
Learning an appearance-based gaze estimator
from one million synthesised images
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Abstract

Learning-based methods for appearance-based gaze estimation
achieve state-of-the-art performance in challenging real-world set-
tings but require large amounts of labelled training data. Learning-
by-synthesis was proposed as a promising solution to this problem
but current methods are limited with respect to speed, the appear-
ance variability as well as the head pose and gaze angle distribu-
tion they can synthesize. We present UnityEyes, a novel method to
rapidly synthesize large amounts of variable eye region images as
training data. Our method combines a novel generative 3D model
of the human eye region with a real-time rendering framework. The
model is based on high-resolution 3D face scans and uses real-
time approximations for complex eyeball materials and structures
as well as novel anatomically inspired procedural geometry meth-
ods for eyelid animation. We show that these synthesized images
can be used to estimate gaze in difficult in-the-wild scenarios, even
for extreme gaze angles or in cases in which the pupil is fully oc-
cluded. We also demonstrate competitive gaze estimation results on
a benchmark in-the-wild dataset, despite only using a light-weight
nearest-neighbor algorithm. We are making our UnityEyes synthe-
sis framework freely available online for the benefit of the research
community.

Keywords: appearance-based gaze estimation, learning-by-
synthesis, 3D morphable model, real-time rendering

Concepts: •Computing methodologies→ Real-time simulation;
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1 Introduction

Appearance-based methods have significant potential to address the
limitations of model and feature-based gaze estimation in uncon-
strained daily-life settings, particularly with respect to robustness
and speed. Early work aimed to learn appearance-based gaze esti-
mators from few samples [Lu et al. 2011] but this approach does not
generalize well to in-the-wild situations. Such situations are char-
acterised by unconstrained lighting conditions and significant vari-
ability in head poses and eye region appearances. State-of-the-art
appearance-based methods therefore use large amounts of training
data. For example, the TabletGaze dataset contains 100,000 images
of people looking at a tablet screen in a lab setting [Huang et al.
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Figure 1: We rendered one million realistic images of eyes using
our generative eye region model. These are matched to an input
image using a nearest-neighbor approach for gaze estimation. Our
model manages to find good matches even with extreme gaze angles
and glare from glasses.

2015] while MPIIGaze contains nearly 214,000 images collected
over several months during everyday laptop use [Zhang et al. 2015].
However, despite their size, current datasets are still limited in the
head pose and eye region appearance variability that they cover. In
addition, collecting such large amounts of ground truth annotated
training data is time-consuming and costly.

Learning-by-synthesis addresses this problem by replacing the
manual collection of training data with an automatic procedure for
synthesizing eye region images using 3D models generated using a
calibrated multi-camera system [Sugano et al. 2014]. Zhang et al.
used synthesised data to pre-train a multimodal convolutional neu-
ral network and fine-tune it using real images for appearance-based
gaze estimation in the wild. This approach has demonstrated state-
of-the-art performance for the most challenging and practically rel-
evant task – device and person-independent gaze estimation [Zhang
et al. 2015]. Recent work explored a fully synthetic approach by
rendering perfectly-labelled eye images with illumination variation
to pre-train the network [Wood et al. 2015]. No manual collection
of images for defined gaze and head pose ranges was necessary in
this case. However, their method had limited appearance variability
from only ten participants and limited scale with rendering time of
5.26s/image. At this rate it would take two months of rendering
to generate a dataset of a million images – too long for a practical
development cycle.

We present UnityEyes, a novel method for rapidly synthesizing
large numbers of variable eye region images for training data (see
Figure 1). Our method combines a novel generative 3D model of
the human eye region with a real-time rendering framework. The
eye region model is derived from high-resolution 3D face scans and
uses real-time approximations for complex eyeball materials and
structures, as well as anatomically inspired procedural geometric
methods for eyelid animation. We synthesize images using a ras-
terizing renderer and image-based lighting for realistic and varied
illumination conditions. These synthesized images can be matched

http://dx.doi.org/10.1145/2857491.2857492


to real-world input images using nearest-neighbor approaches to
estimate gaze. The UnityEyes framework will be made publicly
available for the benefit of the research community.1 The spe-
cific contributions of this work are three-fold: First, we introduce
a novel statistically-derived generative 3D model of the eye region
for increased appearance variation. Though several full-face mor-
phable models already exist, this is the first detailed eye region mor-
phable model of its kind. Second, we describe a rendering frame-
work for rapidly synthesizing eye images 200× faster than previous
work. This allows us to rapidly generate a large number of im-
ages and thereby densely sample from the gaze direction and corre-
sponding eye region appearance distributions. Third, we demon-
strate the importance of covering this variability in the training
data by showing competitive performance for device and person-
independent appearance-based gaze estimation, despite only using
a light-weight k-Nearest-Neighbor classifier.

