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ABSTRACT
People naturally anthropomorphize the movement of nonliv-
ing objects, as social psychologists Fritz Heider and Mari-
anne Simmel demonstrated in their influential 1944 research
study. When they asked participants to narrate an animated
film of two triangles and a circle moving in and around a box,
participants described the shapes’ movement in terms of hu-
man actions. Using a framework for authoring and annotat-
ing animations in the style of Heider and Simmel, we estab-
lished new crowdsourced datasets where the motion trajecto-
ries of animated shapes are labeled according to the actions
they depict. We applied two machine learning approaches,
a spatial-temporal bag-of-words model and a recurrent neu-
ral network, to the task of automatically recognizing actions
in these datasets. Our best results outperformed a majority
baseline and showed similarity to human performance, which
encourages further use of these datasets for modeling percep-
tion from motion trajectories. Future progress on simulating
human-like motion perception will require models that inte-
grate motion information with top-down contextual knowl-
edge.

Author Keywords
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Machine Learning
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INTRODUCTION
A skilled animator can create the illusion of life in nonliving
objects by moving them in a humanlike manner, producing
motion pictures with engaging narratives of anthropomorphic
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characters [32]. The perception of humanlike actions in ob-
ject trajectories has been a longstanding interest in psychol-
ogy, where its study bridges perceptual psychology and social
psychology [3, 6, 7, 33]. In an influential early study, Fritz
Heider and Marianne Simmel crafted a short film depicting
the movements of two triangles and a circle in and around a
box with a door, and asked subjects to describe what they saw
[11]. These subjects instinctively anthropomorphized the two
triangles and circle as humanlike characters, producing rich
narratives about the social relationships, emotional states, and
intentions of these objects. These studies led Heider to later
propose an influential theory of how people attribute mental
states to others in social interaction [10].

This relevance to social interaction has motivated several
computer scientists to take an interest in Heider and Sim-
mel’s early film, with attempts to build automated systems
that could perceive the film in much the same manner as
Heider and Simmel’s experimental subjects. Thibadeau [31]
takes a symbolic approach to the perception of actions in the
Heider-Simmel film. Beginning with the 2D coordinates of
every line and arc in every other frame of the 1690-frame
film, the system analytically generates symbolic descriptions
of each frame that are matched to defined action schemas,
such as opening the door or going outside the box. Pautler
et al. [25] follows a related approach, beginning with ob-
ject trajectory information from an animated recreation of the
Heider-Simmel film. An incremental chart parsing algorithm
with a hand-authored action grammar is then applied to rec-
ognize character actions as well as their intentions. These two
rule-based approaches allow for the recognition of gross mo-
tor actions (moving to a location, hitting another character),
but may not be appropriate for defining other motion trajec-
tories like limping, shivering, tickling, and dancing. Current
paradigms for AI recognition problems assume people only
“know it when they see it,” emphasizing the importance of
systematically analyzing human data for these tasks, in con-
trast to the previous approaches. Accordingly, the problem
of automatically interpreting motion trajectories may best be
tackled using data-driven techniques applied to a wide array
of crowdsourced examples.

In this paper, we describe our efforts to use machine learn-
ing to recognize human actions in the motion trajectories of
shapes. To perform this task, we created novel animation data
using a framework by which people can author animations in
the style of Heider and Simmel. The resulting contribution,
which we make available to the community, are two labeled
datasets that enable a more systematic study of how people
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perceive anthropomorphized actions in motion trajectories.
We present initial results on two different supervised ma-
chine learning approaches for automatically recognizing ac-
tions in these datasets. In the first approach, we selected mo-
tion features to encode animations as sets of “spatial-temporal
words” that were learned by a simple classifier. In our second
approach, we replaced this feature selection process with a
Recurrent Neural Network that automatically learned a fea-
ture representation of animations according to their action la-
bels. The best results of these systems show significant im-
provement over a majority voting baseline and approximate
a human measure of performance on this task, demonstrating
the potential for future systems to exhibit human-like motion
perception.

RELATED WORK
Because of its practical application to fields like robotics,
human-computer interaction, and surveillance, there is a great
deal of research devoted to recognizing human actions in
video data. Increasingly utilized for this task are techniques
for extracting the high-level 2D motion trajectories like those
used in our work. For instance, Rao et al. [27] isolated
changes in motion characteristics at particular spatial points
in order to compute 2D motion trajectories for actions in
videos (e.g. opening a door). Messing et al. [21] used a sim-
ilar approach, where the velocities of particular key points
on a person’s body were tracked across videos of that per-
son engaging household activities like eating or answering a
phone. Such activities could then be recognized according to
these “velocity histories” of the tracked keypoints. Vrigkas
et al. [35] computed motion curves from videos using opti-
cal flow measurements. They identified the action associated
with these motion curves by determining the longest com-
mon subsequences between these curves and those of known
actions.

