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Abstract

Facial landmark detection has received much attention in recent years, with two de-
tection paradigms emerging: local approaches, where each facial landmark is modeled
individually and with the help of a shape model; and holistic approaches, where the face
appearance and shape are modeled jointly. In recent years both of these approaches have
shown great performance gains for facial landmark detection even under "in-the-wild"
conditions of varying illumination, occlusion and image quality. However, their accu-
racy and robustness are very often reduced for profile faces where face alignment is more
challenging (e.g., no more facial symmetry, less defined features and more variable back-
ground). In this paper, we present a new model, named Holistically Constrained Local
Model (HCLM), which unifies local and holistic facial landmark detection by integrat-
ing head pose estimation, sparse-holistic landmark detection and dense-local landmark
detection. We evaluate our new model on two publicly available datasets, 300-W and
AFLW, as well as a newly introduced dataset, IJB-FL which includes a larger proportion
of profile face poses. Our HCLM model shows state-of-the-art performance, especially
with extreme head poses.

1 Introduction

Facial landmark detection is an essential initial step for a number of facial analysis research
areas such as expression analysis, face 3D modeling, facial attribute analysis, and person
recognition. It is a well researched problem that has seen a surge of interest in the past
couple of years.

However, most state-of-the-art methods still struggle in the presence of extreme head
pose, especially in challenging in-the-wild images. Furthermore, as most methods operate
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in a local manner [16, 24, 26], they rely on good and consistent initialization, which is often
very difficult to achieve. While some images attempt to combat this by evaluating a number
of proposals and initializations, this comes at a computational cost.

In our work, we present a new model, named Holistically Constrained Local Model
(HCLM), which unifies local and holistic facial landmark detection by integrating head
pose estimation, sparse-holistic landmark detection and dense-local landmark detection. Our
method’s main advantage is the ability to handle very large pose variations, including profile
faces. Furthermore, our model integrates local and holistic facial landmark detectors in a
joint framework, with a holistic approach narrowing down the search space for the local one.

We demonstrate the benefits of our model for facial landmark detection through extensive
experiments on two publicly available datasets, 300-W [18] and AFLW [10], as well as a
newly introduced dataset, IJB-FL (a subset of IJB-A [9]), which includes a larger proportion
of profile face poses. Furthermore, we demonstrate the importance of each component of
our model in a series of ablation studies, showing the importance of both the head pose
estimation and sparse landmark detection.

In the following section, we provide a brief survey of the work done on facial landmark
detection and head pose estimation. In Section 3 we describe our novel holistically con-
strained local model for landmark detection. We follow this with description of our experi-
ments (Section 4) and results (Section 5) demonstrating the benefits of our model. Finally,
we summarize our work in Section 6 and propose future directions.

2 Related Work

Facial landmark detection and head pose estimation have made huge progress in the past
couple of years. A large number of new approaches and techniques have been proposed
especially for landmark detection in faces from RGB images. A full review of work in facial
landmark detection and head pose estimation is outside the scope of this paper, we refer the
reader to some recent reviews of the field [6, 23].

Facial landmark detection

Modern facial landmark detection approaches can be split into two main categories -
local and holistic. Local approaches often model both appearance and shape of facial land-
marks with the latter providing a form of regularization. Holistic approaches on the other
hand do not require an explicit shape model and landmark detection is directly performed on
appearance. We provide a short overview of recent local and holistic methods.

Holistic Nowadays majority of the holistic approaches follow a cascaded regression
framework, where facial landmark detection is updated in a cascaded fashion. That is the
landmark detection is continually improved by applying a regressor on appearance given the
current landmark estimate as performed by Cao et al. in explicit shape regression [5]. Other
cascaded regression approaches include the Stochastic Descent Method (SDM) [24] which
uses SIFT [12] features with linear regression to compute the shape update and Coarse-
to-Fine Shape Searching (CFSS) [27] which attempts to avoid a local optima in cascade
regression by performing a coarse to fine shape search.

Recent work has also used deep learning techniques in a cascaded regression frame-
work to extract visual features. Coarse-to-Fine Auto-encoder Networks (CFAN) [26] use
visual features extracted by an auto-encoder together with linear regression. Sun et al. [20]
proposed a Convolutional Neural Network (CNN) based cascaded regression approach for
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sparse landmark detection, however while their approach is robust it is not very accurate.

