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Abstract. Long Short-Term Memory (LSTM) networks have been suc-
cessfully applied to a number of sequence learning problems but they
lack the design flexibility to model multiple view interactions, limit-
ing their ability to exploit multi-view relationships. In this paper, we
propose a Multi-View LSTM (MV-LSTM), which explicitly models the
view-specific and cross-view interactions over time or structured outputs.
We evaluate the MV-LSTM model on four publicly available datasets
spanning two very different structured learning problems: multimodal
behaviour recognition and image captioning. The experimental results
show competitive performance on all four datasets when compared with
state-of-the-art models.

Keywords: Long Short-Term Memory · Multi-View Learning · Behav-
iour recognition · Image Caption

1 Introduction

There is a need for computational approaches that can model multimodal struc-
tured and sequential data. This is important for modelling human actions, cap-
tion generation and other sequence analysis problems. The integration of mul-
timodal or multi-view data can occur in different stages. We use a general def-
inition of views as “a particular way of observing a phenomena”. For exam-
ple, in image captioning, views are from the image and its text caption. For
child engagement level prediction from videos, the views are defined by three
visual descriptors: Head pose, HOG and HOF. Two ways of fusing multi-view
data are early and late fusion techniques [19]. However, these techniques do
not take advantage of complex view relationships that may exist in the input
data. Structured multi-view learning is aimed at capturing view interactions,
thereby exploiting their relationships for effective learning. The key challenge to
multi-view structured learning is to model both the view-specific and cross-view
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dynamics. The view-specific dynamics capture the interaction between hidden
outputs from the same view, while cross-view captures the interactions between
hidden outputs of other views. These dynamics enable learning of subtle view
relationships for better representation learning. The notion of capturing view-
specific and cross-view dynamics is application specific and, hence, a need exists
for flexibility in the design to model such dynamics.

We propose Multi-View LSTM (MV-LSTM), an extension to LSTM,
designed to model both view-specific and cross-view dynamics by partitioning
internal representations to mirror the multiple input views (see Fig. 1). We define
a new family of activation functions (shown as MV-sigmoid and MV-tanh), which
update the MV-LSTM internal memory partitions with three main factors: (1)
input observations for the same view, (2) the hidden outputs from the same
view (for view-specific dynamics), and (3) the hidden outputs from other views
(for cross-view dynamics). Figure 2 shows example topologies of these different
update factors. We evaluate the MV-LSTM model on four publicly available
datasets spanning two different research problems: multimodal behaviour recog-
nition and image caption generation.

2 Related Work

We first discuss related work in deep multi-view learning models and then present
prior work related to two structured learning problems: multimodal behaviour
recognition and image captioning.

Deep Multi-view Learning Models. Broadly, current approaches to multi-
view learning can be grouped into three categories: (a) co-training, (b) multi-
ple kernel learning, and (c) subspace learning [25]. Co-training algorithms train
alternatively on different views to maximize the mutual agreement between the
views. Multiple kernel learning involves learning linear/non-linear combinations
of view-specific kernels. Subspace learning assumes that the views are generated
from a latent subspace and the goal is to learn the latent subspace. Recently, the
processing of multimodal inputs in LSTM networks is explored in image caption
generation [22] and speaker recognition tasks [17]. In these models, multi-view
learning is done by presenting all modalities either at the beginning or at all
time steps of the LSTM network.

Wang et al. [23] have compared several deep multi-view representation learn-
ing models and proposed a new variant combining Canonical Correlation Analy-
sis (CCA) and an Autoencoder. However, the applicability to sequence learning
problems has not been explored. Extensions have been proposed using conven-
tional LSTM for early fusion of language and images during decoding [7,26].
In the image caption generation task involving image and text as two modal-
ities, Vinyals et al. [22] have used LSTM in the decoder module to generate
image sentence representations. In their model, the image modality is shown
only at the beginning of the decoding process and the text modality at all times.
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Ren et al. [17] have proposed a multimodal LSTM for the task of speaker iden-
tification. In their design, all view representations from previous time step are
used for view-specific gate updates by sharing weights across all modalities. Even
though all modalities are present at all times, there is no flexibility to design vari-
ous types of view-specific and cross-view interactions, nor in using only a portion
of the views. To the best of our knowledge, the proposed MV-LSTM is the first
multi-view structured LSTM to offer design flexibility to construct different net-
work topologies for modelling both view-specific and cross-view interactions.

