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ABSTRACT

There has been a lot of prior work on representation learning for speech recog-
nition applications, but not much emphasis has been given to an investigation of
effective representations of affect from speech, where the paralinguistic elements
of speech are separated out from the verbal content. In this paper, we explore
denoising autoencoders for learning paralinguistic attributes, i.e. categorical and
dimensional affective traits from speech. We show that the representations learnt
by the bottleneck layer of the autoencoder are highly discriminative of activation
intensity and at separating out negative valence (sadness and anger) from positive
valence (happiness). We experiment with different input speech features (such
as FFT and log-mel spectrograms with temporal context windows), and different
autoencoder architectures (such as stacked and deep autoencoders). We also learn
utterance specific representations by a combination of denoising autoencoders and
BLSTM based recurrent autoencoders. Emotion classification is performed with
the learnt temporal/dynamic representations to evaluate the quality of the rep-
resentations. Experiments on a well-established real-life speech dataset (IEMO-
CAP) show that the learnt representations are comparable to state of the art feature
extractors (such as voice quality features and MFCCs) and are competitive with
state-of-the-art approaches at emotion and dimensional affect recognition.

1 INTRODUCTION

The field of representation learning has witnessed a huge progress over recent years, particularly in
the automated machine perception of images, text and speech. This has been facilitated by develop-
ments in deep learning, where it has been observed that stacking layers in neural networks with huge
amounts of data has yielded classification accuracies which have beaten the state-of-the-art in large
scale recognition problems, such as ILSVRC challenge (Russakovsky et al., 2014), and large scale
speech recognition (Hinton et al., 2012). However, there has been limited progress in exploring
representation learning for non-phonetic and affective attributes from speech. Current research is
mainly on the use of off-the-self feature extractors, such as Mel-Frequency Cepstral Coefficients
(MFCCs), and voice quality features (Scherer et al., 2013) such as normalized amplitude quotient,
and fundamental frequency. With this view in mind, we wish to explore the effectiveness of
representation learning for affect from speech. We select not only utterance-level categorical
emotions, but also activation and valence as attributes of interest. Activation is a measure of a
subject’s excitability when communicating emotion. High activation would correspond to emotions
such as excitement and anger, while low activation would be displayed in sadness. Valence is the
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measure of the subject’s sentiment, where anger and sadness correspond to negative valence, while
happiness corresponds to positive valence.

We primarily focus on two models - (1) Denoising autoencoder learnt from the speech spectro-
gram. We employ both log-frequency and log-mel spectrograms to learn representations, and also
investigate the effect of windowed frames to encode contextual information. This is motivated by
prior work, which compute frame-level feature statistics over long temporal sliding windows (Kim
& Provost, 2013). Both stacked (with tied/untied weights) and deep autoencoder architectures are
trained, and the best spectrogram-autoencoder configuration is identified by classification experi-
ments on a speaker independent hold-out validation set. (2) Recurrent autoencoder, where the entire
feature sequence for each utterance is reconstructed by a recurrent neural network. We further train
a BLSTM-RNN as an autoencoder over the activations obtained for selected spectrogram and au-
toencoder configurations, and show that the utterance level representations from speech effectively
capture paralinguistic attributes in the data.

2 PRIOR WORK IN REPRESENTATION LEARNING FROM SPEECH

Jaitly & Hinton (2011) introduced transforming autoencoders to learn acoustic events in terms of
onset times, amplitudes, and rates. They use the Arctic database and TIMIT for their experiments.
Graves et al. (2013) investigated deep recurrent neural networks for speech recognition, achieving a
test set error of 17.7% on TIMIT. Sainath et al. (2013) worked on filterbank learning in a deep neural
network framework, where it was found that filterbanks similar to the Mel scale were learnt. They
improved on their work in Sainath et al. (2014) by incorporating delta learning and speaker adapta-
tion. Han et al. (2014) performed speech emotion recognition from the IEMOCAP corpus using a
combination of DNN (Deep Neural Network) and Extreme Learning Machines. They obtained 20%
relative accuracy improvement compared to state-of-the-art approaches. However the prior work
on speech emotion recognition using neural networks has mostly focused on the usage of standard
feature extractors, such as MFCCs, pitch and zero-crossing rate, and how these features correlate
with emotion and affective attributes (Lee et al., 2011). There has been very little work done on
representation learning on lower level features, such as the time domain waveform/spectrogram for
this application. To the best of our knowledge, our work is the first attempt to investigate emotional
attributes from an unsupervised analysis of spectrograms.