Local Local approaches are often made up of two steps: extracting an appearance de-
scriptor around certain areas of interest and computing local response maps; fitting a shape
model based on the local predictions. Such areas are often defined by the current estimate
of facial landmarks. A popular local method for landmark detection is the Constrained Lo-
cal Model [19] and its various extensions such as Constrained Local Neural Fields [2] and
Discriminative Response Map Fitting [1] that use more advanced ways of computing local
response maps and inferring the landmark locations. Project out Cascaded regression (PO-
CR) [21] is another example of a local approach, but one that uses a cascaded regression to
update the shape model parameters rather than predicting landmark locations directly.

Another noteworthy local approach is the mixture of trees model [28] that uses a tree
based deformable parts model to jointly perform face detection, pose estimation and facial
landmark detection. A notable extension to this approach is the Gauss-Newton Deformable
Part Model (GN-DPM) [22] which jointly optimizes a part-based flexible appearance model
along with a global shape using Gauss-Newton optimization.

Rajamanoharan and Cootes [15] proposed a local approach that explicitly aims to be
more robust in presence of large pose variations. They use landmark detectors trained at
orientation conditions to produce more discriminative response maps and explored the best
spatial splits for this task. However, they do not propose how such pose information could
be acquired to initialize the model, in our work we use similarly trained landmark detectors
but also provide a way of initializing the models at extreme angles.

Head pose estimation

Head pose estimation has not received the same amount of interest as facial landmark
detection in recent years. Most of the recent work concentrated on exploiting range sensors
for the task [7, 14]. However, the limitation of such approaches is that they cannot work on
purely RGB images. A large number of head pose estimation approaches rely on explicit
prediction of head pose from the image head pose estimate [6]. This is often done through
multivariate regression or multi-class classification [13]. It is also possible to use model
based rather than discriminative approaches [6]. For example, using the estimated facial
landmarks together with a 3D face model to estimate the head pose. However, this requires
an estimate of camera calibration parameters and might not be suitable for some applications.

Most similar model to our work is that proposed by Yang et al. [25]. In their approach
an estimate of a head pose from a Convolutional Neural Network (CNN) is used to initialize
a cascaded shape regression approach for face alignment. Our work integrates the head pose
in a similar manner, but also proposes the use of a combined holistic and local approaches
for landmark detection.

Our proposed HCLM approach is a method that combines both holistic and local ap-
proaches in a joint framework. We use a holistic Convolutional Neural Network (CNN) for
initial sparse landmark detection. The sparse landmarks are then used as anchor points for
a local CLNF approach. Finally, we integrate a head pose estimation model that allows for
even more accurate landmark detection, especially in the presence of non frontal faces.

3 Model

In this section, we introduce our Holistically Constrained Local Model (HCLM) for facial
landmark detection. We first start by describing a joint framework for incorporating holistic
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and local models (Section 3.1). This is done by refining the sparse landmark predictions
(holistic) with a dense landmark model (local). We follow this by a description of sparse
landmark detection and head pose estimation that constrain and refine our model in Section
3.2.

3.1 Holistically Constrained Local Model

Our model integrates coarse and fine landmark detection together in a unified framework.
The main goal of this approach is to improve the fine grained dense landmark detection with
the help of coarser sparse landmarks.

For a given set of k facial landmark positions x = {x,x7,...,x¢ }, our HCLM model de-
fines the likelihood of the facial landmark positions conditioned on a set of sparse landmark
positions X; = {x;, s € S} (|S] < k) and image Z as follows:

=~

p(x|1,Xs,T) o< p(x) [ | p(xi|Xs, Z). (1)
=1

In Equation 1, p(x) is prior distribution over set of landmarks x following a 3D point
distribution model (PDM) with orthographic camera projection. Similarly to Saragih et al.
[19], we impose a Gaussian prior on the non-rigid shape parameters on the model. The
probability of individual landmark alignment (response map) is modeled using the following
distribution:

N(xi|lu=X;,0%) ie€S
p(-xl"XS7I) = (2)
C(xi|Z) ¢S

Above, C is a probabilistic patch expert that describes the probability of a landmark being
aligned, while NV '(x;|ut,62) is a bivariate Normal distribution evaluated at x; with mean -
u and variance - 62 in both dimensions. Equation 2 allows our model to place high con-
fidence (controlled by small ) on a set of sparse landmarks (detected by a holistic model
from Section 3.2), while incorporating the response maps from a denser set. C can be any
model producing a probabilistic predictions of landmark alignment. In our work, we define
C as a multivariate Gaussian likelihood function of a Continuous Conditional Neural Field
(CCNF) [3]:

exp()
CylZ)=pr(y|1) = = : 3
(¥|Z) = p(y|Z) ™ exp(¥) dy 3)
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Above y is a m X m area of interest in an image around the current estimate of the land-
mark (the area we will be searching in for an updated location of the landmark), W(y;;Z) is a
vectorised version of an n X n image patch centered around y; and is called the support region
(the area based on which we will make a decision about the landmark alignment, typically
m > n), fi 1s a logistic regressor, and g, is smoothness encouraging edge potential [3]. It can
be shown that Equation 3 is a Multivariate Gaussian function [3], making the exact inference
possible and fast to compute. The model parameters [, 3, 0] of the CCNF are learned by
using Maximum Likelihood Estimation (using BFGS optimization algorithm).
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Table 1: The structure of our convolutional network used for sparse landmark detection and
head pose estimation.

Name Type Filter Size Stride Output Size  Name  Type Filter Size Stride Output Size
Convl  convolution 20x4x4 1 20x36x36 Convl  convolution 32x3x3 1 32x94x94
Pooll  max-pooling 2x2 2 20x18x18 Pooll  max-pooling 2x2 2 32x47x47
Conv2  convolution 40x3x3 1 40x16x16 Conv2  convolution 64x2x2 1 64x46x46
Pool2  max-pooling 2x2 2 40x8x8 Pool2  max-pooling 2x2 2 64x23x23
Conv3  convolution 60x3x3 1 60x6x6 Conv3  convolution 128x2x2 1 128x22x22
Pool3  max-pooling 2x2 2 60x3x3 Pool3  max-pooling 2x2 2 128x11x11
Conv4  convolution 80x2x2 1 80x2x2 Densel fully connected 400
Densel fully connected 120 Dense2 fully connected 400
Dense2 fully connected 10 (6) Dense3 fully connected 3

(a) The CNN architecture for sparse landmark detection (b) The CNN architecture for head pose estimation

In order to optimize Equation 1, we use Non-Uniform Regularized Landmark Mean-
Shift which iteratively computes the patch responses and updates the landmark estimates by
updating the PDM parameters [2].

The following section describes the method of acquiring the holistic sparse landmarks,
X, used to constrain our dense landmark detector. It also describes our head pose estimation
model that allows for better initialization.

3.2 Two holistic predictors: sparse landmarks and head pose

Our HCLM model depends on a set of sparse landmarks from a holistic model. In our work
we use a similar approach to the CNN model proposed by Sun et al. [20] for such landmark
detection. Table 1 (a) shows the CNN architecture used in our work. A gray-scale image of
size 39 x 39 is used for input and pixel values are normalized to the range between 0 and 1.
For sparse landmarks, five landmarks (two eyes, one nose, two mouth corners) are used for
frontal face and three landmarks (one eye, one nose, one mouth corner) are used for profile
face. Consequently, the number of output is ten when the face is frontal or six when it is
profile {x1,y1,X2,¥2,...,X%s, Vs } (due to self occlusion). The location of landmarks is shifted
with respect to the image center, x and y, and normalized by width and height to be in range
between -0.5 and 0.5. We use the Euclidean distance as the network loss:

lOSSsparse = HXI _XiH%7 (5)

where X; is the given ground truth location, and X; is the predicted location for training
image Z;. Note that X, and X; are normalized locations.

To assist the face alignment and facial landmark detection, it is helpful to know the head
pose in advance. Most cases of face alignment failures come from the large head pose vari-
ations as the initial shape is often frontal and local approaches are not able to converge onto
correct non-frontal landmarks. To avoid this problem, we developed a head pose estimation
module which gives an estimate of the three head pose angles: pitch, yaw and roll.