Behaviour Recognition. The development of computational models to under-
stand the social-interactive behaviours of children is a relatively new area of
study, facilitated by the recent public release of an annotated Multimodal Dyadic
Behaviour Dataset (MMDB) dataset [16]. Presti et al. [14] proposed a variable
Time-Shift Hidden Markov Model for learning and modelling pairs of correlation
streams and validated their formulation for predicting the engagement level of
a child using the MMDB dataset. The electrodermal activity (EDA) of the chil-
dren, obtained from wearable sensors, has been used to predict the engagement
level of the child [4]. Finally, acoustic signals have also been evaluated in models
aiming to predict child engagement in the MMDB dataset [3].

Image Captioning. Inspired by recent successes in sequence generation in
machine translation [20], automatic generation of natural sentences for images
is gaining significant momentum. Jia et al. have proposed the gLSTM model [7],
where a semantic representation together with text inputs was used as LSTM
inputs at each time step. Karpathy and Fei-Fei [8] proposed a model that gen-
erates image region descriptions using the full image and their associated sen-
tences. The image regions were obtained using Region Convolutional Neural
Networks(CNN). More recently, Xu et al. [26] computed a context vector from
salient regions of an image and used it on the decoder side.

3 Background: Long Short-Term Memory

The Long Short-Term Memory represents a class of Recurrent Neural Networks
successfully applied to sequence learning problems [2] such as image caption
generation. In the image caption generation task, the goal is to generate an
appropriate sentence (Y ) given an image (X) and LSTMs are commonly used as
language generators. LSTMs are designed to address the exploding and vanishing
gradients problems that may occur in Recurrent Neural Networks [6]. At the
heart of an LSTM unit is a memory cell, C, that remembers inputs it has seen
so far. The memory cell contents are explicitly controlled by sigmoidal gates that
enable the network to decide when to read (it), write (ot) and clear the memory
contents (ft). The input non-linearity is applied through the update term (gt).
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The LSTM update operations are given by

it = sigm(Wixxt + Wihht−1) (1)
ft = sigm(Wfxxt + Wfhht−1) (2)
ot = sigm(Woxxt + Wohht−1) (3)
gt = tanh(Wgxxt + Wghht−1) (4)
ct = ft � ct−1 + it � gt (5)
ht = ot � ct (6)

where xt is the input representation vector at time t. ht−1 is the LSTM out-
put from previous time step. sigm, tanh represent sigmoid and tanh non-linear
transfer functions. W are the model parameters. yt can be inferred at each time
step by adding a softmax layer from the LSTM output ht and selecting the label
(e.g. word) with highest probability.

Fig. 1. The proposed Multi-View LSTM. X
(k)
t represents k-th view input at time step

‘t’ and h
(k)
t−1 is the MV-LSTM output from time step t − 1 corresponding to the k-th

view. N is the total number of views. The multi-view sigmoid and tanh gate functions
are defined in Eqs. 7–13.

4 Multi-View LSTM

The Multi-View LSTM partitions the memory cell and the gates into regions
corresponding to multiple modalities or views. The proposed MV-LSTM model
brings two novel ideas, the second idea being the most important: (1) A view has
its own internal dynamic: The MV-LSTM model keeps one memory partition
(referred to as “region” in Fig. 1) for each input view. E.g. when modelling
engagement, the MV-LSTM will be partitioned in three memory partitions, one
for each of the three input views. (2) The memory partition of a specific view
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should be flexible in how it integrates information from other views: MV-LSTM
allows four types of memory cells: (a) View-specific cells: affected by a hidden
state from the same view (orange in Fig. 2), (b) Coupled cells: affected by a
hidden state from other views (green in Fig. 2), (c) Fully-connected cells: affected
by both same-view and other-view hidden states (brown in Fig. 2), (d) Input-
oriented cells: not affected by either the same-view or other view hidden states
(yellow in Fig. 2).