2 Related work

Our work is primarily related to two types of previous work: 1) sta-
tistically derived 3D morphable face models, and 2) learning-by-
synthesis for gaze estimation. Realistic eye-region rendering is
also very important for the entertainment industry, and recent work
shows that their complex structure and movements can be cap-
tured in high detail [Bermano et al. 2015; Bérard et al. 2014].
These methods however are focussed on re-creating individual eye-
regions, not the generation of models with variety.

3D morphable face models

Morphable face models are used for a wide range of computer vi-
sion problems because they provide pose and illumination invari-
ance – two yet-outstanding challenges for gaze estimation. This is
done by modelling the shape and texture of 3D faces, as well as
the process of image formation itself. Blanz and Vetter built the
first such morphable model using a set of 200 laser-scanned 3D
faces. Morphable face models are statistically derived 3D models
that represent a face as a linear combination of 3D basis faces. They
showed how it could be used to reconstruct a 3D face by matching
the morphable model to an image, following manual initialization
[Blanz and Vetter 1999]. More recently, Paysan et al. published the
Basel Face Model – an improved open source generative 3D face
model, and showed how it could be used for illumination invariant
face recognition [Paysan et al. 2009]. It has since been used in a
number of systems, including learning-by-synthesis for head pose
estimation [Fanelli et al. 2013], real-time facial performance cap-
ture [Li et al. 2013], and learning a person-specific face model for
gaze estimation [Mora and Odobez 2012].

A limitation of these models is that they only represent neutral face-
shape so do not capture facial motion, e.g. eyelid movement dur-
ing vertical saccades. To capture facial motion, Vlasic et al. devel-
oped a multilinear model that separately parameterizes differences
in identity, expression, and viseme [Vlasic et al. 2005], and showed
how it could be used for face transfer – mapping expressions from
one person onto another. This system however does not handle ge-
ometry for the most complex parts of the face, including the eyes
and eyelids – these were transferred by blending textures only. Cao
et al. published a similar open source multilinear morphable model,
but used smoothed data from a commodity depth camera, so could
not accurately capture eye region detail.

These morphable models exclude eye region details because scan-
ning equipment cannot accurately capture the surface of the eyeball
due to its transparent material. Therefore they model the face and

1http://www.cl.cam.ac.uk/research/rainbow/projects/unityeyes/
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Figure 2: Our eyeball mesh (a) shown rendered with physically-
based materials and refraction effects. We model pupillary con-
traction (b) and dilation (c) as part of the refraction shader.

eyes as a single surface. This is a critical limitation as in reality
the eyeballs are separate organs and can move independently, and
should thus be modelled separately.

Learning-by-synthesis for gaze estimation

The success of learning-based approaches depends on how well the
training data covers the test data. Ideally, we would capture enough
training images of eyes to completely cover all possible test cases,
but this is impractical. To collect eye images, participants must
be called into a laboratory or hired over a period of time, limiting
environment and participant variability. Additionally, the range of
gaze directions is then limited by practical matters, e.g. the size and
placement of the screen used for gaze markers.