Some research on action recognition has successfully bor-
rowed methods from text classification research. One such
approach that we explore in this paper is to analyze discrete
video segments as visual “words” that define the action por-
trayed in the video, in the same way textual words define the
meaning of a document. Niebles et al. [23] used this tech-
nique with latent topical modeling algorithms, with the re-
sult that videos displaying similar actions (the “topics”) were
grouped together. Just as certain words are more important
than others for determining the topic of a document, certain
visual words may be particularly good cues for recognizing
an action. Accordingly, Hoai et al. [13] automatically dis-
covered the most discriminative temporal video segments that
maximized recognition of mouse behaviors like sleeping and
grooming. Like actions, gestures have also been recognized
using visual word approaches [12, 36]. This work is particu-
larly relevant to the current effort given that the animations in
our dataset are generated by trajectories of underlying hand
gestures.

Recent improvements on video-based action recognition are
largely based on the new deep learning paradigm in computer
vision. These models stack layers of neural networks to es-
tablish a “deep” hierarchical representation of the input data

that maps directly to classification labels without the need for
additional feature encoding. Baccouche et al. [2] and Karpa-
thy et al. [14] observed significant performance gains over
previous models using deep learning on existing action recog-
nition datasets. We examine in this paper whether the benefits
of deep learning on video classification also apply to the more
abstract task of perceiving actions in animations of shapes.

Our work fits alongside other research exploring the con-
nection between action perception and language. There is
a growing body of work on automatically generating natural
language descriptions of events shown in video [26, 29, 34].
Some effort has been given to the specific task of describing
motion trajectories with verbs, as is the goal of our work. In
particular, Koller et al. [17] designed finite state automata
for labeling the motion trajectories of cars with German mo-
tion verbs. The automata encoded the attributes of a car’s
trajectory that have to be detected in order for the car to be
described with a particular verb. Kojima et al. [16] employed
a similar rule-based approach for doing this, using the trajec-
tories of people’s heads instead of cars. Action verbs were ap-
plied by evaluating predicates defining changes in motion for
the people and objects in the video. Mathe et al. [20] automat-
ically learned a semantic representation of motion verbs by
discovering intervals with similar motion features across sev-
eral videos depicting the same verb. Finally, Morrison et al.
[22] used animations to categorize verb semantics by manip-
ulating the motion features of animations and clustering the
verbs people used to describe animations with similar motion
features. Among these efforts, our work is the first to exam-
ine the verb labeling task as a machine learning classification
problem where action labels are automatically acquired from
a comprehensive dataset of motion trajectories.

DATA COLLECTION
Other researchers have created animations that resemble Hei-
der and Simmel’s film for use in their own studies. For in-
stance, the Frith-Happe animations used in autism research
[1] show two interacting triangles intended to elicit mental
state attributions from observers. In Barrett et al. [3], re-
search participants created similar animations by playing a
game in which they acted out intentional actions with digital
arrowheads, i.e. one player moved their arrowhead to “chase”
or “fight” another player’s arrowhead. However, the anima-
tions in these studies were not designed explicitly for auto-
mated action recognition across a large vocabulary of actions.
To serve this goal, we created two new datasets of animated
shapes whose motion trajectories are encoded transparently
as time series data. In particular, each animation is repre-
sented as a series of frames sampled every 20 milliseconds,
with each frame containing the position and rotation values of
each shape in the animation at the time point for that frame.
The position values are defined as (x,y) coordinates, and the
rotation values are angles in degrees. In the first dataset of
“Charades” animations (Figure 1), an animation depicts ex-
actly one action and is annotated with a single label. In the
second dataset of “Theatrical” animations (Figure 2), an ani-
mation is annotated with a sequence of actions whose depic-
tion conveys a story, just like Heider and Simmel’s film.
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Figure 1. Examples of animations for the one-character action “roam” (left) and two-character action “ignore” (right) in the Charades game interface