(a) (b) (c)

(d) (e)

Fig. 2. MV-LSTM topologies. The input update term is represented by g with the
superscript indicating the view. (a) View-specific: each view at time t is interacting
with the corresponding view representations from time t − 1. (b) Hybrid topology: a
portion of view-specific and cross-views defined by the hyper-parameters α and β at
time ‘t − 1’ is connected at time step t. (c) Hybrid topology: another configuration
with different view proportions defined by the hyper-parameters α and β. (d) Coupled
topology: each view at time t is interacting with other view representations from time
t − 1. (e) Fully connected topology: all views from time t − 1 interact with each view
at time t. (Color figure online)

4.1 Multi-View Interactions

The view-specific and cross-view interactions are very common in many prob-
lems. For example, in a group meeting scenario, it is often the case where a
person’s utterance at time t is influenced by her utterances and the responses
of other people at time t − 1. In this situation, all modalities are fully connected
between adjacent time steps. Another type of view relationships that are very
common is dependency relationships. For example, a child’s response at time t
will be based on an adult’s prompt at time t − 1 in adult-child interactions. In
other example, the adult asking the name of the picture on a book page to a
child at time t − 1, followed by the child’s response at time t. Such situations
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mandate modelling cross-view interactions between adjacent time steps in a cou-
pled topology. The other interesting situation is a hybrid scenario, where only a
certain portion of views will be interacting with other views between adjacent
time steps. For example, in a classical classroom scenario, the teacher has to
remember only key highlights or portions of last day’s lecture to continue his
lecture for today. In such situations, one needs to construct a hybrid topology to
capture only a portion of corresponding or cross-view data from previous time
step to update the view at current time step. Clearly, there is a need to design
different topologies to model view-specific and cross-view interactions.

4.2 Model Definition

Figure 1 shows a schematic representation of our MV-LSTM model. Our MV-
LSTM is defined by the following update operations for gates and cells1.

i
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pt+1 = softmax(Z(h(v)
t )) (13)

where x
(v)
t is the input representation at time t for view v. A ∈ R

c×d where c is
the view gate size and d is view memory cell size. B ∈ R

c×d where c is the view
gate size and d is the view memory cell size. h

(v)
t−1 is the output from the previous

MV-LSTM unit for view v. N is the total number of views. W ’s are the model
parameters. Notice that all gates (i, f and o) and the input update term (g)
explicitly model the view-specific and cross-view interactions: W

(v)
ih Ah

(v)
t−1 term

models the view-specific and W
(k)
ih Bh

(k)
t−1 models cross-view interactions. Z is a

transformation function that concatenates ht of all views. The symbol � denotes
an element-wise multiplication of the variables.
1 We present the update function for chain-like structured output but our derivation

can be easily extended to any tree structure.
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The two matrices A and B are central to defining the four types of memory
cells mentioned above. They are parametrised by the α and β hyper-parameters
illustrated in Fig. 2. Formally, matrices A and B are defined as:

A[i, i] = 1; i <= α × d (14)
A[i, j] = 0; otherwise (15)
B[i, i] = 1; i >= (1 − β) × d (16)
B[i, j] = 0; otherwise (17)

where d represents the memory size of this specific view. When α = 1/3 and
β = 1/3, the memory will contain three types of cells: view-specific (shown in
orange in Fig. 2), input-oriented (shown in yellow in Fig. 2) and coupled (shown
in green in Fig. 2)). α = 1/3 means that only a third of the cells will be affected
by the same-view hidden state hv.

The MV-LSTM is different from early fusion of modalities in that it allows
four types of interactions between views/modalities. In early fusion, if one of
the modalities has strong dynamics, it may overwhelm other modalities during
the gate updates. If a modality is negatively influencing the model performance,
there is no design flexibility to minimize its effect. MV-LSTM allows flexible
integration of modality-specific and cross-modality dynamics.

4.3 Learning

The MV-LSTM parameters are learned using backpropagation. The gradient
with respect to all parameters needs to ensure view correspondences and cross-
view term updates. Due to space constraints, we provide the gradient compu-
tation procedure for a single parameter to demonstrate the changes needed for
MV-LSTM and a similar procedure is adopted for all other parameters. The
gradient computation for the parameter W

(v)
ix for the input gate i

(v)
t is given by:

∂h
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t = ∂ytWd (18)
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where Wd are the decoder weights and ∂yt is the output error at time t. All
sigm operations are computed during the forward procedure. yt can be inferred
at each time step from the LSTM output ht by selecting the label (e.g. word)
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with highest probability. These computations ensure view correspondences for a
parameter. A similar procedure is applied to weight parameters corresponding
to output (o), forget (f) gates and the update term (g).