Instead, researchers have synthesized training data for eye track-
ing problems. Lu et al. synthesized eye images for head pose-free
gaze estimation. Rather than use 3D graphics techniques, they syn-
thesized eye images by deforming captured images with 1D pixel
displacements [2012]. While applicable to head motion, this simple
synthesis approach cannot be extended to improve person or envi-
ronment variation. Sugano et al. published the UT Multi-view Gaze
dataset that used reconstructed 3D eye region models captured us-
ing eight synchronized webcams [2014]. They showed improved
results from synthesizing dense training data, but used only simpli-
fied graphics techniques ignoring illumination or material effects.
Additionally, their 3D models were low resolution and failed to ac-
curately reconstruct the eyeball due to its complex material. Re-
cently, Wood et al. built a collection of dynamic eye-region models
from high quality 3D head scans which could be controlled to de-
termine eye gaze [2015]. They rendered realistic eye images using
a path-tracer with physically-based materials and varying illumi-
nation. They trained a deep neural network [Zhang et al. 2015]
with these images and showed state-of-the-art results for cross-
dataset appearance-based gaze estimation in-the-wild. However,
their training data had limited appearance variation from only ten
separate participant models, and their preparation method required
manual animation for each participant – a time-consuming task. In
addition, their renderer was not real-time, limiting the number of
images they could synthesize in a reasonable time.

3 Approximate eyeball model

The orientation of the eyeball determines gaze, so it must be present
in training data for gaze estimation. Our aim was to synthesize large
amounts of varied training data, so in this section we describe tech-
niques for efficiently rendering realistic eyeballs, and modelling
shape and texture variation. Though it is one of the most complex
organs in the body, we modelled it using a single 3D mesh. This
mesh corresponds to the eye’s external surface (Figure 2a), and its
shape is defined by two spheres representing the sclera (r=12mm)
and the cornea (r=8mm) [Ruhland et al. 2014].
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Figure 3: We model iris refraction by altering texture look-ups.
In (a), a viewed pixel is refracted correctly to show black (pupil)
instead of blue (geometry surface). Example renders with (top) and
without (bottom) refraction are shown in (b).

Physically based refraction

In reality, the iris is a flat disk of muscle that appears distorted
through the refractive corneal bulge. This phenomenon is partic-
ularly apparent when the eye is viewed at an angle (Figure 3b), so
it was important to model it. Refraction is easy to simulate using
ray-tracing, but is not part of the rasterization pipeline. We there-
fore developed physically correct refractive effects using a fragment
shader – a GPU program that processes each pixel in a graphics
pipeline [Shirley et al. 2009]. We followed previous work [Jimenez
et al. 2012], and altered each texture look-up with a calculated
texture-space offset dL. For each pixel on the surface of the cornea:

refracted pixel color = EyeTexture(uv + dL) where (1)

dL =
(
M−1dW

)
xy

and dW =
hW

−n̂W · r̂W
(2)

uv is the original texture coordinate, M is the eyeball model trans-
form, dW is the world-space offset, hW is the virtual height be-
tween cornea and iris, n̂W is the eyeball’s gaze direction, and r̂W
is the refracted view direction through the iris (Figure 3). This al-
lowed us to efficiently simulate the complex multi-layered structure
of the eyeball using a single 3D mesh.

Varying eyeball shape and texture

Eyeballs vary both in shape (iris width, pupillary contraction and
dilation) and texture (iris color). We varied iris width by scaling
iris boundary vertices about their 3D center. Pupil size was var-
ied using the fragment shader, by scaling the texture-space offset
dL to simulate radial expansion or contraction of the iris. We ex-
tracted a collection of iris textures from photographs, and randomly
choose between them at run-time. These textures were used with
the renderer’s built-in physically based shader2 that models how
light behaves in reality to achieve consistent effects under various
lighting conditions. The eyeball is wet so reflects the environment
and surrounding eye area. These reflections can affect gaze estima-
tion algorithms, so training data should include such examples.

4 Generative eye region model

Eye images also include nearby parts of the face, so we built a
generative model for synthesizing realistic eye regions. This is
important for a resulting gaze estimation system to work across
users of different gender, age, and ethnicity. Our aim was to pro-
duce a model that can represent both 1) the large variety in facial
shape and appearance, and 2) eyelid motion during eyelid saccades
. For the former we generated novel 3D eye regions using a mor-
phable shape model [Blanz and Vetter 1999] – a paramaterized lin-

2http://docs.unity3d.com/Manual/Shaders.html
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Figure 4: (a) shows our generic eye region topology (229 vertices)
over a raw scan (∼ 5M vertices). (b) shows the topology in uv
texture-space with important edge loops highlighted.

ear model of 3D shape, and for the latter we used anatomically-
inspired procedural geometric methods.

