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ABSTRACT
Persuasiveness is a high-level personality trait that quantifies
the influence a speaker has on the beliefs, attitudes, inten-
tions, motivations, and behavior of the audience. With social
multimedia becoming an important channel in propagating
ideas and opinions, analyzing persuasiveness is very impor-
tant. In this work, we use the publicly available Persuasive
Opinion Multimedia (POM) dataset to study persuasion.
One of the challenges associated with this problem is the
limited amount of annotated data. To tackle this challenge,
we present a deep multimodal fusion architecture which is
able to leverage complementary information from individ-
ual modalities for predicting persuasiveness. Our methods
show significant improvement in performance over previous
approaches.

CCS Concepts
•Computing methodologies → Neural networks;
•Applied computing → Psychology;

Keywords
Persuasiveness, deep neural networks, multimodal fusion

1. INTRODUCTION
With the advent of social networking websites and online

collaboration tools, a lot of communication is happening
online. Persuasive communication is the ability to influence
one’s beliefs, attitude, intentions, motivation, and behavior.
Having the skill to be persuasive can be very useful in daily
interactions, especially when the success of communication
is dependent on being persuasive. For example, persuasion
skills have a high impact on the performance of leaders [3].
Thus, a computational perspective on persuasion is very
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Figure 1: Architecture of our deep multimodal fu-
sion model. cv, ca, and ct represent the confidence
scores of unimodal classifiers. These scores, along
with the complementary scores (1− cv, 1− ca, 1− ct)
are inputs to another deep neural network which
makes the final prediction.

valuable, and can reveal the influential factors for persua-
sive communication. The findings of such studies could be
useful for building automated training systems that provide
feedback to people who desire to improve their persuasion
skills.

Predicting persuasiveness is a challenging problem, as it
depends not only on the words someone is uttering, but
also on many other factors such as the visual behaviors that
the person is displaying, and the way the person is uttering
the words. This indicates that all modalities play a role in
determining persuasiveness, and it is challenging to integrate
information from multiple modalities.
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Persuasiveness has been studied quite extensively from the
psychological and social perspectives. The foundations and
dynamics of persuasiveness, as well as theoretical frameworks
on how to convey persuasive messages have been researched,
and some of the most important factors, attitudes, and cog-
nitive processes for determining persuasiveness have been
reported [11, 21, 23]. However, there has been very little
work on automatically predicting persuasiveness. The Per-
suasive Opinion Multimedia (POM) dataset is a multimodal
dataset introduced by Park et al. [22] to study persuasiveness
in social multimedia. There has been some research on this
dataset; visual, acoustic, and verbal descriptors have been
used to build unimodal and multimodal classifiers [7, 8, 22].

Siddiquie et al. [25] introduced the task of classifying
politically persuasive web videos using the Rallying a Crowd
(RAC) dataset [9]. The RAC dataset has videos where
speakers are trying to persuade a crowd. Siddiquie et al.
associate crowd reactions with persuasiveness, and use it as
an extra cue in their predictions.

The previous works demonstrate the necessity of using
all three modalities for predicting persuasiveness, and the
advantage of multimodal approaches over unimodal ones.
However, as the problem is challenging, there is a need for
more complex architectures to learn and fuse the modalities.

Inspired by the success of deep learning techniques in
various applications [26, 29], we present a deep multimodal
fusion architecture for the task of persuasiveness prediction;
our model has the ability to combine signals from the visual,
acoustic, and text modalities effectively. Additionally, we
address the problems associated with high dimensionality by
using feature selection. To evaluate our proposed approach,
we use the publicly available POM dataset (described in
Section 4). Our method outperforms all prior work on the
POM dataset confirming its effectiveness.

2. FEATURE DESCRIPTORS
Since automatic recognition of persuasiveness is not a

trivial task, it is very important to identify and use the
most important features for predicting it. We use high-level
features to be able to identify and interpret the factors that
have the most impact in differentiating persuasive videos
from non-persuasive ones.

In the following sections, we describe the feature sets we
use from each modality.

2.1 Visual Descriptors
Face movements and facial expressions have been identified

as providing important information for interpreting emotional
reactions and personality [14]. So we use the following visual
features for our experiments1:

Presence and intensity of seven primary emotions
and valence: Prior research shows that the presence of
happiness, sadness, anger, and positive or negative attitudes
can affect persuasiveness [19]. For this reason, we include as
features the presence of seven primary emotions (anger, sad-
ness, contempt, disgust, fear, joy, surprise), and the overall
positivity or negativity of a video.