The topology structure enables view-specific and cross-view interactions
between views at adjacent time steps. Hence, the gradient updates for the h

(v)
t−1

term have to be carefully computed using the view-specific connection propor-
tion and cross-view term outputs. The gradient computation for h

(v)
t−1 is given

by:

∂h
(v)
t−1 = ∂h

(v)
t−1 + A∂h

(v)
t +

N∑

k=1
k �=v

B∂h
(k)
t (26)

where a, b, k, v, A, B and N are the same as described earlier.

5 Experiments and Results

The goal of our experiments is threefold: (1) Study the effect of topologies on a
multimodal sequence problem that has dynamic interaction between modalities
at all times. (2) Compare the results with prior work. (3) Study the MV-LSTM
topology when one of the modalities is static.

The following sub-section describes an evaluation of MV-LSTM topologies for
multimodal behaviour recognition task. We also compare the results with prior
work and analyze the effect of varying α and β values providing a discussion
on our findings. Finally, we evaluate our model on the image caption generation
task, which adds new challenges.

5.1 Child Engagement Level Prediction Model

The Multimodal Dyadic Behavior Dataset [16] was used in the experiments for
predicting the engagement level of a child in a social interaction. In this dataset,
an examiner engages a child in five structured play activities or stages. The
stages are: greeting the child by saying hello (Greeting), rolling a ball back and
forth (Ball), looking through pictures in a book (Book), placing the book on
your head to pretend it is a hat (Hat), and gentle tickling (Tickle). Each activity
is designed to elicit various behaviours from the child, including common social-
communicative behaviours observed in toddlers. In addition, for each stage, the
examiner rates how easy or difficult it was to engage the child in the activity,
as follows: 0 = Easy to Engage, 1 = Requires Some Effort to Engage, and 2 =
Requires Extensive Effort to Engage. The engagement level distribution is biased
(>75 %) towards Easy to Engage for all stages except for the Book stage. Hence,
the robustness of the computational model can be validated most effectively
for this stage and all our experiments were done only on the Book stage. In
order to have a balanced dataset, the labels 1 (Requires Some Effort) and 2
(Requires Extensive Effort) are combined to form a single label, resulting in a
binary classification problem.
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We employ child’s head poses tracked across the video, Histogram of Oriented
Gradients (HOG) and Histogram of Oriented Flow (HOF) around the child’s
upper body region as 3-views for the model. The videos are partitioned into
multiple clips and each clip becomes an instance for either training or testing the
MV-LSTM networks. The single video label indicating the child’s engagement
level is propagated to all frames. The video partitioning strategy is similar to
the one used by Sharma et al. [18].

The HOG, HOF and Headposes are mapped to a common embedding space
using linear embedding matrices. The output of this linear transformation using
embedded matrices is the final view representation vectors and used as inputs to
the MV-LSTM at each time step t. The MV-LSTM cell and gates are partitioned
into three equal sized regions corresponding to three input views. The three MV-
LSTM topologies (see Fig. 2) are constructed to enable multiple view interactions
at each time step. A softmax layer computes the probability distribution of class
labels from the MV-LSTM outputs h

(v)
t . During training, at each time step, the

probability, p(yt|xt), of obtaining the class label yt is maximized, given three
views of a frame (xt). During testing, a frame label yt is predicted at each
time step and a video clip label Y is obtained by max-pooling the frame labels
yt−1, yt, yt+1, ...yT . T is the number of frames in each video clip and corresponds
to the number of times steps in the MV-LSTM network. Other strategies such
as selecting the LSTM output from last time step as the predicted label and
averaging the labels over all times are investigated by Sharma et al. [18] and
found negligible performance difference among strategies. So, a max pooling
strategy is used in our work.