3 MODELS AND EXPERIMENTAL SETUP

3.1 DENOISING AUTOENCODER

The autoencoder (Baldi, 2012) is a neural network typically trained to learn a lower-dimensional
distributed representation of the input data. The input dataset of N data points {xi}i=N

i=1 is passed
into a feedforward neural network of one hidden layer, where the hidden layer is a bottleneck layer
with activations {yi}i=N

i=1 . The activations are obtained as (for the purposes of this paper, we assume
tanh activations):

yi = tanh (Wxi + b)

The output of the autoencoder zi is obtained from the autoencoder activations as:

zi = W′yi + b′

For an autoencoder with tied weights, we have W = W′T . This would require less parameters to be
trained, thus acting as a regularizer. In this paper, we investigate the quality of representations using
both tied and untied weights, since it is not clearly evident which configuration is better. Thus the
autoencoder is trained using backpropagation, much as in an ordinary feedforward neural network.
In this paper, the loss function employed for training the autoencoder is the SSE (Sum of Squared
Error Loss) L =

∑i=N
i=1 ‖xi − zi‖2. Vincent et al. (2008) introduce denoising autoencoders, where

the data point xi is corrupted (by randomly setting a fraction of the elements to zero) to produce x̃i,
from which the original clean data point xi is reconstructed by the autoencoder. This enables the
autoencoder to learn not only latent information in the data, but also robust dependencies among the
elements in xi. When training denoising autoencoders in a greedy stacked fashion, we have multiple
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layers with weights Wk−1 and Wk for the k-th hidden layer, where the autoencoder activations at
the layer are (where we have y0

i = x̃i) :
yk
i = tanh (Wk−1yk−1

i + bk−1)

3.2 DEEP AUTOENCODER

In a deep autoencoder, the network is trained to reconstruct the input corrupted with noise much
like a normal stacked autoencoder, however, the encoder and decoders themselves have three or four
shallow layers. As opposed to greedy pretraining of the stacked denoising autoencoder, in a deep
autoencoder the weights for all layers in the network are trained jointly through backpropagation.
Deep autoencoders were investigated in Feng et al. (2014) for noisy reverberant speech recognition,
and Shao et al. (2015) for missing modality face recognition. They are known to often yield more
interesting features than greedily trained stacked autoencoders, which motivates us to explore deep
autoencoders along with stacked architectures for learning affective representations.

3.3 RECURRENT AUTOENCODER

A recurrent neural network (Elman, 1991) is widely used for learning from temporal data, where the
k-th hidden layer of the network at time t is a function of the k− 1-th hidden layer at time t, and the
k-th layer itself at the previous time step t− 1, as shown below for a multi-layer network:

hk
t = f(hk−1

t ,hk
t−1)

The output of the network at time t, yt is a function of the hidden layer below it. When the recur-
rent neural network is trained as an autoencoder, the target sequence is set to be equal to the input
sequence. An RNN can be trained using backpropagation through time, however the training suf-
fers from the vanishing gradient problem. To address this issue, Hochreiter & Schmidhuber (1997)
proposed LSTM (Long Short Term Memory), which can model long-term temporal dependencies,
and do not suffer from vanishing gradients. In our experiments, we use single-hidden layer recurrent
BLSTM (Bidirectional LSTM) autoencoders to learn dimensionally reduced representations at ut-
terance level, where the representation can be obtained from the BLSTM cell activation for the last
frame of the utterance, or by averaging the hidden layer BLSTM cell activations across all frames.
We have chosen to generate utterance level representations through an average over all frames, as vi-
sualization experiments indicate that this leads to better discrimination between emotion categories.
Similar to the denoising autoencoder, the SSE(Sum of Squared Error Loss) is used for training the
recurrent autoencoder.

