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Abstract—Reduced frequency range in vowel production is a well documented speech characteristic of individuals with psychological

and neurological disorders. Affective disorders such as depression and post-traumatic stress disorder (PTSD) are known to influence

motor control and in particular speech production. The assessment and documentation of reduced vowel space and reduced

expressivity often either rely on subjective assessments or on analysis of speech under constrained laboratory conditions (e.g.

sustained vowel production, reading tasks). These constraints render the analysis of such measures expensive and impractical.

Within this work, we investigate an automatic unsupervised machine learning based approach to assess a speaker’s vowel space.

Our experiments are based on recordings of 253 individuals. Symptoms of depression and PTSD are assessed using standard

self-assessment questionnaires and their cut-off scores. The experiments show a significantly reduced vowel space in subjects that

scored positively on the questionnaires. We show the measure’s statistical robustness against varying demographics of individuals and

articulation rate. The reduced vowel space for subjects with symptoms of depression can be explained by the common condition of

psychomotor retardation influencing articulation and motor control. These findings could potentially support treatment of affective

disorders, like depression and PTSD in the future.

Index Terms—Depression, post-traumatic stress, psychomotor retardation, vowel space, unsupervised learning
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1 INTRODUCTION

REDUCED frequency range in vowel production is a well
documented speech characteristic of individuals suffer-

ing from psychological and neurological disorders, includ-
ing but not limited to depression [1], [2], cerebral palsy [3],
amyotrophic lateral sclerosis [4], and Parkinson’s disease
[5]. The assessment and documentation of reduced vowel
space often either rely on subjective assessments or on anal-
ysis of speech under constrained laboratory conditions (e.g.
sustained vowel production, designed reading tasks), ren-
dering analysis impractical and expensive [6]. Such limited
and constrained approaches are at present the only ways to
assess such acoustic characteristics, that would otherwise
be inaccessible to the clinician. Hence, we aim towards an
automatic approach to support clinicians and healthcare
providers with much needed additional, quantified, and
objective measures of nonverbal behavior and in particular
voice characteristics to allow for a more informed and objec-
tive assessment of an individual’s health status [7], [8].

In particular, analysis of acoustic characteristics of speech
in depression, an affective disorder that is one of the leading

causes of disability worldwide,1 has received considerable
attention in the past [9], [10], [11]; a detailed review of
speech characteristics of depression and suicidality is pro-
vided in [12]. Specifically, prior investigations revealed that
depressed patients often display flattened or negative affect
[11], [13], reduced speech variability and monotonicity in
loudness and pitch [1], [14], [15], [16], reduced speech [17],
reduced articulation rate [18], increased pause duration [6],
[9], and varied switching pause duration [19]. Further,
depressed speech was found to show increased tension in
the vocal tract and the vocal folds [1], [20].

In the present work, we aim to extend the existing body
of related work and investigate vowel space, a measure of
frequency range, extracted from unconstrained conversa-
tional speech and its relationship to self-reported symptoms
of depression and post-traumatic stress disorder (PTSD);
two conditions that have been found to be highly co-morbid
[8], [21], [22], [23]. In particular, we investigate an automatic
unsupervised machine learning approach to assess a speak-
er’s vowel space - defined as the frequency range spanned
by the first and second formant of the vowels /i/ (as in
heed), /a/ (as in hod), and /u/ (as in who’d) with respect to
the reference sample—within unconstrained screening
interviews. Our approach is based on an accurate voiced-
speech detector, a robust formant tracker, and a subsequent
vector quantization step using the k-means algorithm.

We evaluate the automatically assessed vowel space in
experiments with a sample of 253 individuals and show that
the novel measure reveals a significantly reduced vowel
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space in subjects that reported symptoms of depression and
PTSD. We show that the measure is robust when analyzing
only parts of the full interactions or limited amounts of
speech data, which has implications on the approach’s prac-
ticality. Lastly, we successfully show themeasure’s statistical
robustness against varying demographics of individuals and
articulation rate. We are convinced that such a robust auto-
matic measure characterizing an individual’s vowel space is
viable for manifold applications, without requiring highly
constrained recording conditions.