Experiment Methodology. The HOG and HOF features are computed
around the spatio-temporal interest points [10] in each frame. The child’s upper
body region is detected using the method proposed by Hoai and Zisserman [5].
The HOF features are mapped to a visual vocabulary built using the HOF fea-
tures of all frames. The visual word representing the maximum number of interest
points is taken as the representative feature for a frame. A similar technique is
applied for the HOG features. In addition to these two views, we have used head
poses as a third view. The 3 degrees of freedom of a head pose – Pitch, Yaw
and Roll – angles were obtained by tracking the child’s face using the IntraFace
tracker library [24] and used them as features for the third view. All 3-views were
employed as inputs at each time step of a MV-LSTM network. For MV-LSTM
networks, the input view sizes were set to 32 and size of the memory cell was
96. The learning rate was initialized to 1e-4, dropout to 0.5 and the batch size
was 100 in the experiments. Leave-One-Out testing is performed on 59 videos
and the precision, recall and F1-scores are computed. The modified version of
Neuraltalk [8] codebase from Jia et al. [7] was modified for the classification
problem and used in the experiments.

Results. To understand the impact of different topologies, we compare a base-
line model constructed by early fusion of all modalities, i.e. all modalities are
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presented at all time steps in a MV-LSTM network. We call this model LSTM
(Early fusion). The experiments are conducted for baseline and models with full,
coupled and hybrid topologies by configuring α and β parameters. The results
are presented in Table 1. The proposed multi-view learning model in a hybrid
topology shows improved performance over the baseline model for both engage-
ment levels.

Table 1. The child’s engagement level prediction scores using 3-views in MV-LSTM
networks for different topologies. In a fully connected topology, all views from time
t − 1 interact with each view at time t (see Fig. 2(e)). In a coupled topology, all views
other than the corresponding view at time t− 1 interact with each view at time t (see
Fig. 2(d)). This topology models the cross-view interactions. In a hybrid topology, a
portion of corresponding view and all other views from time t − 1 interact with each
view at time t (see Fig. 2(b)). The portion of view-specific connection between adjacent
time steps is controlled by a hyperparameter α. The results in this table correspond
to α = 0.1 and β = 1. The hybrid topology has performed significantly better for
both engagement levels as compared to the LSTM (Early fusion) model, indicating the
strength of view interactions in MV-LSTM networks.

Class labels Model Precision Recall F1

Easy to engage LSTM (Early fusion) 0.75 0.81 0.78

MV-LSTM Full 0.81 0.81 0.81

MV-LSTM Coupled 0.79 0.81 0.80

MV-LSTM Hybrid 0.80 0.86 0.83

Difficult to engage LSTM (Early fusion) 0.63 0.55 0.59

MV-LSTM Full 0.68 0.68 0.68

MV-LSTM Coupled 0.67 0.64 0.65

MV-LSTM Hybrid 0.74 0.64 0.68

Studies on predicting the engagement level of a child in adult-child interac-
tions using the MMDB dataset are relatively new and limited. Rehg et al. [16]
developed a computational model using object and head trajectories together
with audio features to predict engagement ratings. Presti et al. [14] proposed a
variable Time-Shift Hidden Markov Model for learning and modelling pairs of
correlation streams and validated their formulation for predicting the engage-
ment level of a child using the MMDB dataset. Hernandez et al. [4] have used the
electrodermal activity of the children, obtained from wearable sensors to predict
the engagement level of the child. Gupta et al. [3] have used the acoustic signals
in their models to predict child engagement level. Rajagopalan et al. [15] have
used the low-level vision features and proposed a two-stage model to predict the
engagement level. In all these studies, the set of videos used in their experiments,
the experiment methodology and the result metrics all vary and hence no stan-
dard benchmark has been established yet. Hence, direct comparison with prior
work is not possible. However, we computed the commonly reported accuracy
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metric for MV-LSTM and presented it in Table 2 along with prior results. The
MV-LSTM accuracy outperforms all previous approaches with the exception
of Hernandez et al. that captured interaction synchrony using child and adult
(not used in our work) EDA features. This resulted in better performance on an
“easier or harder to engage” binary task.

Table 2. Reported results on child’s engagement level prediction accuracies. The MV-
LSTM accuracy outperforms all previous approaches with the exception of Hernandez
et al. [4], however, direct comparison is not possible due a lack of a standard experiment
methodology.

