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Death by suicide demonstrates profound personal suffering and societal
failure. While basic sciences provide the opportunity to understand biological
markers related to suicide, computer science provides opportunities to under-
stand suicide thought markers. In this novel prospective, multimodal, multicen-
ter, mixed demographic study, we used machine learning to measure and fuse
two classes of suicidal thought markers: verbal and nonverbal. Machine learning
algorithms were used with the subjects’ words and vocal characteristics to clas-
sify 379 subjects recruited from two academic medical centers and a rural com-
munity hospital into one of three groups: suicidal, mentally ill but not suicidal,
or controls. By combining linguistic and acoustic characteristics, subjects could
be classified into one of the three groups with up to 85% accuracy. The results
provide insight into how advanced technology can be used for suicide assess-
ment and prevention.

Predicting when someone will commit sui-
cide has been nearly impossible (American
Psychiatric Association, 2003; Goldstein,
Black, Nasrallah, & Winokur, 1991; Hughes,
1995; Large & Ryan, 2014; Olav Nielssen,
2012; Paris, 2006), but classifying the factors

that contribute to suicide risk is possible with
standardized, clinical tools when used by
well-trained clinicians (Beck, Beck, &
Kovacs, 1975; Beck, Kovacs, & Weissman,
1979; B€urk, Kurz, & M€oller, 1985; Colum-
bia-Suicide Severity Rating Scale, 2015;
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Kovacs & Garrison, 1985; M€uller & Drag-
icevic, 2003; Mundt, Greist, & Jefferson,
2013; Pokorny, 1983; Posner et al., 2008;
Preston & Hansen, 2005; U.S. Food & Drug
Administration, 2012; Winters, Myers, &
Proud, 2002). Such tools can, however, be
cumbersome and may not reliably translate
into routine interactions between clinicians,
caregivers, or educators. Here, we describe a
novel approach using the subjects’ linguistic
and acoustic patterns to classify subjects
automatically as either suicidal, mentally ill
but not suicidal, or a control.

BACKGROUND

Efforts to understand suicide risks
can be roughly clustered into traits or
states. Trait analyses focus on stable charac-
teristics rooted in and measured using bio-
logical processes (Costanza et al., 2014; Le-
Niculescu et al., 2013), whereas state analy-
ses measure dynamic characteristics like ver-
bal and nonverbal communication, termed
“thought markers” (Pestian et al., 2015).
Machine learning and natural language pro-
cessing have successfully identified differ-
ences in retrospective suicide notes,
newsgroups, and social media (Gomez,
2014; Huang, Goh, & Liew, 2007; Matykie-
wicz, Duch, & Pestian, 2009). Jashinsky
et al. (2015) used multiple annotators to
identify the risk of suicide from the key-
words and phrases (interrater reliabil-
ity = .79) in geographically based tweets.
Thompson, Poulin, and Bryan (2014) and
Desmet (2014) used text-based signals to
identify suicide risk that ranged from 60%
to 90%. Li, Ng, Chau, Wong, and Yip
(2013) presented a framework using
machine learning to identify individuals
expressing suicidal thoughts in web forums;
Zhang et al. (2015) used microblog data to
build machine learning models that identi-
fied suicidal bloggers with approximately
90% accuracy. Pestian, Matykiewicz, and
Grupp-Phelan (2008) demonstrated that
machine learning algorithms could distin-
guish between notes written by people who

died by suicide and simulated suicide notes
written by age- and gender-matched con-
trols better than mental health professionals
could (71% vs. 79%; Pestian et al., 2008).
In an international, shared task-setting that
included multiple groups sharing the same
task definition, data set, and scoring metric
(Voorhees et al., 2005), 24 teams developed
and tested computational algorithms to
identify emotions in over 1,319 suicide
notes written shortly before death. The
results showed that the fusion of multiple
methods outperform single methods (Pes-
tian, Matykiewicz, & Linn-Gust, 2012).

Suicidal thought markers have also
been studied prospectively. The Suicidal
Adolescent Clinical Trial (Pestian et al.,
2015), the single-site precursor to this study,
which used machine learning to analyze
interviews with 60 suicidal and control
patients, classified patients into suicidal or
control groups with greater than 90% accu-
racy (Pestian et al., 2015). Analysis of acous-
tic features such as pauses and vowel spacing
yielded similar results (Scherer, Morency,
Gratch, Pestian, & Playa Vista, 2015;
Venek, Scherer, Morency, Rizzo, & Pestian,
2014). The study described herein is novel
because it uses a multisite, multicultural set-
ting to show that machine learning algo-
rithms can be trained to automatically
identify the suicidal subjects in a group of
suicidal, mentally ill, and control subjects.
Moreover, the inclusion of acoustic charac-
teristics is most helpful when classifying
between suicidal and mentally ill subjects.