2 RESEARCH HYPOTHESES

Motivated by findings of prior and related work discussed
in Section 1, we investigate automatically assessed vowel
space and its relationship to reported symptoms of depres-
sion and PTSD. Specifically, for this work we identify three
research hypotheses:

H1: We hypothesize that the automatically assessed
vowel space of subjects with self-reported symptoms
of depression or PTSD is significantly reduced, when
compared to those of subjects without the respective
symptoms. We hypothesize that the vowel space for
subjects with depression or PTSD is reduced based
on the findings and characterizations of prior work.
In particular, psychomotor retardation is hypothe-
sized to have an impact on the individuals’ vowel
space due to its effect on motor control and speech
production.

H2: We hypothesize that our findings for vowel space are
robust even when only limited amounts of data
are available. Specifically, we investigate the total
amount of conversation length and speech time
required to significantly discriminate subjects with
and without symptoms of depression or PTSD. This
investigation is of particular importance when con-
sidering practical applications of the approach to
characterize an individual’s vowel space in the
healthcare context.

H3: We further hypothesize that the observed differences
are associated with the underlying psychological
conditions and the speakers’ affective state rather
than other factors such as demographics (e.g. gender,
education, ethnicity) and articulation rate.

3 RELATED WORK

3.1 Speech Characteristics of Depression and PTSD

As mentioned speech characteristics of depression have
been investigated extensively in the past [12]. More specifi-
cally, researchers for example investigated the speech
characteristics of 13 male subjects with major depressive
disorder and six male control subjects [1]. The evaluation
and characterization of the speakers were conducted subjec-
tively by one experienced judge following the Mayo clinic
dysarthria scale [24], [25]. The Mayo clinic dysarthria scale
is a standard 40 item scale which is well documented for a
large variety of neurologic disorders and covers a large vari-
ety of speech characteristics. The analyzed speech samples
(about 30-40 minutes in length) comprise conversational
speech, spontaneous monologues, read speech, as well as

sustained vowels, and phoneme repetitions. Total scores of
subjects on the assessed scale were significantly higher for
those with depression than those for healthy controls, both
in variance (p < :01) and mean (p < :001). In particular, the
ratings revealed the following characteristics in depressed
patients: reduced stress patterns, reduced pitch and inten-
sity, increased harshness of the voice, as well as lack of pitch
and intensity variability.

Speech characteristics of psychomotor retardation—a
common finding in depression were investigated in [26].
They assessed the speech of 30 depressed subjects, 30 sub-
jects with Parkinson’s disease, and 31 control subjects. The
subjects were repeatedly asked to read four specifically
designed sentences, which formed the basis of analysis for
three investigated features, namely second formant transi-
tion, voice onset time between consonants and vowels
that follow, and spirantization referring to the presence of
noise—not attributable to background noise—during closure
of the vocal tract. Subjects with depression have significantly
reduced second formant transitions (p � :05), reduced voice
onset times (p < :04), and increased spirantization (p ¼ :02)
when compared to healthy controls. Increased spirantization
can be perceived as a more breathy voice quality, which
somewhat is a contradiction with respect to the previously
noted harsher or tenser voice qualities in depression. How-
ever, this finding can be explained by the speech task (read-
ing versus free speech) as well as with the investigation of
psychomotor retardation, as a specific symptom of depres-
sion. No significant differences were found between subjects
with depression and those with Parkinson’s disease.

Acoustic spectral measures associated with psychomotor
retardation at different time resolutions are investigated
[27], [28] in two international challenges to identify depres-
sion severity in subject’s voice characteristics, namely the
Audiovisual Emotion Challenge AVEC 2013 and 2014 [29],
[30]. The investigations aimed to exploit changes in coordi-
nation across articulators as reflected in observed formant
frequencies. Specifically, the authors investigated changes
in correlation that occur at different time scales across for-
mant frequencies and also across channels of the delta-mel-
cepstrum. The approach is motivated by the observation
that auto- and cross-correlations of measured signals can
reveal hidden parameters in the stochastic-dynamical sys-
tems that generate the signals. The approach was further
tuned and extended for AVEC 2014. The phonetic-based
features were expanded to include phoneme-dependent
pitch dynamics. New coordination-based features were also
added, including the correlation between formant frequen-
cies and a cepstral-peak-prominence measure [31], reflect-
ing coordination between articulators and the vocal source.
The challenge was won by the researchers with an achieved
root mean square error (RMSE) of 8.12 [28].