Head scan registration and retopology

In order to build a generative morphable shape model, we needed
3D data of the facial eye region. We followed previous work and
used high resolution 3D head scans captured by a professional pho-
togrammetry studio3 (10K diffuse color textures, 0.1mm resolution
geometry) [Wood et al. 2015]. Scanning time is critical for captur-
ing high-quality detailed data – while previous work took ∼ 1s to
scan each face [Paysan et al. 2009], these models were captured in
under 1/10, 000th of a second. We acquired 20 scans (5 female)
covering different ages, eye shapes, bone structure, and skin tone.

Before we can build a model of 3D shape variation, the raw scan
data must be brought into correspondence. To do this, we re-
parameterized the original high-resolution mesh so that semanti-
cally identical points (e.g. points along the interior margin or nose
ridge) shared the same space in a lower resolution domain or topol-
ogy. Previous work retopologized each head-scan separately, result-
ing in N new topologies for N initial meshes [Wood et al. 2015].
Instead, we registered eye regions of varying shape with a single
generic eye region topology – this can be seen in Figure 4. We care-
fully designed this generic topology so the edge loops would match
the real life anatomic structure, e.g. the oculus orbicularis, whilst
also faithfully capturing the original shape. These edge loops allow
more realistic animation as mesh deformation matches that of real
flesh and muscles [Orvalho et al. 2012]. We manually positioned
the topology over the original scan in order to be as accurate as
possible, and then transferred across color and displacement maps.

Morphable eye region model

Following registration, the shape of each eye region is represented
by our generic eye region topology and can be expressed as a 3n
dimensional vector:

s = [x1, y1, z1, x2, ...yn, zn]
T ∈ R3n (3)

Where xi, yi, zi represent the 3D position of the ith vertex. We
constructed a linear modelMs using principal component analysis
(PCA) on our set of m retopologized scans. PCA uses singular
value decomposition to extract an ordered set of orthogonal basis
functions U ∈ R3n×m that best describe the data. We then fit a
GaussianNi(0, σi) to each of the m PCA basis functions using the
original data resulting in a parametric shape model:

Ms = (µ, σ, U) (4)

3http://www.3dscanstore.com/

http://docs.unity3d.com/Manual/Shaders.html
http://www.3dscanstore.com/


Mean shape Modes of variation
µ µ± 2σ1U1 µ± 2σ2U2 µ± 2σ3U3

Figure 5: The mean 3D shape along with the first three modes of
variation extracted by PCA. The first mode U1 captures the differ-
ence between a hooded eye and a protruding eye.

Figure 6: Four example textures in uv space and rendered with
mean shape µ, ranging from the darkest skin tone to the lightest.

where µ ∈ R3n is the average 3D shape and σ = [σ1, σ2, ...σm]
describes the Gaussian distribution of each basis function. New eye
region shapes s can then be generated from basis function coeffi-
cients α∈Rm as follows:

s(α) = µ+U diag(σ) αT (5)

where α is described by m independent random Gausian variables
with zero mean and unit variance.

Previous work on 3D morphable models also built a similar linear
model for skin albedo [Blanz and Vetter 1999]. We investigated
this approach, but found we did not have enough samples to derive
a realistic generative texture model, especially considering the high
dimensionality of the textures. Instead we randomly chose a single
high-resolution texture at run-time, thus ensuring the eye region
appeared realistic (Figure 6).

Procedural methods for eyelid movement

When the eyeball moves, the eyelids move with it. This is most
prominent during vertical saccades which are always accompanied
by lid movement. As our shape model represents neutral gaze (0◦

eyeball pitch and yaw), we had to deform the mesh to follow eye-
ball rotation. In reality, a muscle controls upper lid movement via
tendons connected to the lid [Evinger et al. 1991]. Its general move-
ment can be described as a rotation, but different parts of the lid
have different rotational axes [Malbouisson et al. 2005]. We used
our carefully designed topology and modelled the rotation of the
jth vertex in the ith edge loop vij as follows:

v′ij = R (ai,pij , θij)vij (6)

Where R (a,p, θ) describes a rotation of θ around axis a about
pivot p. Each edge loop’s rotational axis ai is defined as the offset
between its eye corner vertices, and pivot pij interpolates between