Charades Animations
The Charades dataset was generated through a web-based
game called Triangle Charades [28]. This game utilizes the
same concept as the classic party game Charades, in which
players convey concepts or entities using non-verbal language
only. Here, players illustrate actions through a software inter-
face by animating 2-D triangles resembling those in Heider
and Simmel’s film. Triangle Charades has two modes of play:
“authoring” mode and “guessing” mode. In authoring mode,
players are shown an English-language verb with a valency
of either one (a one-character action like spin or bolt) or two
(a two-character action like hit or chase). For one-character
actions, players animate a single triangle as the agent of the
action. For two-character actions, players are shown two tri-
angles of distinct sizes, and instructed to animate the larger
triangle as the agent of the action and the smaller triangle as
the target of the action (e.g. “make the big triangle fight the
little triangle”). Players animate the triangles by simply drag-
ging them on a multitouch-enabled computer like an iPad.
Animations cannot exceed 60 seconds in length. In guess-
ing mode, shown in Figure 1, a player views an animation
authored by another player, and then guesses from a set of
six action labels which action the animation is depicting. A
match between the guesser’s selected action and the author’s
intended action is considered a correct selection. If the guess
is incorrect, the guessed verb is eliminated and the player se-
lects another verb until the correct one is selected, completing
the guessing round.

The vocabulary of action labels for Charades animations was
defined through guided intuition. The linguistic resource En-
glish Verb Classes and Alternations [19], which catalogs En-
glish verbs according to their syntactic behavior and seman-
tics, was used to identify 200 verbs whose semantics involve
whole-body motion. Since many verbs were synonymous,
they were then manually clustered based on perceived sim-
ilarity. The most canonical verb in each cluster was then
selected to represent that action. For instance, the verb hit
was picked to reference the action conveyed by the cluster
of verbs hit, collide with, jab, punch, and box. The final vo-
cabulary consisted of 31 one-character actions and 31 two-

character actions, which are listed in Table 1. This dataset
distinguishes between far more labels than any other known
work on abstract action recognition, where typically only five
or six labels were considered.

We used the crowdsourcing platform Crowdflower1 to recruit
people to play Triangle Charades. Additional players came
through self-signup, yielding a total of 214 authors and 660
guessers for one-character animations, and 95 authors and
483 guessers for two-character animations. These players
authored a total of 3041 one-character animations guessed a
total of 9862 rounds (mean of 3.24 guessing rounds per an-
imation), and 1762 two-character animations guessed 8655
rounds (mean of 4.91 rounds per animation). We used play-
ers’ guessing data to validate that animations were perceived
in accordance with the actions they intended to illustrate. To
do this, we computed the number of guessing attempts it took
guessers to correctly identify the action intended by the au-
thor of an animation, with 1 being the minimum number of
guesses per animation and the maximum being 6. Only an-
imations guessed by at least two players and guessed cor-
rectly in fewer than 3.5 average guesses (better than random
chance) were included in the final validated dataset. Our final
dataset contained 2060 one-character animations and 1158
two-character animations2. The mean length of these anima-
tions was 5.65 seconds for the one-character dataset and 6.45
seconds for the two-character dataset.

Theatrical Animations
In addition to determining which animations to include in the
dataset, the guessing data also provides a measure of human
performance on this action recognition task. In particular,
recognition accuracy can be quantified as the mean number
of guesses taken to select the correct action across all anima-
tions, where 1 is perfect accuracy on the task and 3.5 indicates
no systematic recognition beyond random chance. This mea-
sure can also be used to examine recognition accuracy specif-
ically on animations of the same action label. In the results

1http://www.crowdflower.com
2Available at https://github.com/asgordon/TriangleCOPA
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1-character accelerate, bolt, bow, creep, dance, decelerate, drift, flinch, fly, gallop, glide, hop, jump, limp, march,
meander, nod, roam, roll, run, scurry, shake, spin, stroll, strut, stumble, swim, trudge, turn, waddle, wave

2-character
accompany, approach, argue with, avoid, bother, capture, chase, creep up on, encircle, escape, examine,
fight, flirt with, follow, herd, hit, huddle with, hug, ignore, kiss, lead, leave, mimic, play with, poke, pull,
push, scratch, talk to, throw, tickle

Table 1. List of action labels

Figure 2. A Theatrical animation portraying the action sequence “creep
up on” followed by “flinch”

section below, we use this analysis to directly compare auto-
mated recognition performance to human performance both
overall and by action label.