Activation of twenty elementary action units: Fa-
cial expressions can convey important signals about emotions,
and influence judgment about persuasiveness [15]. Recogniz-

1Visual features were extracted using FACET:
https://imotions.com/emotient/(accessed Sept-2016)

Table 1: Some of the most discriminative features
from the visual, acoustic, and text modalities. These
were identified by the feature selection process.

Visual Acoustic Text

Upper lid raiser MFCC 5 Highly
Surprise intensity QOQ Now
Presence of joy F0 Laugh
Negativity intensity Peak Slope Amazing
Contempt intensity NAQ Absolutely

ing action units is important for facial expression analysis.
We select the following action units as the second set of
visual descriptors: inner brow raiser, outer brow raiser, brow
lowerer, upper lid raiser, cheek raiser, lid tightener, nose wrin-
kler, upper lip raiser, lip corner puller, dimpler, lip corner
depressor, chin raiser, lip puckerer, lip stretcher, lip tightener,
lip pressor, lips part, jaw drop, lip suck.

Head position and orientation: Head orientation and
movements have been identified as being informative cues
for recognizing persuasiveness [4]. So we use the movement,
yaw, pitch, and roll of the head as the third set of visual
features.

2.2 Acoustic Descriptors
Since prior research has shown that voice quality and

prosody affect persuasiveness [1, 24], we use the following as
our acoustic descriptors2:

Voice quality: Normalized amplitude quotient (NAQ),
parabolic spectral parameter (PSP), maxima dispersion quo-
tient (MDQ), quasi-open quotient (QOQ), difference between
the first two harmonics (H1−H2), peak-slope, formants 1-5
(which show the creakiness, breathiness, and tenseness of
speech signals).

Prosody: Pitch / fundamental frequency (F0) which mea-
sures the pitch or energy of voice.

MFCC: Standard Mel-frequency cepstral coefficients
(MFCC 1–24)

2.3 Text Descriptors
To extract text descriptors, we treat transcript text as a

bag of words. We build our vocabulary on the training set
by retaining paraverbal features (like ‘umm’), and removing
all stop-words. Each transcript is represented as a sparse
vector of tf-idf (term frequency-inverse document frequency)
scores of vocabulary terms present in the transcript. This
ensures that the weight of the terms is proportional to their
frequency and specificity.

2.4 Feature Selection
Feature selection is the automatic selection of attributes

from the feature set that are most relevant for building pre-
dictive models. In order to select features with the most
predictive power, and to remove redundant features, we per-
form a t-test between the visual, acoustic, and verbal features
extracted from persuasive and non-persuasive instances. We
select features with p-values less than 0.05 [18]. This process
is done using only the training set to increase the generaliz-
ibility of the model on unseen data.

2Acoustic features were extracted using COVAREP [13].
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2.5 Feature Analysis
Table 1 summarizes some of the most differentiating fea-

tures for persuasiveness picked by the feature selection pro-
cess. We analyze the selected features to see what type of
features are identified as being important for persuasiveness.

Based on our analysis, surprise related behaviors such as
the activation of upper lid raiser, and intensity of surprise
were the top features selected from the visual modality. Ex-
pressing surprise can trigger thinking in the audience as it
is unexpected. This leads the audience to think about the
arguments that are being made by the speaker, and if they
are strong, persuasion is significantly greater [16, 5].

From the acoustic modality, voice quality related features
such as ‘quasi-open quotient’, ‘peak slope’, and ‘normalized
amplitude quotient’ that identify the breathiness, tenseness,
and pitch of the voice [12] were picked as discriminative
features.

It is interesting to note that the words selected in this
process such as ‘highly’, ‘amazing’, and ‘absolutely’ overlap
with a list of persuasive words released by “The Father of
Advertising”, David Ogilvy in his book [20].

3. PROPOSED APPROACH
In this section we present details about our proposed uni-

modal (visual, acoustic, text), and multimodal approaches.