−30◦ 0◦ +30◦

Figure 7: We use anatomically inspired procedural geometric
methods to animate eyelid, avoiding the need to manually rig the
model. Shown are renderings for eyeball pitch at 0◦ and ±30◦.

eye corners and eyeball center to ensure vertices near the eye cor-
ners are not displaced too far. Angle θ is defined separately for
upper and lower lids using measurements taken from an empirical
study [Malbouisson et al. 2005], and decays for the outer edge loops
to simulate elastic stretching of the surrounding skin and flesh. In
this way, we use the edge loops to model lid movement procedu-
rally, avoiding manual animation [Wood et al. 2015] or more ex-
pensive mechanical-based techniques [Miller and Pinskiy 2009].

As our eye region mesh is derived from raw scans, there is no guar-
antee that it will touch the eyeball, and in some cases it may in-
tersect it. Therefore we shrinkwrapped the inner edge loops to the
eyeball surface, filling in any gap between mesh and eyeball. The
innermost edge loop (the interior margin) is projected directly onto
the eyeball surface, while the surrounding two loops are projected
with an offset, simulating skin thickness. These collision calcu-
lations are fast as we can approximate the eyeball mesh with two
sphere primitives. Finally, vertices in outer edge loops are displaced
towards their inner edge loop neighbours to simulate skin elasticity
and avoid discontinuous deformation.

Eye region details

We added two parts to improve realism: eye wetness and eyelashes.
A thin layer of tear fluid covers the eyeball and bunches up near the
eyelid. This can create strong specular highlights (see Figure 8c)
around the edge of the eyelids. We procedurally deformed an eye
wetness mesh to follow the interior margin (red geometry in Fig-
ure 8b), and shaded it with a transparent smooth material. In an im-
age, eyelashes appear as dark edges around the eye and can provide
a visual cue when someone is looking downwards, so we felt it was
important to include this in training data. We modelled them using
directed particle effects – hair particles start at the eyelid boundary
and grow outwards away from the eyeball, curling up or down de-
pending on the eyelid. We iteratively checked for collisions with
the face geometry during hair growth, and redirected hair particles
to avoid clipping. Computing hundreds of hair strands is an expen-
sive operation, so we instead grew only ten guide hairs, and fitted
smoothed eyelash geometry to them (Figure 8b). This geometry
was then textured with a semi-transparent eyelash image.

Skin has a complex structure that appears soft as light scatters
through its layers. Simple shading approaches cause skin to look
hard, so we used specialized graphics techniques to improve re-
alism. Previous work used a physically-based subsurface scatter-
ing material to simulate rays of light as they enter and exit skin
[Wood et al. 2015] – this is accurate but slow. We instead used
a pre-integrated skin shader [Penner and Borshukov 2011] – this
technique pre-computes the scattering effect of light through skin
for different curvatures, and efficiently applies it using a fragment
shader (Figure 9). As our eye region mesh comprises 229 vertices,
its edges can appear sharp, especially around the eyeball itself.
Therefore, we finally smoothed the mesh with Loop subdivision
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Figure 8: We include eyelashes and eye wetness for realism. (a)
shows a render without these, (b) shows eye wetness (red) and eye-
lash geometry (blue), (c) shows the final render.

(a) (b) (c)

Figure 9: We use pre-integrated skin shading for realism (c). With-
out it, skin appears too hard (a). (b) shows the scattered light
through skin – this causes the skin to appear soft.

[Loop 1987], using pre-computed weights for efficiency.

5 Image synthesis

Our goal was to rapidly create large, realistic, and varied datasets of
eye images. Though our generative eye region captures 3D shape
variation, in-the-wild images also exhibit variation depending on
pose and environment. In this section we describe the software we
used for synthesizing datasets much faster than previous work, as
well as how we parameterized the scene to produce varied images.

