ground truth gestures

A head gesture is tagged as detected if the detector triggered at least once during a time
window around the gesture. The time window starts when the gesture starts and ends k sec-
onds after the gesture. The parameter k was empirically set to the maximum delay of the
vision-based head gesture recognizer (1.0 second). For the iGlass dataset, the total numbers
of ground truth gestures were 91 head nods and 6 head shakes.
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MEL:  I didn't get that, please repeat.

MEL:  I'm waiting for a reading from the table for the cup.

MEL:  Good.

S:  OK.

S:  Yes.

MEL:  See, it register needing a refill.

MEL:  Would you like me to 
           explain how this works?

Ground truth

Figure 1.8 Head nod recognition results for a sample dialogue. The last graph displays the
ground truth. We can observe at around 101 seconds (circled and crossed in the top graph)
that the contextual information attenuates the effect of the false positive detection from the
visual recognizer.
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The false positive rate is computed at a frame level:

False positive rate =
Number of falsely detected frames

Total number of non-gesture frames

A frame is tagged as falsely detected if the head gesture recognizer triggers and if this
frame is outside any time window of a ground truth head gesture. The denominator is the total
of frames outside any time window. For the iGlass dataset, the total number of non-gestures
frames was 18246 frames and the total number of frames for all 9 interactions was 20672
frames.

Figure 1.8 shows the head nod recognition results for a sample dialogue. When only
vision is used for recognition, the algorithm makes a mistake at around 101 seconds by false
detecting a head nod. Visual grounding is less likely during the middle of an utterance. By
incorporating the contextual information, our context-based gesture recognition algorithm is
able to reduce the number of false positives. In Figure 1.8 the likelihood of a false head nod
happening is reduced.

1.8 Conclusion and Future Work

Our results show that contextual information can improve user gesture recognition for inter-
actions with embodied conversational agents. We presented a prediction framework that
extracts knowledge from the spoken dialogue of an embodied agent to predict which head
gesture is most likely. By using simple lexical, prosodic, timing and gesture context features,
we were able to improve the recognition rate of the vision-only head gesture recognizer from
81% to 93% for head nods and from 83% to 98% for head shakes. As future work, we plan to
experiment with a richer set of contextual cues including those based on gesture display, and
to incorporate general feature selection to our prediction framework so that a wide range of
potential context features can be considered and the optimal set determined from a training
corpus.
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