3.4 DATASET

For our experiments, we used the IEMOCAP dataset (Busso et al., 2008), which is a well-known
dataset for speech emotion recognition comprising of acted and spontaneous multimodal interactions
of dyadic sessions between actors, where conversations are scripted to elicit emotional expressions.
The dataset consists of around 12 hours of speech from 10 human subjects, and is labeled by three
annotators for emotions such as Happy, Sad, Angry, Excitement, Neutral and Surprise, along with
dimensional labels such as Valence and Activation. We use all the utterances for unsupervised pre-
training of the autoencoder but perform classification experiments only on four emotions - Neutral,
Angry, Sad and Happy. Each utterance is approximately 2-5 seconds in duration, with short peri-
ods of silence before and after speech in all utterances. Prior to the classification experiments, for
purposes of visualization we split the dataset into seven subjects (training set), and three subjects
(validation set). Each utterance is annotated by three annotators for emotion and affective dimen-
sions. For the supervised classification task, we have considered only utterances which have at least
two annotators in agreement about the utterance emotion. The affective dimensions are annotated on
a Likert scale of 1-5, where we have averaged out the dimension ratings across all three annotators.
For unsupervised pre-training of the stacked denoising autoencoder, we have trained over the entire
dataset of around 10,000 utterances.

3.5 FEATURES EXTRACTED

We extracted spectrograms from the utterances, with a frame width of 20 ms and a frame overlap of
10 ms. In two different settings, we extract 513 and 128 FFT (Fast Fourier Transform) bins, since we
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Table 1: Utterance level classification performance for different spectrogram and autoencoder archi-
tecture combinations on a held-out validation set (best performing models selected for visualization
are indicated in bold)

Spectrogram Autoencoder Context Architecture Accuracy
Tied 1 513-256-128-64-4 46.23%

513-bin FFT Untied 1 513-256-128-64-4 45.76%
Deep 1 513-256-128-64-4 46.35%
Tied 1 128-64-32-4 44.14%
Untied 1 128-64-32-4 43.45%
Deep 1 128-64-32-4 43.25%

128-bin FFT Tied 5 640-320-160-80-4 50.39%
Untied 5 640-320-160-80-4 49.081%
Deep 5 640-320-160-80-4 48.76%
Softmax 1 40-4 44.45%

Log-Mel Tied 5 200-100-50-4 43.69%
Untied 5 200-100-50-4 43.76%
Deep 5 200-100-50-4 44.07%

wish to investigate whether fine-grained frequency information is necessary to produce better affec-
tive representations. We used a log-scale in the frequency domain, since a higher emphasis in lower
frequencies has been shown to be more significant for auditory perception. Mel filterbanks have also
been successfully used for speech recognition (Sainath et al., 2013), thus log-Mel spectrograms (Ez-
zat & Poggio, 2008) are also extracted from the utterances, with 40 filters in the Mel filterbank.
Contrary to other works in the domain of speech emotion recognition, we do not directly extract any
off-the-shelf features, such as Mel-Frequency Cepstral Coefficients (MFCCs), or voice quality fea-
tures (Scherer et al., 2013), since we wish to investigate if the autoencoder is useful at discovering
affective features directly from the frequency representation of the speech signal. However, we use
off-the-shelf features from the COVAREP toolbox (Degottex et al., 2014) for comparison with the
learned representations in an emotion recognition task.