Our second dataset of animations, which we term “Theatri-
cal” animations, directly resemble Heider and Simmel’s film
(Figure 2). In addition to a “big” triangle and a “little” trian-
gle, these animations feature a circle and a box with a hinged
opening (the “door”). Each Theatrical animation is intended
to convey a story by depicting a sequence of actions with dif-
ferent characters participating in each action. This dataset is
less constrained than the Charades dataset, where only one
action is depicted across an entire animation and the action
type (one or two character) as well as character roles (big tri-
angle as agent, little triangle as target) are pre-specified. To
create the Theatrical dataset, we employed another web ap-
plication called the Heider-Simmel Interactive Theater [8].
Here users apply the same touch-and-drag method as in Tri-
angle Charades to author a movie (max 90 seconds) featur-
ing the shapes and the door, without any instructions about
what actions to depict. An animator on our team used the
Heider-Simmel Interactive Theater to create 100 animations
portraying sequences of both one-character and two-character
actions. The mean length of these animations was 9.39 sec-
onds. The same animator then annotated these actions using
the Charades labels, establishing a gold standard test set for
recognizing sequences of actions3. There were additional ac-
tion labels in this gold standard that are not in Table 1, such
as interactions between a particular character and the door

3Available at https://github.com/asgordon/TriangleCOPA

and/or box (e.g. knock, enter, exit). After removing these la-
bels, the mean length of the gold standard sequences for the
current work was 2.24 action labels per animation.

EXPERIMENTS
The Charades dataset and Theatrical dataset offer two dif-
ferent opportunities for automated action recognition. In the
Charades dataset, the goal is to predict a single action label
for an entire animation. Conversely, the Theatrical anima-
tions contain more than one action per animation, so the task
is to distinguish boundaries between sequential actions and
label each action in the sequence. As we will discuss, the
latter task is significantly more challenging, largely because
recognizing transitions between actions is known to be as dif-
ficult as recognizing actions alone [37]. In this paper, we fo-
cus on the task of recognizing individual actions in Charades
animations. We then demonstrate an initial application of the
Charades-based models to the Theatrical animations in order
to establish a starting point for future work on recognizing
sequences of actions in motion trajectories.

We explored two alternative approaches to recognizing ac-
tions in Charades animations. In the first approach, we mod-
eled animations as bags of spatial-temporal visual words,
which were then used as features by a classifier to predict
action labels. Our second approach applied the deep learning
paradigm for classification, through which a recurrent neu-
ral network (RNN) was trained to predict labels from layered
representations of motion trajectories. These approaches dif-
fer both in how they model the features as well as tempo-
ral structure of their data. First, the spatial-temporal words
model relies on hand-selected features to encode animations,
whereas the RNN automatically constructs features directly
from the trajectory data. Second, the bag-of-words approach
only considers temporal structure within a given interval of an
animation rather than temporal relations between intervals. In
contrast, the RNN models long-range temporal dependencies
across an entire animation. The details of each model and
their specific application to the current task are described be-
low.

Spatial-Temporal Words Model
A spatial-temporal word is a categorical representation of an
object’s motion at a particular duration of the animation. Mo-
tion sequences can be encoded as sets of spatial-temporal
words, an approach that has worked successfully for similar
tasks such as video-based activity classification and gesture
recognition [12, 23, 36]. To apply this approach, we split
each animation into uniform-length intervals and computed
the motion features of the shapes at each interval indepen-
dently. The features we selected were those that have worked
well for analyzing other types of motion trajectory data such
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2-character: 17 features	


K-means clusters ���
K=500	


Bag of words	
…	


Action probabilities	
…	
Logistic Regression Classifier 

[word1, word2, word5…] 

Figure 3. Spatial-temporal words model

as hand gestures [30] and pen sketches [9]. These features
are all position-invariant, meaning that they are not affected
by the absolute positions of the shapes in an animation but
rather their change in position across frames.

Table 2 lists the motion features used by this model. The
first 11 features constituted the feature set for one-character
action recognition. For each interval in an animation, we cal-
culated these features for the motion trajectory of the agent
character performing the depicted action. The presence of
two characters, one the agent and the other the target of an
action, required additional features to be used for the two-
character animations. For each interval in the two-character
animations, we calculated the one-character features for the
agent of the action. We then also calculated the mean of the
six two-character features shown in Table 2 for the relative
motion between the agent and target characters. With the ad-
dition of these features, the feature set for recognizing two-
character actions contained 17 features total.

After computing its features, each interval was transformed
into a word by categorizing it according to its feature-based
similarity to other intervals. Intervals were assigned to clus-
ters using the k-means algorithm with the Euclidian distance
metric, and each interval was subsequently represented as the
index of the cluster center closest to that interval. The set
of cluster indices can be thought of as the “dictionary” of
spatial-temporal words. Each animation was then encoded
as a word vector composed of the number of times each word
in the dictionary occurred in that animation. Because they
have different feature sets, we generated separate dictionar-
ies for the one-character and two-character datasets. We used
each dictionary to transform the corresponding animations of
that action type into bag-of-words vectors, which could then

be used as input to a classification algorithm to predict action
labels.