Rendering our models

We used the Unity 5.24 game engine to render our eyeball and gen-
erative eye region model. Our contribution here is a massive speed-
up in rendering time compared to previous work. This allows us to
easily generate datasets several orders of magnitude larger than be-
fore – an important factor in successfully training large-scale learn-
ing systems [Zhang et al. 2015]. Sugano et al. wrote their own
CPU-based rendering software to render static eye region geome-
try [2014] , and Wood et al. used a GPU-enabled path-tracing en-
gine to render 120× 80px images at 5.26s/image [2015]. We ren-
dered and saved 400× 300px images at 23ms/image using a com-
modity GPU (Nvidia GTX660) and SSD: a 200× speedup. The
bottleneck is writing image files to storage, image rendering itself
takes only 3.6ms. This is because Unity’s rasterizing renderer effi-
ciently draws triangular meshes instead of simulating the behaviour
of thousands of rays of light. The engine also provides physically-
based shader materials and methods for efficiently manipulating the
meshes and materials in real-time. As well as saving the rendered
images, we output JSON-formatted metadata files. These describe
the scene of each image fully, including gaze direction, eye region
shape parameters, and lighting information, as well as 2D and 3D
facial landmarks (e.g. eye-corners and eye-centre) for assisting with
image-alignment.

Illuminating our models

A major source of error for appearance-based gaze estimation is
lighting variation [Zhang et al. 2015]. The eye-region can appear

4https://unity3d.com/

Figure 10: We use HDR panoramic images for reflections and
ambient light in the scene. Here you can see two example equi-
rectangular panoramas, with example eye renderings.

(a) (b)

Figure 11: We precisely control gaze direction and head pose:
(a) shows renders with fixed camera position but varying gaze, (b)
shows fixed gaze but varying head pose.

very different depending on how it is illuminated – the brow or nose
can produce shadows, and lights can create glints or large variations
in image intensity. Unlike previous datasets collected in labora-
tories [Sugano et al. 2014], we wanted our synthesized images to
cover a wide range of illumination conditions. We therefore ren-
dered our scene with a directional light source and image-based
lighting, a method where high dynamic range (HDR) panoramic
images are used to provide ambient and specular light [Debevec
2002]. The directional light simulates bright light sources (e.g. the
sun or a laptop screen), and is pointed in a random direction towards
the eye region – this produces highlights and soft shadows. We
then chose from a collection of 20 HDR panoramic photographs,
and randomly varied their rotation and exposure levels – these were
used for reflections and environmental ambient light (Figure 10).
Our rendering engine then calculated lighting, shadows, reflections,
and ambient occlusion for the eye region and eyeball in real-time.

Posing our models

One of the advantages of generating a dataset using computer
graphics is being able to precisely position objects in the scene
without the practical difficulties of real-life image capture. Includ-
ing images of the eye taken under different head poses is one ap-
proach for head pose independent gaze estimation. While some pre-
vious datasets captured participants from a sparse and discrete set
of different camera angles [Smith et al. 2013; Sugano et al. 2014],
we instead specified the transforms of camera and eyeball continu-
ously, allowing us to synthesize dense training data. The generative
eye region was positioned at the scene origin pointing forwards, and
defines neutral head pose. For each image, we randomly positioned
the camera using spherical coordinates and pointed it towards the
eyeball centre, simulating different head poses. We also randomly
varied eyeball pitch and yaw as deviation from neutral gaze. To
produce a variety of images, we modelled up to±30◦ deviations in

https://unity3d.com/
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Figure 12: UnityEyes running on Windows 10 at 640× 480px.
Important interface components are labelled.

both pitch and yaw for head pose and gaze direction. We assumed
an orthographic camera to simulate cropping a region of interest
from a wide-angle image.

6 Using UnityEyes

We are making UnityEyes freely available for the benefit of the
research community. On starting UnityEyes, users first choose a
resolution for rendering images. The application then starts in in-
teractive mode where users can pan around using the left mouse
button, rotate the eyeball with the middle mouse button, and adjust
the zoom using the scroll wheel. As can be seen in Figure 12, the
3D eye region is rendered against a 50% grey background. Once the
start button is pressed, the application will enter rendering mode
where it will continuously randomize the scene and save images. It
will also save JSON metadata files describing the eye gaze, facial
landmark, and other scene parameters.