3.6 TEMPORAL CONTEXT WINDOWS

Each frame of the spectrogram is 20 ms in duration, which is generally accepted in the speech
recognition community (Huang et al., 2001). However, for learning emotions and other affec-
tive attributes, prior work has shown that longer temporal windows of the order of a hundreds
of milliseconds is useful (Kim & Provost, 2013), (Han et al., 2014). Consequently, we explore
the concept of temporal context windows, where each input feature to the autoencoder is a win-
dow of consecutive spectral frames. If K is a parameter denoting the length of past/future con-
text, and Xt is a spectrogram frame at time t, the input temporal context window at time t is
[Xt−K , ...,Xt−2,Xt−1,Xt,Xt+1,Xt+2, ...,Xt+K ]. In this paper, we have conducted experiments
with K = 2, which would correspond to a context window size of 2K + 1 = 5. We have not
performed any experiments with temporal context windows for 513 FFT bins, since the high dimen-
sionality of the resulting windows might cause overfitting when training the autoencoder models.

4 VALIDATION EXPERIMENTS TO COMPARE MODEL CONFIGURATIONS

In the previous section, we described different spectrogram features for input to the autoencoder,
as well as various autoencoder architectures (such as stacked tied/untied weights and deep autoen-
coders). In this section, we describe our approach to find the best features and autoencoder models
through empirical classification experiments. We split the IEMOCAP dataset into a training set of 7
speakers, and a held out validation set of 3 speakers. Table 1 lists the configurations we have used
for autoencoder pre-training, followed by a classification stage where a simple softmax classifier
is trained on the extracted bottleneck features till convergence. Similar to most prior work in this
domain (Masci et al., 2013), we used a pyramidal stacking approach for the autoencoders, where
the number of neurons is halved for the next higher layer. We also report the held-out validation
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accuracies, and select three configurations for the visualization experiments, which we describe in
Section 5. For all architectures, the autoencoder is pretrained with batched stochastic gradient de-
scent for 5 epochs, with a learning rate of 1e-4, a weight decay of 1e-4, and batch size of 500. 20%
of the features in the frame are randomly dropped when training the denoising autoencoders. From
an examination of Table 1, we find that the best classification accuracy is obtained using 128-bin
FFT spectrograms, with a temporal context window of 5 frames, and a stacked denoising architec-
ture with tied weights. The accuracies obtained with log-Mel spectrograms are lower than those
obtained with FFT spectrograms, which indicate that fine detail in the spectrum might be necessary
for emotion classification. We also observe that while deep autoencoder features are better than
those obtained from the stacked architectures, the improvement in performance is marginal. Tying
weights also seem to have little or no improvement in performance.

5 VISUALIZATION OF UNSUPERVISED REPRESENTATIONS

In this section, we describe the visualization experiments we conduct to obtain an insight into
the ability of the autoencoder architectures to learn features which are discriminative of affective
attributes. The activations learnt at the bottleneck layer of the autoencoders are dimensionally
reduced using tSNE (Van der Maaten & Hinton, 2008) and are visualized at frame and utterance
level, with the primary emotion categories. We also examine the variation of the learnt representa-
tions with two affective dimensions : (1) Activation, which is a measure of intensity of the emotion,
and (2) Valence, which is a measure of sentiment of the utterance. We choose the following
spectrogram-autoencoder configurations for the visualization experiments:
(1) DEEP-MEL-5 : Deep autoencoder trained on log-mel spectrograms with context window length
of 5.
(2) TIED-128-5 : Stacked autoencoder (tied weights) trained on 128 bin FFT spectrograms with
context window length of 5.
(3) TIED-513-1 : Stacked autoencoder (tied weights) trained on 513 bin FFT spectrograms (single
frames with no context windows).