Figure 3 illustrates the full pipeline of the spatial-temporal
words model. Interval length, offset length between inter-
vals, and number of words (clusters) in the dictionary are all
hyperparameters in this model. Once the animations are en-
coded as bag-of-words vectors, any classifier can be trained
to assign labels from this feature representation. We chose
Logistic Regression because it provides straightforward prob-
ability estimates describing the likelihood of each label being
predicted for a given animation. This probability estimation
enabled us to evaluate the model’s performance relative to hu-
man recognition, as we explain in the next section. We also
chose to use Naive Bayes since it is commonly employed for
text-based bag-of-words classification tasks and could possi-
bly apply just as well to classifying spatial-temporal words.

Recurrent Neural Network Model
Encoding animations as spatial-temporal words enables them
to be efficiently learned by a simple linear classifier, but this
approach relies on assumptions that are difficult to verify. In
particular, the trajectory features used in above approach (e.g.
distance, rotation, velocity) were selected based on previous
research and intuition, but it is possible that a different set of
motion features would be more useful for the current recogni-
tion task. Moreover, even when the dictionary size is fixed, it
is unclear if the k-means clustering will result in meaningful
differences between words. If random changes in the initial-
ization of the clusters yield a different assignment of intervals
to words, it becomes difficult to determine what information
is captured by the words. Morever, the hyperparameters of
interval length, offset length between intervals, and dictio-
nary size must be manually defined in this model. These de-
cisions create extra overhead for the spatial-temporal word
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Name Description

1-character
features

Distance agent’s change in position between adjacent frames
Rotation agent’s change in rotation between adjacent frames
Angle arctangent of Distance
Angle Offset difference between Angle and Rotation
Velocity derivative of Distance
Rotational Velocity derivative of Rotation
Acceleration derivative of Velocity
Rotational Acceleration derivative of Rotational Velocity
Jerk derivative of Acceleration
Curvature curvature of the agent’s change in position between adjacent frames
Angle Change derivative of Angle

2-character
features

Relative Distance distance between agent and target at each frame
Relative Angle arctangent of Relative Distance
Relative Velocity derivative of Relative Distance
Relative Acceleration derivative of Relative Velocity
Relative Jerk derivative of Relative Acceleration
Relative Angle Change derivative of Relative Angle

Table 2. List of motion features used in spatial-temporal bag-of-words model

model since they can only be made by inefficiently trying all
possibilities.

Recurrent Neural Networks (RNNs) avoid this overhead be-
cause they directly learn from input sequences without re-
quiring any manual feature engineering. RNNs have become
a state of the art technique for processing sequence data,
and have recently demonstrated success specifically on action
recognition tasks [2, 14]. We aimed to determine whether an
RNN with no explicit knowledge of spatial-temporal words
could recognize actions in Charades animations with com-
parable performance. To do this, we applied an RNN de-
rived from the Elman network [5], whose general architecture
consists of an input layer, one or more recurrent hidden lay-
ers, and an output layer all connected adjacently by weights.
For our task, the input layer encodes the shapes’ motion tra-
jectories in the animation, while the hidden layers represent
the continuous underlying state of the animation so far. The
output layer is equivalent to a Logistic Regression classifier,
using the values in the hidden layer to predict action label
probabilities for the animation. Figure 4 illustrates this archi-
tecture with two hidden layers. The size (number of units)
in each hidden layer is a hyperparameter. The weight matri-
ces connecting the layers are the parameters that ultimately
determine the probability estimates used to predict actions.
The values of these parameters are updated through back-
propogation during training (see [18]). For each animation,
the model iterates through each frame of the animation and
uses both the position and rotation data in the current frame
and the hidden values at the previous frame to compute the
hidden values at the current frame. The same recurrence is
applied when there are multiple hidden layers: for each hid-
den layer, the state at the current frame is computed from the
previous layer combined with the state of the current layer at
the previous frame. Once the entire animation is processed,
the values of the outermost hidden layer across the entire ani-
mation are averaged, and the average values are passed to the
output layer. The Logistic Regression classifier (typically re-

ferred to as a softmax classifier) in the output layer uses these
values to compute the probabilities of predicting each pos-
sible action label for that animation. When used to classify
an animation, the RNN ultimately selects the action with the
highest probability as the recognized action. As implied by
the term “deep”, RNNs are known to learn better represen-
tations of the input data as the number of hidden layers in-
creases. We evaluated this claim for our task by training both
an RNN with a single hidden layer and an RNN with two hid-
den layers. In both cases, the hidden layer interfacing with the
output layer encodes a feature representation of the anima-
tions that can be used to predict action probabilities. The hid-
den layer representation can thus be viewed an alternative to
the bag-of-words representation used in the spatial-temporal
words model. We compared these two alternative feature en-
codings for the same animations by using Logistic Regression
to classify them. We identified that if both models performed
similarly, then we could conclude that the RNN feature rep-
resentation was equivalent to the word-based representation
for the action recognition task. Such a result would favor the
use of RNNs for this task because they avoid the cost of man-
ual feature engineering as well as the uncertain assumptions
required by the spatial-temporal words model. We sought to
evaluate this possibility in our experiments.