Recent work has shown that targetting a specific use scenario
in dataset synthesis can improve results [Wood et al. 2015].
We allow users to specify a gaze distribution through param-
eters {θp, θy, δθp, δθy} where eyeball pitch and yaw are mod-
elled as uniform random variables U(θp−δθp, θp+δθp) and
U(θy−δθy, θy+δθy). Changes in head pose are simulated by ro-
tating the camera around the eye region. Variance in the camera
position is definined in a similar way using {φp, φy, δφp, δφy}.

7 Experiments

We performed a number of experiments to assess both the quality of
our rendered images and their suitability for appearance based gaze
estimation. We briefly outline the test datasets and the methodol-
ogy used for finding best images to match the test data. Note that
in all of our experiments we use a single generic rendering environ-
ment to generate training data, and we do not perform any dataset-
specific targeting as was done in previous work [Wood et al. 2015].

Datasets To test the ability of UnityEyes for generating images
that can be used to estimate gaze on varied and difficult eye re-
gion images, we evaluated our approach on 300-W challenge [Sag-
onas et al. 2013] datasets which include: AFW [Zhu and Ramanan
2012], IBUG [Sagonas et al. 2013] and LFPW+Helen [Belhumeur
et al. 2011; Le et al. 2012], containing 135, 337, 600, and 554 im-
ages respectively. All of the datasets include uncontrolled images of
faces in-the-wild: in indoor and outdoor environments, under vary-
ing illuminations, in presence of occlusions, under different poses,
and from different quality cameras.

To quantitatively evaluate our dataset for appearance based gaze
estimation we used a subset of MPIIGaze [Zhang et al. 2015] that

Figure 13: Nearest-neighbour pairs showing in-the-wild images
(top) and our renders (bottom) along with estimated gaze (green).
The top three rows show qualitatively good gaze estimates, even
under difficult lighting, low resolution, and extreme gaze angles.
The bottom row shows failure cases from unmodelled variation e.g.
makeup and hair.

had manually annotated eye corners (1500 eye images). The dataset
has been collected in realistic laptop use scenarios and poses a chal-
lenging and practically relevant task for eye gaze estimation. As a
comparison, we used a dataset generated by recent previous work
for learning gaze estimation – SynthesEyes. This dataset contains
12000 synthesized images of an eye region, rendered from similar
head-scan data using a highly accurate physically based renderer.

Methodology In all of the experiments we cropped images to
60×38px, and aligned them using a similarity transform. To align
the images from 300-W and MPIIGaze datasets we used annotated
eye corner locations included in the dataset. To align our UnityEyes
images we used the same landmark conventions, with landmarks
sampled from the 3D mesh. The estimated gaze vectors were ro-
tated around the z-axis in-line with the similarity transform.

For matching we first converted all images to grayscale and then
normalised each resulting image to have zero mean and unit vari-
ance. Finally, image matching is done using nearest-neighbour to
choose the image i from the training set that closest matches the
test image.

i = argmin
i

(mean (||traini − test||)) (7)

The pixel error for image matching was computed using the mean
absolute difference between the normalised images. The eye gaze
error was computed as median angle between ground truth and es-
timated eye gaze vectors in degrees.

Matching eye images in-the-wild

First we demonstrate the realism of our synthesized dataset by
matching in-the-wild eye images to those generated by UnityEyes.
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Figure 14: Pixel and gaze errors for nearest-neighbor matching
UnityEyes against in-the-wild and MPIIGaze eye images. Errors
decrease as we use more rendered images.

Table 1: Comparison of our method to previous work for cross
dataset gaze estimation on MPIIGaze. Note our improved results
by using a very simple approach and our new dataset.

MODEL GAZE ERROR

CNN with UT [Zhang et al. 2015] 13.91◦

CNN with SynthesEyes [Wood et al. 2015] 13.55◦

CNN with SynthesEyes+UT [Wood et al. 2015] 11.12◦

k-NN with UnityEyes (ours) 9.95◦

We rendered over a million images and matched these to the four in-
the-wild test sets. The error achieved using our approach (0.522) is
comparable of that of matching from LFPW and Helen trainsets to
the testest (0.511), and significantly more accurate than that of Syn-
theseyes (0.607). This shows UnityEyes images are closer to real-
world captured images than SynthesEyes images. ANOVA with
post-hoc pair-wise t-tests with Bonferroni correction revealed that
all of the differences are statistically significant with p < 0.001.