5.1 FRAME BASED REPRESENTATIONS WITH THE DENOISING AUTOENCODER

Figure 1 shows scatter plots of the frame-level representations for four primary emotions - (1)
Happy (2) Sad (3) Angry and (4) Neutral. The visualization is at a frame level, which gives us
an insight into the acoustic characteristics of the speech, as well as the discriminative ability of
the autoencoder to learn affective characteristics from the data. All frames within an utterance are
assigned the emotion label of the entire utterance. While this is not entirely true in practice, we
have observed that it is capable of providing meaningful visualizations. On an initial examination
of the scatter plots, we find that smaller islands (regions disconnected from the biggest cluster)
occur where the spectral characteristics of the frames are markedly different from the rest of the
utterance. This mostly corresponds to the separation between the silence/pauses and speech within
the utterances. Further the unsupervised representations can clearly separate out anger (in green)
from sadness (in yellow), which gets grouped into tight clusters. Happiness (in blue) and anger
(in green) have low-variance clusters, while the high variance neutral category does not have a
well-defined cluster. This is intuitive, since from prior psychological studies (Scherer, 2005), the
neutral emotion is not well-defined in terms of spectral characteristics, and also depends largely on
speaker specific attributes.

We also explore whether the autoencoder can learn affective attributes from the speech such as ac-
tivation (intensity of emotions) and valence (positive or negative sentiments). Figure 1 also shows
scatter plot of learned representations, colored for each attribute according to intensity (blue for low-
est and red for highest). We find that the autoencoder is most discriminative of activation, followed
by valence. The sensitivity of the representation to activation explains why anger and sadness are
clustered and well separated. On examining the scatterplots for valence, we find that low valence
utterances (sadness and anger) are more towards the edges, compared to medium and high valence
utterances.
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(a) Emotion : DEEP-MEL-5 (b) Emotion : TIED-128-5 (c) Emotion : TIED-513-1

(d) Activation : DEEP-MEL-5 (e) Activation : TIED-128-5 (f) Activation : TIED-513-1

(g) Valence : DEEP-MEL-5 (h) Valence : TIED-128-5 (i) Valence : TIED-513-1

Figure 1: Visualization of frame-level representations of emotion, activation and valence learned by
model configurations DEEP-MEL-5, TIED-128-5 and TIED-513-1. The intensity gradient for each
dimension is from blue (lowest) to red (highest). Yellow - Sadness; Red - Neutral; Blue - Happiness;
Green - Angry

5.2 UTTERANCE BASED REPRESENTATIONS WITH THE RECURRENT AUTOENCODER

We have visualized scatter plots of categorical emotions, and affective dimensions such as activation
and valence at frame level. However, when the entire utterance is annotated with a single attribute,
such as emotion or valence/activation, it would be necessary to learn a representation for the entire
utterance. This would not only filter out phonetic information which varies across frames in an ut-
terance, but also be convenient for visualization. We have used a recurrent neural network with a
single hidden BLSTM (Bidirectional Long Short Term Memory) layer as an autoencoder to learn a
temporal hidden representation which can map the utterance to itself. The BLSTM-RNN is added
on top of the denoising autoencoder, i.e. it is trained with a learning rate of 1e-6 over 45 epochs
on the bottleneck-layer activations obtained by the autoencoder. 16-dimensional frame-level hidden
BLSTM cell activations are extracted from the trained recurrent autoencoder. Our experiments indi-
cate that averaging the framewise activations to generate an utterance-level representation produces
representations visually more indicative of affect, rather than selecting the cell activations at the
last frame. Figure 2 shows utterance-level scatter plots of emotions and other affective attributes
such as valence and activation. From the plots we find a similar correlation with affective traits as
in the frame based plots, indicating that the recurrent autoencoder is effective at learning utterance
representations.
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(a) Emotion : DEEP-MEL-5 (b) Emotion : TIED-128-5 (c) Emotion : TIED-513-1

(d) Activation : DEEP-MEL-5 (e) Activation : TIED-128-5 (f) Activation: TIED-513-1

(g) Valence : DEEP-MEL-5 (h) Valence : TIED-128-5 (i) Valence : TIED-513-1

Figure 2: Visualization of recurrent autoencoder learnt utterance-level representations of emotion,
activation and valence for model configurations DEEP-MEL-5, TIED-128-5 and TIED-513-1. The
intensity gradient for each dimension is from blue (lowest) to red (highest). Yellow - Sadness; Red
- Neutral; Blue - Happiness; Green - Angry