Methodology
For the experiments presented here, we randomly split each
dataset into training, validation, and test sets, allocating 20%
of the data to the validation set, another 20% to the test set,
and using the remaining 60% for training. For each dataset,
we trained the four models described above: the spatial-
temporal words model with Logistic Regression (Words +
LR), the spatial-temporal words model with Naive Bayes
(Words + NB), the 1-layer RNN, and the 2-layer RNN. Addi-
tionally, we computed a baseline majority voting model that
always predicted the most frequent action label in the test set.
We used the validation data to set the interval length, offset
length, and dictionary size hyperparameters for the spatial-
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1 Hidden layer 2 (100 nodes)	
…	


Logistic Regression Classifier 
Figure 4. Recurrent neural network model

temporal words models. For both interval length and offset
length between intervals, values of 5 frames, 10 frames, 15
frames, and 20 frames were evaluated as well as dictionary
sizes of 100, 200, 300, 400, and 500. Similarly, we used
the validation set to select the optimal hidden layer sizes for
the RNN models, evaluating performance with 100, 300, and
500 hidden layer nodes. In training both the word-based Lo-
gistic Regression and RNN models, we performed a max of
1000 iterations of parameter updates, with early stopping if
the training error had not improved in 50 iterations. For the
RNN models, the RMSProp algorithm [4] was utilized to it-
eratively update the parameter weights of each model. After
selecting the best performing configurations of all four mod-
els on the validation sets, we applied these models to the test
sets, the results of which we discuss in the next section.

RESULTS AND DISCUSSION
The recognition accuracy of all models on the testing data
appears in Table 3, with the best result from each dataset
indicated in bold. Regarding the hyperparameters selected
through validation, both spatial-temporal words models used
an interval length of 100ms, an offset length of 0ms, and a
dictionary size of 500 words. For the RNN models, the hid-
den layer size was 100 nodes (for both layers in the 2-layer
RNN). We used the compute-intensive randomized test with
stratified shuffling [24] to evaluate the statistical significance
of differences in accuracy between models.

The accuracy of the majority baseline was 5.3% for the one-
character dataset (predicting the action “hop” for all ani-
mations) and 5.6% for the two-character dataset (predict-
ing “fight” for all animations). While all models exceeded
this baseline, the difference was statistically significant only
for certain models. Different patterns emerged from one-
character and two-character experiments. The one-character
recognition accuracy was lower across all models. The Words
+ LR model, with an accuracy of 12.6%, was the single
model to significantly outperform the baseline. This model
also significantly outperformed both of the RNN models.
The results of the two-character models were more dramatic.
Here all models showed significant improvement over the

baseline. The Words + LR model demonstrated similar ac-
curacy (12.5%) to the corresponding one-character model.
The Words + NB model and 2-layer RNN performed signif-
icantly better than the Words + LR model with accuracies
of 22.0%, and 25.0%, respectively. The 2-layer RNN for
two-character animations obtained the best performance of
all models, though its 25% accuracy did not significantly dif-
fer from the corresponding Words + NB model. While these
results show that the spatial-temporal words representation is
meaningful for this task, it’s interesting that this representa-
tion was much better utilized by Naive Bayes than by Logistic
Regression. Naive Bayes assumes that each word is gener-
ated entirely independently from others, and while this seems
incorrect for this task, it’s possible that it made recognition
easier. The improvement of the 2-layer RNN over the 1-layer
model, while not significant, suggests that it would be useful
to explore even deeper RNNs for this task as additional lay-
ers may further improve performance. The two-character re-
sults show that the RNN models automatically built a feature
representation as useful as the spatial-temporal words repre-
sentation for the two-character data. Given that the spatial-
temporal words representation demands more manual effort
and makes more assumptions that may or may not be correct,
RNNs may be a more straightforward approach to this prob-
lem. Moreover, while the current results leave it unclear, in-
tuition suggests that the ability of RNNs to model long-range
temporal structure would be informative for recognizing ac-
tions perceived in long motion trajectories.