3.1 Unimodal Scheme
For training unimodal classifiers on the three modalities,

we use a deep neural network as it allows the models to
learn complex non-linear relationships between the input
features. The loss function used is binary cross-entropy
which is equivalent to the negative log likelihood, and is
given by

L(x, y) = −(y log σ(x) + (1− y) log(1− σ(x))) (1)

Here x denotes an input feature vector from the training set,
y ∈ {0, 1} its true label, and σ(x) indicates the predicted
value (from the neural network). With this, the problem of
finding the optimal set of parameters, θ∗, of the model can
be formalized as

θ∗ = arg min
θ

1

n

n∑
i=1

L(xi, yi) (2)

where {xi, yi}ni=1 represents the training set with n train-
ing examples. This can be solved using stochastic gradient
descent methods which, at the core, work by iteratively up-
dating θ along the negative gradient of the loss. In our
experiments, we use the Adam solver [17].

3.2 Multimodal Schemes
Persuasiveness is fundamentally multimodal in nature [22].

As mentioned in the introduction, being persuasive depends
on the way someone conveys a message, which can be through
visual, acoustic, and verbal signals. So, multimodal ap-
proaches are expected to perform better than unimodal ap-
proaches. In this section, we describe the early and late
fusion approaches we explore in our experiments.

3.2.1 Early Fusion
For early fusion, we concatenate features from the three

modalities into a single vector, and train a deep neural
network on this new feature representation.

Table 2: Baseline results. This table compares the
results of our baseline models with and without fea-
ture selection to majority voting, and previously re-
ported results on the POM dataset4.

Method Accuracy F1 Score

Majority voting 0.62 0.76
SVM (all visual features) 0.59 0.62
SVM (selected visual features) 0.82 0.85
SVM (all acoustic features) 0.59 0.58
SVM (selected acoustic features) 0.72 0.77
SVM (all text features) 0.77 0.84
SVM (selected text features) 0.69 0.73

Park et al. [22] 0.71 -
Chatterjee et al. [8] 0.78 -

3.2.2 Late Fusion
While early fusion combines the different modalities in the

initial phase, late fusion combines learned unimodal predic-
tions into a final prediction. This leverages the individual
potentials of unimodal classifiers. The deep neural networks
trained for unimodal classification have a final single unit
whose outputs can be interpreted as confidence scores for
predicting the persuasiveness. In this work, we explore two
schemes for combining these confidence scores in a late fusion
framework.

Averaging: We average the confidence scores of individ-
ual unimodal classifiers to make the final prediction.

Deep Fusion: We use the final confidence score of each
unimodal classifier (c), along with the complementary scores
(1 − c) as input features to a fusing deep network. The
intuition behind the addition of these complementary scores is
that it helps the classifier infer the absence of persuasiveness.
This architecture is illustrated in Figure 1.

4. EXPERIMENTS
Dataset: We use the Persuasive Opinion Multimedia

(POM) dataset [22] introduced by Park et al. This dataset
was collected with the goal of studying persuasiveness in a
social media setting. We follow the experimental methodol-
ogy proposed by the authors which leads to 130 persuasive
videos, and 147 non-persuasive videos. Each instance is asso-
ciated with the video and audio of a person (captured with
a webcam), and a transcript of the spoken words.

Methodology: For our experiments, we split the dataset
into training (205 videos), validation (33 videos) and test (39
videos) sets, ensuring that videos from the same person are
not in two different sets. We extract features, as described
in Section 2, from each modality. As the features of the
visual and acoustic modalities are computed from short time
windows, we use the mean, median, standard deviation, min-
imum, maximum, range (maximum - minimum), skewness,
and percentiles (10th, 25th, 75th, and 90th) as a way of
summarizing entire videos.

For the deep neural network architecture, we use a network
with multiple fully connected layers, and add dropout [28]
right after the input layer. We select the number of layers,

4It should be noted that Park et al. [22] and Chatterjee et
al. [8] use a different testing methodology (n-fold).
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Table 3: Results of unimodal classifiers. Note that
feature selection improves the performance consis-
tently across all modalities.

Modality Accuracy F1 Score

All Selected All Selected
features features features features

Visual 0.54 0.87 0.57 0.90
Acoustic 0.74 0.80 0.77 0.82
Text 0.69 0.85 0.75 0.88

number of units in each layer, learning rate, amount of
dropout, and number epochs by validating over a set of
values. We vary the number of layers in {2, 3, 5, 7, 10},
the number of units per layer in {3, 5, 7, 10, 15, 20}, the
learning rate in {0.0001, 0.0003, 0.001, 0.003, 0.01}, the
dropout in {0.0, 0.1, 0.3, 0.5, 0.75, 0.9}, and the number of
epochs in {300, 500, 800, 1000, 1200}. As there are many
local optima, the models show high variance leading to sub-
optimal parameters being picked by cross-validation. To
tackle this issue, we use an ensembling approach. During
cross-validation, with each set of parameters, we train five
times, and use average accuracy on the validation set to pick
the best set of parameters. With this best set of parameters,
we train 100 times on the training set, and select the models
that perform best on the validation set. Using these final
predictive models, we obtain results on the test set. We
evaluate models using accuracy and F1 score.