METHODS

Subject Enrollment

Between October 2013 and March
2015, 379 subjects were enrolled from
emergency departments (EDs) and inpatient
and outpatient centers into a three-site,
internal review board-approved prospective
clinical trial. One hundred twenty-six
subjects were enrolled at Cincinnati Chil-
dren’s Hospital Medical Center (CCHMC),
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a 600-bed urban level 1 academic medical
center. One hundred twenty-eight subjects
were enrolled at the University of Cincin-
nati Medical Center (UC), a 498-bed urban
academic medical center. One hundred
twenty-five subjects were enrolled at
Princeton Community Hospital (PCH), a
267-bed Appalachian community hospital in
southern West Virginia. The inclusion and
exclusion criteria classified subjects into one
of three groups: suicidal, mentally ill, or
control.

Multi-gated inclusion criteria were
used. For the first gate, all patients were
reviewed using the electronic status board for
a complaint of suicide, suicidal ideation, or
psychiatric evaluation. For patients with
mental illness and for control subjects, any
complaint was accepted except those related
to suicide. For those who passed the first
gate, a second review of their electronic med-
ical record (EMR) was conducted before they
were approached for enrollment. Suicidal
subjects were approached if they had come to
the EDs or psychiatric units because of suici-
dal ideation or attempts within the previous
24 hours. Patients with mental illness were
enrolled from the ED and outpatient mental
health clinics if they had a definitive mental
illness diagnosis but had not had prior suici-
dal attempts, active thoughts of suicide, or
plans to die by suicide within the previous
year as reported by the patient and EMR.
Control subjects were patients who came to
the ED with no history of mental health diag-
noses or suicidal ideation, as reported by the
patient and EMR (Figure 1).

Potential subjects were excluded if
their native language was not English, if
they had any serious medical injury or men-
tal retardation that could prohibit consent,
if they would be unavailable for a follow-up
interview, or if they could not comply with
study procedures.

Participation incentives were site-spe-
cific. CCHMC and UC subjects were paid
$50 for the initial interview and $25 for the
follow-up. PCH subjects were paid $25 for
the initial interview and $25 for the follow-
up interview.

Data Collection

Data were collected and validated by
trained mental health professionals. During
enrollment, each subject completed stan-
dardized tools: Columbia-Suicide Severity
Rating Scale, Young Mania Rating Scale,
and Hamilton Rating Scale for Depression.
Each subject also completed the ubiquitous
questionnaire (UQ), a semistructured inter-
view with five open-ended questions to
stimulate conversation for language sam-
pling: “Do you have hope?” “Do you have
any fear?” “Do you have any secrets?” “Are
you angry?” and “Does it hurt emotion-
ally?” (Pestian, 2010; Pestian et al., 2015).
Both subject and interviewer were video
and audio recorded during the UQs. The
results were transcribed with 98% accuracy
based on completeness, accuracy of tran-
scription, and adherence to the transcrip-
tion guidelines.

Computational Analysis

Linguistic and Acoustic Feature Extrac-
tion. Our analysis is based on two types of
features: linguistic and acoustic. Feature
extraction was performed automatically
using the patient audio signals recorded
during the interviews and their transcrip-
tions. Linguistically, we followed related
work on automatic identification and
extraction of word instances (unigrams) and
word-pair instances (bi-grams) from the
transcriptions. A dictionary that includes all
spoken words, word-pairs, and acoustic
characteristics was created.

The selected vocal and prosodic
characteristics include: vocal dynamics—
fundamental frequency (f0; Drugman &
Alwan, 2011) and square of the amplitude
(A2); voice quality–harmonic richness fac-
tor (Childers & Lee, 1991), maximum dis-
persion quotient (Kane, 2012), peak slope
(D’Alessandro & Sturmel, 2011), difference
between the first and second harmonics
(Hillenbrand, Cleveland, & Erickson,
1994), normalized amplitude quotient
(Alku, B€ackstr€om, & Vilkman, 2002),
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Figure 1. Receiver operator curve (ROC): suicide versus control (upper), suicide versus mentally ill (middle), and
suicide versus mentally ill with control. The ROC curves for adolescents (blue), adults (red), and all subjects (black)
generated where the nonsuicidal population is controls (top), mentally ill (middle), and mentally ill and controls,
using linguistic and acoustic features. The gray line is the AROC curve for a baseline (random) classifier.
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quasi-open quotient (Hacki, 1989), and
parabolic spectral parameters (Alku, Strik,
& Vilkman, 1997); the vocal tract reso-
nance frequencies, as well as pause lengths
characterized by formants F1 through F5
(Kwon, Chan, Hao, & Lee, 2003); and
pause lengths that have been correlated
with depression (Cummins et al., 2015).
Once a subset of all features were
extracted using the COVAREP software
(Degottex, Kane, Drugman, Raitio, &
Scherer, 2014), they were normalized by
adjusting the measured values from the
various features to a common zero-to-one
scale (Dodge, 2006).