One explanation for the weaker one-character results is
that these actions are inherently harder to recognize than
two-character actions when animated with shapes. However,
as revealed in the next section, this performance disparity
doesn’t appear in humans. This suggests the relative motion
between the agent and target of an action was particularly
informative to these models, whereas they were less sensitive
to the structure contained in the motion trajectory of a single
shape. Further work is needed to identify what features
humans perceive in these trajectories that the current models
fail to account for.
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Baseline Words + LR Words + NB 1-layer RNN 2-layer RNN
1-character 0.053 0.126*† 0.085 0.080 0.073
2-character 0.056 0.125* 0.220*‡ 0.185* 0.250*‡

*Significantly better than baseline (p < 0.05)
†Significantly better than 1-layer RNN and 2-layer RNN (p < 0.05)

‡Significantly better than Words + LR (p < 0.05)
Table 3. Classification accuracy on Charades animations

Baseline Human Words + LR 1-layer RNN 2-layer RNN
1-character 3.499 2.139 2.623*† 2.817* 2.806*
2-character 3.574 2.114 2.419* 2.261*‡ 2.147*‡

*Significantly better than baseline (p < 0.05)
†Significantly better than 1-layer RNN and 2-layer RNN (p < 0.05)

‡Significantly better than Words + LR (p < 0.05)
Table 4. Classifiers’ mean number of guesses until correct on 6-choice Charades task, compared to humans

Guessing Task
The accuracies in Table 3 are all fairly low, leading one to
conclude that machine learning approaches perform poorly
on this task. However, comparing the models’ performance
to human recognition suggests a different interpretation of
the results. To make this comparison, test set accuracy can
be evaluated according to the Charades guessing task, which
measures the mean number of guesses until correct when the
choice is constrained to only six labels. For every guessing
round completed by a human player, the classifiers also per-
formed this guessing task by predicting an action label for
the animation from the same set of six actions shown to the
player. Of these six labels, the model selected the one it as-
signed the highest probability, and this selection continued
until the correct label was predicted. Table 4 shows the re-
sults of this task alongside human performance as well as a
baseline approach. Here, the baseline selected actions sim-
ply in the order that they were presented to the player in the
guessing round. We omitted the Naive Bayes model from this
guessing task because its probability estimates are known to
be poorly calibrated [38]. We again used stratified shuffling
to evaluate the statistical significance of our results. The rel-
ative performance between models shows a similar pattern
to Table 3, but new findings emerge from the comparison to
human and baseline performance. Here, all models signifi-
cantly outperform the baseline, signifying that they have all
captured factors influencing action recognition to some de-
gree. In accordance with the previous results, the Words +
LR model was the best one-character guesser of all models at
2.623 mean guesses until correct. It made significantly better
guesses than both the 1-layer and 2-layer RNN. For the two-
character data, both the 1-layer RNN (2.261 mean guesses)
and the 2-layer RNN (2.147 guesses) had significantly better
guessing performance than the Words + LR model. Looking
at human performance, players were generally better at guess-
ing than any of the models, with players taking 2.139 mean
guesses to select the correct one-character action in the test
set, and 2.114 mean guesses for two-character animations.
However, guesses made by the 2-layer RNN on the two-
character animations did not differ significantly from the cor-
responding human guesses. Based on this we can conclude

that the 2-layer RNN approximated human performance on
recognizing two-character actions in motion trajectories.

The guessing task also enables us to examine recognition ac-
curacy for each action label separately. Figure 5 visualizes
the results in Table 4 to show the mean number of guesses
for test animations corresponding to the same action label.
For each action label in the one-character and two-character
datasets, the guessing performance of the best model on the
corresponding dataset is compared to human guessing for
that action label. This analysis reveals interesting distinc-
tions between the human and model recognition. In partic-
ular, while human performance was consistent across differ-
ent actions, the models showed more variance in their abil-
ity to recognize specific actions. For instance, looking at the
two-character actions recognized in fewer than 1.5 average
guesses, only “play with” was recognizable to this degree for
humans, compared to nine actions (“lead”, “avoid”, “push”,
“examine”, “chase”, “follow”, “pull”, “hug”, and “encircle”)
for the 2-layer RNN. However, the model’s strong guessing
performance on these actions was countered by particularly
weak performance on other actions. The actions “huddle
with”, “accompany”, and “fight” all took more than 3 aver-
age guesses to identify, whereas even the least recognizable
action for humans was identified in under 3 average guesses
(2.750 guesses for “herd”).