We developed our models primarily using the Keras li-
brary [10] for Python. The code, and dataset splits used for
our experiments are publicly available5.

5. RESULTS AND DISCUSSION
In this section, we discuss baseline models, compare clas-

sifiers with and without feature selection, and compare the
performance of different fusion schemes.

Baseline models: We use support vector machines (SVM)
to train our baseline models for all three modalities (see Ta-
ble 2). We train these models on both the full feature sets,
and reduced feature sets obtained after feature selection. We
use the C-SVC [2] implementation provided by LIBSVM [6].
The hyper parameters of the SVM (C and γ ) are selected
from 100 uniformly spaced values in [10−7, 107] using cross-
validation. We compare our baselines with the majority
voting classifier, and the results of prior work on the POM
dataset by Park et al. [22] and Chatterjee et al. [8].

Unimodal approaches: Table 3 summarizes the results
of training unimodal classifiers on both the full set of features,
and the reduced feature set obtained after feature selection.
The performance of models after feature selection improves
for all three modalities, and surpasses the results of SVMs.
Based on these results, we make some interesting observations
about the unimodal classifiers. For each modality, the best
results are obtained by training a deep neural network on
a reduced set of features. In a comparison between the
performance of the unimodal classifiers, we found that despite
previous research which has identified text to be the most
important modality for persuasiveness [22], our best results
are from the visual modality.

5https://github.com/jayanthkoushik/cmu-ammml-project

Table 4: Multimodal fusion results. The best re-
sults are achieved by using the proposed deep fusion
framework.

Fusion Method Accuracy F1 Score

Early Fusion 0.85 0.87
Late Fusion with Averaging 0.87 0.89
Late Fusion with DNN 0.90 0.91

Feature selection allows us to identify the attributes most
relevant to persuasiveness (see Table 1), and remove unnec-
essary and irrelevant features that do not contribute to the
accuracy of the predictive model. We believe that the initial
set of features is noisy, and the model is not able to deal
with the noisy training data. Lower variance in the feature
set makes the models generalize better. Since the reduced
feature sets produce the best results, we use these features,
and the corresponding classifiers for our fusion models.

Multimodal approaches: Table 4 shows the perfor-
mance of our multimodal approaches. As you can see, early
fusion does better than the text and acoustic unimodal clas-
sifiers, but it does not perform as well as the other two fusion
techniques. As we concatenate the features at an early stage,
it increases the dimensionality, but not all features are very
important for prediction. This can cause a lower accuracy
for early fusion compared to late fusion.

For late fusion, we perform two sets of experiments: (1)
averaging the confidence values from the three modalities,
and (2) training a deep neural network which takes the output
confidence scores (and complementary confidence scores) of
the unimodal models, and makes the final predictions. The
first method performs better than early fusion; and the latter
outperforms both early fusion, and the averaging scheme.
The reason for improved performance of late fusion compared
to early fusion is that in early fusion, we concatenate all
features and do not consider the fact that these features have
different representations; we treat them equally. This can
lead to lower performance of the classifier [27]. In late fusion
with averaging, we again give the same importance to all
three modalities, and if one modality is noisy, it can affect
the final predictions. However, in late fusion with a deep
neural network, the model learns the importance of each
modality and is allowed to learn a non-linear combination of
predictions and the weights contributing to the final model
are assigned accordingly.

6. CONCLUSIONS
In this paper, we studied persuasiveness from a compu-

tational perspective and introduced a deep neural network
architecture for predicting persuasiveness using the visual,
acoustic, and text modalities. We showed that the proposed
architecture is able to deal with limited labeled data while
taking advantage of the ability of deep models in discovering
complex relationships between input features. We developed
a deep multimodal fusion model which improved the perfor-
mance over unimodal models. Our experiments showed that
all three modalities – visual, acoustic, and text can work
complementary to each other for predicting persuasiveness.
Finally, we demonstrated the utility of deep neural networks
for performing late fusion by outperforming all previously
reported methods on the POM dataset.
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