Our implementation of CNN for head pose estimation is based on the work of Yang et
al. [25]. Table 1 (b) shows an overview of our CNN architecture. A gray-scale image of size
(96x96) 1s used for input and pixel values are normalized to the range between 0 and 1. The
output is three dimensional vector which represents pitch, yaw and roll. The output angles
are normalized between -1 and 1. We use the Euclidean distance as the network loss:

lOSSheadpose = HlA)l - Pi”%? (6)
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Figure 1: Cumulative error curves on 300-W. Measured as the mean Euclidean distance from
ground truth normalized by the inter-ocular distance.

where P; is the given ground truth angle, and P; is the predicted head pose for training image
I;.

The full pipeline of our HCLM model is as follows: 1) use a CNN head pose predictor
to estimate the head pose in the input image; 2) use a view dependent CNN sparse landmark
detector; 3) use the HCLM model with the detected sparse landmarks. In the following
section, we extensively evaluate our model showing its benefits over other models, especially
in presence of extreme poses.

4 Experiments

We designed our experiments to study three aspects of our model. First, we compared at a
general level our HCLM with a number of state-of-the-art baselines on two publicly avail-
able facial landmark detection datasets. Second, we performed a set of ablation experiments
to see how each element of HCLM model affects the final facial landmark detection results.
Finally, we demonstrated the performance of the individual holistic models for sparse land-
mark detection and head pose estimation. In the following sections, the datasets we used and
the experimental procedures we followed are presented.

4.1 Comparison with baseline methods

We compared our model with a number of recently proposed approaches for facial landmark
detection (both holistic and local ones). The following models acted as our baselines: Tree-
based deformable part method of Zhu et al. [28], Gauss-Newton Deformable Part Model
(GN-DPM) [22], Discriminative Response Map Fitting (DRMF) instance of a Constrained
Local Model [1], Supervised Descent Method (SDM) model of cascaded regression [24],
Coarse-to-fine Shape Searching (CFSS) extension of cascaded regression [27] and a multi-
view version of Constrained Local Neural Fields (CLNF) model [3]. We used multi-view
initialization for CLNF model. As the GN-DPM and SDM models we used were only trained
on 49 landmarks, we only evaluated them for those landmarks. Our comparison against state-
of-the-art algorithms is based on the original author’s implementations.
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Figure 2: Cumulative error curves on 1JB-FL. Measured as the mean Euclidean distance
from ground truth normalized by the face size. Note that we use 49 points for both frontal
and profile images.

4.2 Ablation experiments

We performed three ablation experiments to see how the individual elements of our pipeline
affect the final results. First, we removed the head pose estimation module and performed
sparse landmark detection followed by dense landmarks (three head pose estimation models
in parallel). We picked the model with the highest converged likelihood to determine the final
landmarks. Second, we did not use sparse landmark detection, instead we used estimated
head pose to initialize a CLNF dense landmark detector (Section 3.1). Finally, we performed
just a CLNF dense landmark detection.

4.3 Datasets

We evaluated our works on three publicly available in-the-wild datasets:

300-W is a popular dataset which contains images from the HELEN [11], LFPW [4],
AFW [28] and IBUG [17]. 300-W provides the ground truth bounding boxes and manually
annotated 68 landmarks.

AFLW dataset contains 24,386 face images from Flickr. Each face is annotated with up
to 21 landmarks. AFLW provides head pose estimation obtained by fitting a 3D mean face.

IJB-FL is a new dataset which has a substantial proportion of non-frontal images. It
is a subset of IJB-A [9] which is a face recognition benchmark and includes challenging
unconstrained faces with full pose. We took a sample of 180 images (128 images for frontal
and 52 images for profile) from IJB-A, and manually annotated up to 68 facial landmarks in
each image (depending on visibility). This is a very challenging subset containing a number
of images in non-frontal pose (see Figure 5).!