Model Accuracy

Rehg et al. [16] 73.3 %

Presti et al. [14] 76.7 %

Hernandez et al. [4] 81.0 %

Gupta et al. [3] 62.9 %

Rajagopalan et al. [15] 74.4 %

MV-LSTM 77.9%

Model Analysis. An interesting design choice with MV-LSTM are the tunable
hyper-parameters α and β to control the view-specific and cross-view interac-
tions. We have investigated the model performance for different values of α and
β and the results are shown in Figs. 3 and 4. The model performance varies
as α changes with a potential to reach a maximum at a certain value. In our
experiments, we have found a maximum performance at the α = 0.1 or 10%
and β = 1. This way the view interactions can be fine tuned for a better model
performance.

(a) (b)

Fig. 3. The graph showing the change in precision and recall values as the hyperpa-
rameter α is tuned. β = 1 in this experiment. The maximum performance is observed
for a hybrid topology with α = 0.1 for both engagement levels.
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(a) (b)

Fig. 4. The graph showing the change in precision and recall values as the hyperpara-
meter β is tuned. α = 1 in this experiment.

A set of statistical significance tests are performed to compare the baseline
and the proposed MV-LSTM models. The Asymptotic and Mid-p-value variants
of McNemar hypothesis tests [12] are performed. The predicted labels from the
baseline and MV-LSTM hybrid topology model at α = 0.1 and β = 1.0 are
compared for the model performance. The null hypothesis of “MV-LSTM mod-
els are more accurate than baseline models” is used in the tests. The p-value
obtained was 0.97 and 0.96 for the asymptotic and mid-p variants, respectively,
at the 0.05 significance level. The high p-value confirms the null hypothesis that
MV-LSTM models are more accurate than baseline models.

5.2 Image Caption Generation

The goal of this task is to generate a rich sentence description for a given image.
We used an encoder-decoder pipeline similar to gLSTM [7] and NIC [22] models
to validate our MV-LSTM topology. In this pipeline, a vision based deep CNN
is used as an encoder module to compute the image representation. This serves
as input to the language generator module that uses a recurrent network archi-
tecture to generate corresponding natural language descriptions. The language
generator module is also referred to as a decoder. A common approach for lan-
guage generation is the Long Short-Term Memory [6] network that is capable
of remembering long range temporal dependencies. In this task, since the image
modality remains constant over time, we did not investigate studying different
types of view relationships as was done for the children behaviour recognition
problem. For this task, to capture the image and text relationships at all times,
we have applied the MV-LSTM in a coupled topology structure.

The MV-LSTM memory cell and gates are partitioned into two equal sized
regions corresponding to image and text modalities. The inputs to the MV-LSTM
are embedded image, text representations and a global semantic context at all
time steps. The global semantic context is computed by projecting the CNN
image feature representation into a learnt shared representation space using a
normalized Canonical Correlation Analysis (CCA) [7]. The MV-LSTM outputs
representing the memory cell contents are fed to MV-LSTM gates in a coupled
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connection, i.e. the output from the memory cell region corresponding to image
modality from time step t−1 is used to update the gate region corresponding to
the text modality at time step t and vice versa. The same process is applied to
all MV-LSTM gates (input, forget and output) and to the input update term
g. The memory cell regions c(v) are updated using the corresponding gates and
input g. The coupled connection enables interaction between image and text
modalities at each time step and the memory cell regions are updated with a
joint representation. Finally, the MV-LSTM output corresponding to text region
from the last time step is passed to the softmax layer to compute the probability
distribution of words in the vocabulary.

The MV-LSTM update operations for the proposed image caption generation
model using a coupled topology is given by Eqs. 7–13 for two views, i.e. N = 2.
The Z transformation function extracts previous output of the text modality.
The semantic context information is added to the LSTM update operations as
defined by Jia et al. [7].