While an ideal comparison with human performance would
measure human accuracy choosing from the full set of ac-
tion labels, this six-choice guessing task is a more practical
estimation of human performance. Choosing from over 30
labels for annotating a given animation is more cognitively
demanding and time-consuming, and could deter a crowd-
sourcing approach to data collection. Moreover, this guessing
task is useful in that evaluates the accuracy of probability esti-
mates rather than just the accuracy of the best prediction. That
RNNs are good at guessing suggests they are good at explic-
itly modeling the probability distribution over action labels.

Theatrical Recognition
Our second experiment was to move beyond single-action
recognition in order to recognize sequences of actions in the
Theatrical animations. We assessed the challenges of this
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Figure 5. Comparison between humans and best model on mean number of guesses until correct for each verb in test set

task by using the 2-layer RNNs trained on the Charades an-
imations to naively generate action sequences in which each
action is predicted independently of other actions in the se-
quence. RNNs are well suited to this sequence labeling task
because they explicitly model temporal relations across all
frames of an animation. To establish a baseline approach to
the Theatrical recognition task, we divided each Theatrical
animation into segments of 150 frames (3 seconds) and ap-
plied both the one-character and two-character RNNs to rec-
ognize the action in each segment. In particular, for each
character in the animation, the one-character classifier was

given that character’s motion trajectory in order to calculate
the probabilities of the one-character labels for the action per-
formed by the character. Additionally, for each ordered pair
of characters in the animation, the two-character classifier
was given those two characters’ motion trajectories in order to
determine the probabilities of the two-character actions where
the first character in the pair is the agent of the action and the
second character is the target. Thus, for the Theatrical ani-
mations with three characters (the big triangle, little triangle,
and circle), we ran the one-character RNN three times (on
each of the three characters), and the two-character RNN six
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times (on each of the six ordered pairs of characters). The
probability estimates resulting from each on the nine RNN
instances were pooled, and the action with the highest proba-
bility across all distributions was the action predicted for that
animation segment. This procedure was repeated for each
segment in the animation in order to yield a sequence of ac-
tion labels.

Because the length of the predicted action sequence could dif-
fer from the number of gold standard actions for a particu-
lar animation, we evaluated the output in terms of precision
and recall (without regard to the order of actions in the se-
quences) as opposed to accuracy. Precision was 1.4% and
recall was 2.3%, with a resulting F-score of 1.8%, revealing
that this recognition problem has a non-trivial solution. The
poor performance can be attributed to the low accuracy on
the previous Charades task, but also to the difficulty of auto-
matically inferring what was predetermined in the Charades
animations: the number of actions as well as the boundaries
between them, and the roles of the characters participating in
an action. This suggests that need for integrating motion tra-
jectory information with top-down knowledge about the nar-
rative context of an animation.

CONCLUSION AND FUTURE WORK
How and why people anthropomorphize abstract objects is a
topic that has fascinated researchers across many disciplines.
In this work, we showed how the high-level perception of hu-
man actions in motion trajectories can be modeled using ma-
chine learning, specifically by both a spatial-temporal bag-of-
words model and a recurrent neural network. This is unique
from previous work that attempted to analytically define tra-
jectory features for actions based on a limited set of examples.
We provide two new datasets that facilitate further analysis of
this perceptual process. Our initial action recognition results
on these datasets show the promise of further machine learn-
ing work on behavior classification from motion cues.

Our results suggest that accurate action recognition may re-
quire more than just detecting local motion cues, however.
While using more sophisticated motion features might yield
better recognition performance on the Charades dataset, the
Theatrical animations, just like Heider and Simmel’s film, are
interpreted within a narrative context. Knowledge of this con-
text is missing in the Charades animations even for humans,
a likely reason why their own recognition is low. Contextual
information such as the characters’ actions in previous seg-
ments of the animation would likely provide a better model
for recognition. New research has demonstrated how the re-
current neural network model used to recognize single-action
animations in this work can be extended to model contextual
dependencies between sequences of actions [2]. In order to
successfully apply such an approach, it would be necessary
to author and annotate additional Theatrical animations well
beyond the current set of one hundred presented in this work.

We have focused on action perception as a bottom-up process,
whereby motion reveals an action which in turn yields an ex-
planation. But perception research suggests this is just as
much a top-down process [15], as previous explanations for
a shape’s behavior influence how its motion is subsequently

recognized. In particular, the beliefs, emotions, goals, social
relationships, and personality traits attributed to the shapes
in these animations lead to behavior interpretations which in
turn generate further inferences about the internal states of
these shapes. Simulating this process in machines requires
deep commonsense reasoning that goes far beyond the task
of action recognition and lies outside the scope of current
machine perception research, but it is certainly a long-term
vision for this work.
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