Some example matches can be seen in Figure 13. The top rows
show successful nearest-neighbor matches, allowing gaze to be esti-
mated for unseen people in unconstrained lighting conditions. Fail-
ure cases in the bottom row include un-modelled occlusions (e.g.
hair) and appearance variation (make-up). These qualitative exam-
ples show the benefit of UnityEyes over previous methods, as we
estimate gaze for extreme gaze angles for which training data could
not previously be collected. As nearest-neighbor image matching
was carried out in a normalized grey-scale space, we color corrected
(matching the mean and standard deviations of the RGB channels)
the matched images to aid visual comparison.

Similarly for MPIIGaze our newly generated dataset achieves bet-
ter image matching performance (0.456) than Syntheseyes (0.511)
and in-the-wild (0.539) and even within dataset matching (0.511).
ANOVA with post-hoc pair-wise t-tests with Bonferroni correction
revealed that all of the differences are statistically significant with
p < 0.01, except for Syntheseyes and within dataset matching.

Training data amount analysis Due to the ability of our frame-
work to rapidly synthesize training data, we were able to generate
over a million training images in less than 12 hours on commodity
hardware. We demonstrate the effectiveness of this in Figure 14.
We can see that both the image pixel error and gaze estimation er-
rors decrease with an increased number of training images.

Gaze estimation

We evaluated the ability of our model to estimate eye gaze vectors
by matching the rendered images to the eye images from MPIIGaze
dataset (using k-Nearest-Neighbour algorithm outlined previously).
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Figure 15: Box-and-whisker plot showing gaze errors tested on
MPIIGaze using a k-NN estimator. x-axis represents training set.
The final two box plots show the benefits of using our generative
eye region model (green) over one with no variation (yellow).

The error rates of our model can be seen in Figure 15.

The results show that our model contains images that are closer in
appearance and therefore better at predicting gaze than the SynthE-
seyes dataset and comparable to the predictions within the MPI-
IGaze dataset itself. Training with our UnityEyes dataset leads
to statistically significantly results than using SynthesEyes (p <
0.001) when using a pair-wise t-test.

Furthermore, our simple k-Nearest-Neighbour approach achieves
comparable performance to state-of-the-art deep learning based
methods for cross-dataset appearance based eye gaze estimation
without dataset targeting [Zhang et al. 2015; Wood et al. 2015] (see
Table 1).

Shape variance

A final experiment we conducted was intended to validate the use-
fuleness of our morphable eye region model. We generated two sets
of UnityEyes training data: a regular dataset using the full capabil-
ities of our generative shape model, and a dataset with no shape
variation, containing just the mean 3D shape µ. Both datasets con-
tained uniform variation in eye region texture.

Our results demonstrate that using our morphable model shape vari-
ation was beneficial for both the pixel errors on the MPIIGaze
dataset (0.456 vs 0.477) and the angle estimation on the same
dataset (9.95 vs 10.62). Angle error differences are statistically sig-
nificant (p < 0.001) according to a pair-wise t-test. See Figure 15
for more detailed comparisons.

Discussion

In our experiments section we demonstrate that our framework is
able to generate highly complex and variable eye region images
that lead to closer nearest-neighbor matches than previous work,
and enables gaze estimation for difficult in-the-wild images. Fur-
thermore, our rendered images can be used in a very simple k-
Nearest-Neighbour eye gaze estimation system, achieving compet-
itive performance compared to more complex deep learning based
approaches [Zhang et al. 2015; Wood et al. 2015]. This demon-
strates the utility of our framework for training appearance based
gaze estimation systems.

8 Conclusion

In this paper we introduced a novel statistically-derived generative
3D model of the eye region. We also described a rendering frame-



work for rapidly synthesizing eye images 200× faster than previous
work allowing us to easily generate a large number of images ex-
pressing a wide range of gaze directions. We demonstrate the utility
of our eye region model and the fast generation framework by show-
ing good image matching capabilities and by showing competitive
performance for device and person independent appearance-based
gaze estimation.

In future work we would like to use more varied head scans in order
to better capture the shape and appearance variability. We would
also like to explore the use of more advanced appearance based gaze
estimation techniques using our eye region rendering framework.
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