6 EMOTION CLASSIFICATION WITH LEARNT REPRESENTATIONS

The features extracted from the autoencoder are used for emotion classification on the IEMOCAP
dataset. In the previous section, we have described our work in unsupervised pretraining of de-
noising and recurrent autoencoders with different spectrograms and architectures. We now use the
pretrained layers of the best performing configuration on the validation experiments (TIED-128-5)
to initialize weights of a MLP (Multi-layer Perceptron). To evaluate the performance of the learned
representations, we add a softmax layer with four output units, for each of the four main emotions
(Angry,Happy,Neutral and Sadness). Let us represent the dataset by a collection of speech frames
{xij}where i denotes the utterance index, and j, the time frame in the i-th utterance. If yij = f(xij)
is the activation of the top layer in C = 4 emotion category dimensions predicted by the MLP, then
the predicted emotion category Ci for the i-th utterance is given by:

Ci = argmaxk∈1:C

j=Ti∑
j=1

yij(k)

Similar to the approach in Han et al. (2014) we split the dataset (comprising of five sessions with
two distinct speakers in each session) into five folds where for each fold, data from four sessions
is used as the training set, and the remaining session for validation and testing. For the session we
choose for validation and testing, we consider one speaker for validation of hyper-parameters, and
the remaining speaker for testing. We average the accuracy across all five folds, and present both
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Table 2: Emotion classification accuracy (utterance level) for our approach, compared with (1) MLP
without pre-training (2) softmax classifier trained on COVAREP features

Emotion TIED-128-5 MLP COVAREP

Happy 36.04 41.56 31.03
Angry 44.95 24.03 32.31
Sad 73.80 66.55 50.17
Neutral 41.59 48.58 61.48
Weighted Accuracy 48.10 46.75 44.67
Unweighted Accuracy 49.09 45.18 43.74

weighted and unweighted accuracies in Table 2. We compare our results with three approaches:
(1) A network with the same architecture without pre-training (2) A softmax classifier trained on
features extracted from the COVAREP toolbox, such as MFCCs and prosodic features (for example,
pitch, peak slope, Normalized Amplitude Quotient (NAQ), and difference between first two har-
monics in speech (H1-H2)) and (3) the DNN-ELM approach described in Han et al. (2014), for
which results in the same experimental setting (emotion categories and speaker-independent data
splits) as our work have been reported in Lee & Tashev (2015). The Angry and Neutral categories
exhibit much lower performance than the Happy and Sad categories, which can be understood from
the presented scatter plots in Figure 2, as the Angry class has an overlap with Happy and Neutral
categories, and Neutral has an overlap with all the other categories. (Lee & Tashev, 2015) report an
unweighted and weighted accuracy of 52.13%, and 57.91% respectively for the DNN-ELM model.
It is worth noting that our work is more focused on finding a good unsupervised representation for
affect, rather than utilizing a highly complex model for subsequent classification.

7 FUTURE WORK AND CONCLUSIONS

In this paper, we explore stacked and deep denoising autoencoders for representation learning of af-
fective and paralinguistic attributes from speech. We have also experimented with spectrogram types
and temporal context windows, and found that a stacked tied autoencoder with 128 FFT bins and a
temporal context window of 5 performs the best on a speaker-independent held-out validation set.
We find that the representations learnt by the autoencoder are sensitive to the four primary emotions,
and to activation as an affective dimension. Emotion classification experiments show that a multi-
layer perceptron, along with layers initialized through pre-training achieve an average weighted
classification accuracy of around 48.10% on a five-fold leave-one-session-out testing scheme. We
also train BLSTM-autoencoders to visualize utterance specific representations. For future work, we
wish to explore BLSTM classifiers, and inverse filtering for speech emotion classification.
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