Machine Learning Algorithms. A goal
of machine learning is to train a computa-
tional model from selected data that can
then generalize to unseen (test) data.
Machine learning can be roughly divided
into three types: supervised learning, when
the training data are already labelled; semi-
supervised learning, when only part of the
training set is labelled; and unsupervised
learning, when the challenge is to learn
structure in unlabelled data. Here, a super-
vised learning support vector machine
(SVM) approach was used (Sch€olkopf &
Smola, 1998).

Support vector machines are based
on a computational learning theory called
structural risk minimization, whose goal is
to find a hypothesis with the lowest true
error (Vapnik, 1999). The SVM constructs
a hyperplane in a high-dimensional space,
which can be used for classification, regres-
sion, or other tasks (Press, Teukolsky, Vet-
terling, & Flannery, 2007). The SVM is
appropriate for this study’s data because it
can be used on multiple class problems, and
because its connection to computational
learning enables it to be a universal learner
(Joachims, 1998) while in support of con-
ceptual frameworks, such as spreading acti-
vation. Consequently, it tends to be fairly
robust to overfitting (Sebastiani, 2002). The
performance of the classifier was based on
the area under the receiver operating
curve, which was estimated using leave-one-
out by subject cross-validation (Efron &

Tibshirani, 1997; Molinaro, Simon, &
Pfeiffer, 2005). Data were analyzed by
members of the study team.

RESULTS

Subjects

A total of 955 patients were approached
for enrollment. Of that group, 576 subjects
did not meet the inclusion criteria (n = 70),
refused to participate (n = 436), or were
excluded for other reasons (n = 70). This
resulted in 379 subjects enrolled, comprising
130 suicidal patients, 126 nonsuicidal
patients with mental illness, and 123 con-
trols. Eight subject interviews were incom-
plete and were excluded from the final
analysis. A total of 371 subjects completed
the study. The patient demographic charac-
teristics within each study site are shown in
Table 1.

Comparison of the Performance of
Classification Algorithms

Figure 1 and Table 2 show the per-
formance of the machine learning algorithm
in classifying subjects into suicidal and non-
suicidal subject groups. Classification per-
formances are shown for adolescents,
adults, and the combined adolescent and
adult cohort. The table shows that the
ROC threshold of 0.80 is met in all cases,
except adults in the adult suicide versus
mentally ill comparison. When these data
are combined with adolescent data, how-
ever, the threshold is met. The table also
shows that the signal from acoustic charac-
teristics boosts the suicidal versus mentally
ill classification.

Overall, the results show that
machine learning algorithms can be trained
to automatically identify the suicidal sub-
jects in a group of suicidal, mentally ill, and
control subjects. Moreover, the inclusion of
acoustic characteristics is most helpful when
classifying between suicidal and mentally ill
subjects.
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DISCUSSION

We anticipated that when computation
methods are applied in multiple sites, their
overall accuracy decreases. This decrease
could be reduced by including a second
measurement mode, such as acoustic data.
Although there was a decrease from our ini-
tial study (Pestian et al., 2015), the decrease
was not substantial. Moreover, the acoustic
features did not play a substantial role in the
initial study interview. Subsequent research,
however, has shown that in some cases the
acoustic features are statistically important
during follow-up visits (Venek, Scherer,
Morency, Rizzo, & Pestian, 2016; Venek
et al., 2014). From the results of other stud-
ies, this was unexpected. Suggesting that
additional research devoted to fusing nonver-
bal sentiment data with verbal sentiment data
is still needed.

Clinicians may ask: Were there any
differences in what the subjects said?
Table 3 shows that the mentally ill and the
control patients tended to laugh more dur-
ing interviews, sigh less, and express less
anger, less emotional pain, and more hope.

The study’s sample was based on the
subjects’ self-reports, which means that
some patients could have been disingenu-
ous. But, using measures of authenticity, no
differences were found between each of the
groups (Newman, Pennebaker, Berry, &
Richards, 2003).

CONCLUSION

This study’s methodology presents
strong evidence for a useful objective tool
that clinicians and others can use to deter-
mine suicidal intention. These computational
approaches may provide novel opportunities
for large-scale innovations in suicidal care.
The methodology described here can be
readily translated to such settings as school,
shelters, youth clubs, juvenile justice centers,
and community centers, where earlier identi-
fication may help to reduce suicide attempts
and deaths.T
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