Experiment Methodology. The performance of the model is studied on the
Flickr8k, Flickr30k and MS COCO benchmarking datasets. The publicly avail-
able splits from Karpathy and Fei-Fei [8] are used in the experiments. The mod-
ified version of Neuraltalk [8] codebase from Jia et al. [7] is used in the experi-
ments. The hidden layer size, word and image embedding sizes are initialized to
256. The semantic context dimension is set to 200. The learning rate is initialized
to 1e-4 and the batch size of 100 is used in the experiments. The beamsize is set
to 10, 20 and 10 for the Flickr8k, Flickr30k and MS COCO datasets, respectively.
The Gaussian length normalization strategy adopted in Jia et al. [7] is used in
the experiments. The BLEU [13], METEOR [1], CIDEr [21] and ROUGE [11]
metrics are used to evaluate the performance of our model. BLEU is a preci-
sion metric that computes the precision of word n-grams between generated and
ground truth sentences. BLEU-n is a geometric average of precisions over 1- to
n-grams. METEOR considers precision, recall and alignment while computing
a score for a generated sentence. The recent CIDEr considers precision, recall,
grammar and saliency to compare the sentence similarities.

Results and Discussion The results of our experiments are shown in Table 3.
The proposed method achieves state-of-the-art performance on all three datasets.
In prior models [7,22], the image modality is presented only at the first time step,
which makes it challenging for longer captions where the images would be helpful
later in the caption generation process (gLSTM [7] try to prevent this influence
loss with a “semantic context” applied at all time steps). The obvious solution
of applying the image at each time step was shown to underperform by Vinyals
et al. [22]. The MV-LSTM manages to integrate the image modality at each
time step in a coupled topology where only a portion of the memory cells is
influenced by the image modality. This flexible integration results in improved
performance over prior models, especially for longer sentences as seen in the
BLEU-3 and BLEU-4 scores.
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Table 3. Comparison of the proposed model with state-of-the-art methods (higher
value is better in each column). Note that our model achieves especially good results
on the BLEU-3 and BLEU-4 metrics, indicating its strength when generating long
sentences.

Dataset Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR CIDEr ROUGE L

Flickr8K Log bilinear [9] 65.6 42.4 27.7 17.7 17.3 - -

NIC [22] 63.0 41.0 27.0 - - - -

BRNN [8] 57.9 38.3 24.5 16.0 16.7 31.8 -

Soft attention [26] 67.0 44.8 29.9 19.5 18.9 - -

Hard attention [26] 67.0 45.7 31.4 21.3 20.3 - -

gLSTM [7] 64.7 45.9 31.8 21.6 20.1 - -

MV-LSTM 65.7 46.9 32.6 22.2 19.9 53.7 46

Flickr30K Log bilinear [9] 60.0 38.0 25.4 17.1 16.8 - -

NIC [22] 66.3 42.3 27.7 18.3 - - -

BRNN [8] 57.3 36.9 24.0 15.7 15.3 24.7 -

Soft attention [26] 66.7 43.4 28.8 19.1 18.4 - -

Hard attention [26] 66.9 43.9 29.6 19.9 18.4 - -

gLSTM [7] 64.6 44.6 30.5 20.6 17.9 - -

MV-LSTM 64.5 44.6 31.1 21.2 17.4 42.0 42.2

MS COCO Log bilinear [9] 70.8 48.9 34.4 24.3 20.0 - -

NIC [22] 66.6 46.1 32.9 24.6 - - -

BRNN [8] 62.5 45.0 32.1 23.0 19.5 66.0 -

Soft attention [26] 70.7 49.2 34.4 24.3 23.9 - -

Hard attention [26] 71.8 50.4 35.7 25.0 23.0 - -

gLSTM [7] 67.0 49.1 35.8 26.4 22.7 81.2 -

MV-LSTM 69.1 51.5 37.7 27.6 22.3 80.2 49.6

6 Conclusions

We have extended the LSTM to enable designing different topologies to capture
multiple view relationships. The proposed Multi-View LSTM (MV-LSTM) par-
titions memory cells and gates into multiple regions corresponding to different
views. To validate its ability to do multi-view learning and its generalizability
to different problem domains, we have constructed topology of MV-LSTM net-
works and applied them to behaviour recognition and image caption generation
problems. Our model has led to better performance due to cross-view learning
on both the problems. We have observed that for behaviour recognition prob-
lems a simple fusion of multiple modalities may yield a sub-optimal performance,
while a multi-view learning can provide better performance by exploiting view
relationships. For the image caption generation problem, the proposed model
integrating both modalities at all time steps allowed for better longer sentence
generation. In future, we plan to apply MV-LSTM to other problem domains.
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