4.4 Methodology

For the CNN training for head pose estimation and sparse landmark detection, we used 300-
W and AFLW datasets. More specifically, we used the training partitions of HELEN (2,000
images), LFPW (811 images), AFW (337 images), and AFLW (14,920 images). In addition,
to avoid over-fitting, the images were augmented three times with enlargement by 10% and

! Annotations of the IJB-FL dataset are available for research purposes.
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Figure 3: Ablation experiments and sparse landmarks error on IJB-FL. (a) We use 68 points
for comparison. Our approach is robust in presence of large head pose variation in profile im-
ages (b) Cumulative error of sparse landmarks on profile images. Note that sparse landmarks
from CNN are refined by HCLM model

20% on the face bounding box. We began training at a learning rate of 0.001 and dropped
the learning rate to le~3 with 0.1 step and set the momentum to 0.9. For the CLNF patch
expert training, we used Multi-PIE [8] and the training partitions of HELEN and LFPW.
Furthermore, we used a multi-view and multi-scale approach as described in BaltruSaitis et
al. [3].

For the test of head pose estimation and landmark detection, we used the test set of LFPW
(224 images), HELEN (330 images), IBUG (135 images), the remaining AFLW (4,972 im-
ages), and IJB-FL (180 images). Faces in the training set were not used in testing.

In case of the 300-W (LFPW, HELEN, AFW, IBUG) datasets, we used the bounding
boxes provided by the organizers[17] which were based on a face detector. In case of the
AFLW and IJB-FL datasets, we used the bounding boxes based on the ground truth land-
marks since the automatic face detection could not detect some faces in the data.

5 Results and discussion

5.1 Facial landmark detection

The results of comparing our HCLM model to the previously mentioned baselines are in
Figure 1 (300-W) and Figure 2 (IJB-FL). Our model demonstrates competitive or superior
performance to most of the baselines on both datasets. The better performance of our model
is particularly clear at higher error rates and on profile images (see Figure 2b). This indicates
that our model 1s more robust than the baselines, and that it is able to fit better on more
complex images. This is due to the both better initializations and combination of holistic and
local approaches of our model (see the following sections).

5.2 Ablation experiments and sparse landmark detection

We performed ablation experiments to see how the individual elements of our pipeline affect
the final results. Figure 3a shows the performance of our full pipeline compared with the
following three cases: only using the dense landmark detector (CLNF), dense landmark
detector with head pose estimation (without any sparse landmark anchors), and CLNF with
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Figure 4: Head pose estimation results from 300-W, and AFLW. (a) and (b) show the mean
and median of absolute errors for pitch, yaw and roll respectively, while (c¢) shows predicted
head pose sample images.

sparse landmark anchors (no head pose estimation). The result shows that each individual
module - head pose estimation, sparse landmark detection - is important for HCLM model
to improve the performance.

In addition, we evaluated the performance of sparse landmark detection methods on the
IJB-FL dataset. Figure 3b shows the cumulative error of sparse landmarks on profile images.
Sparse landmarks were used to anchor our dense landmark detector and were refined by
our HCLM model. The result shows that HCLM model improves the accuracy of sparse
landmarks which were predicted by the CNN.

5.3 Head pose estimation

We evaluated our head pose detector on the 300-W and AFLW datasets. The quantitative
results are in Figure 4a and Figure 4b, while Figure 4c shows some sample estimations.

In addition, we measured three view classification accuracy based on the head pose esti-
mation results. The ranges of frontal, left and right sides are from -30° to 30°, greater than
30°, less than -30° respectively. The classification accuracy on 300-W and AFLW datasets is
95.2% and 91.5% respectively. This demonstrates that our CNN head pose estimation works
well and 1s useful for the further steps of the pipeline.

6 Conclusions

In this paper, we presented a new model, HCLM which unifies local and holistic facial
landmark detection by integrating these three methods: head pose estimation, sparse-holistic
landmark detection and dense-local landmark detection. Our new model was evaluated on
three challenging datasets: 300-W, AFLW and IJB-FL. It shows state-of-the-art performance
and 1s robust, especially in the presence of large head pose variations.

In the future, we will apply our model to video processing. Face tracking in the video
is very challenging in the presence of head pose variations beyond frontal poses. We be-
lieve that our model will demonstrate competitive performance, especially with the help of
temporal information in the video.
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lJB-FL

Figure 5: Example detection results on the 300-W and IJB-FL. Each column presents images
from the subsets of the 300-W (HELEN, IBUG and LFPW) and IJB-FL.
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