In our prior work, we complement investigations on
acoustic characteristics of individuals reporting symptoms
of depression with those reporting symptoms of post-
traumatic stress disorder. In particular, we investigate char-
acteristics related to voice quality, i.e. the timbre or percep-
tual coloring of the voice, in individuals with and without
the respective symptoms [8], [20], [32]. As in the present
work, the conditions were assessed using standard self-
assessment questionnaires. Specifically, 18 subjects scored
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positively for symptoms of depression and 20 scored posi-
tively for symptoms of PTSD [20]. A high overlap of the
groups was observed. We focused on speaker-independent
vocal tract features characterizing the speech on a breathy
to tense voice quality dimension [33], [34]. Using this
approach, we observed significant differences in the speak-
ers’ voice quality and vocal tract source parameters with
respect to symptoms of depression and PTSD when com-
pared to control participants. In particular, speakers with
symptoms of psychological disorders exhibit more tense
voice qualities, confirming previous results [1], [16], [26].
For example, participants with symptoms of depression or
PTSD show a significantly reduced opening phase of the
vocal fold vibration (p < :02 for depression and p ¼ :024 for
PTSD) which is correlated with tenser voice quality, as mea-
sured with a novel neural network based approach [35].

In the work closest to the present work, researchers
investigated reduced spectral variability using Monte Carlo
methods to assess the probabilistic acoustic volume of a
speaker and its relationship to depression [2]. The identified
acoustic volume was significantly reduced for subjects with
depression (p < 0:01) and was strongly correlated with
depression severity. The utilized dataset was the same as in
AVEC 2013 [29]. These findings are closely related to the
investigated vowel space of the present work that only
focuses on the first two formant frequencies and their distri-
bution in a two dimensional frequency space rather than
the entire spectrum.

3.2 Vowel Space Assessment in the Literature

Within the present work we focus on vowel space and its
relationship to symptoms of depression and PTSD. Unlike
the above introduced investigations, vowel space meas-
ures themselves have not been directly investigated for
depression and PTSD. However, some researchers previ-
ously assessed vowel space to characterize other clinical
conditions including Parkinson’s disease [5] and cerebral
palsy [3].

In particular, the vowel space of speakers with
Parkinson’s disease was compared to that of healthy con-
trols in reading tasks [5]. Thirteen subjects and controls
read a passage out loud at three different rates, i.e. habitual,
fast, and slow rates. The acoustic characteristics of the vow-
els /i/, /a/, /u/, and /æ/ were investigated along with
those of two fricatives /s/ and /

R
/. The tokens for each of

the investigated vowels and fricatives were manually
selected from the recordings and spectrally analyzed. The
observed average vowel space for subjects with Parkinson’s
disease was significantly smaller than that of healthy con-
trols (p ¼ :019). Further, the articulation rate of subjects
with Parkinson’s was significantly higher (p ¼ :024).

The reduced vowel space of young adults with cerebral
palsy, for example, was investigated with respect to the
intelligibility of Mandarin [3]. In that work vowel space is
characterized as “an index of the accuracy of vowel articula-
tion, which signifies gross motor control ability of the
tongue and jaw coordination”, which poses a major chal-
lenge for patients with cerebral palsy [36], [37], [38]. The
researchers found that vowel space has been significantly
reduced for subjects with cerebral palsy when compared to
healthy controls (p < .001) and directly correlated with

word and vowel intelligibility (r > 0:6; p < :005). The
researchers defined the investigated vowel space as the fre-
quency range triangle of the first and second formant, i.e.
the resonance frequencies of the vocal tract, spanned by the
vowels /i/, /a/, and /u/. Within the present work, we
adopt the same definition for consistency. However, here
we opt to evaluate vowel space as a ratio between an indi-
vidual’s vowel space and that of a reference sample rather

than the actual area as measured in Hz2 in order to render
the method gender independent and more comparable.
Gender based vowel space differences have been identified
and investigated in the past [39].

4 MATERIALS AND METHODS

4.1 Ethics Statement

The purpose of this interview study—approved by the Uni-
versity of Southern California Institutional Review Board
(UP-11-00342)—is to collect behavioral data that will be
used to train computer techniques for recognizing human
mental state factors (such as emotion, depressive-tenden-
cies, social anxiety) from behavioral cues such as head nods,
head shakes, posture shifts, eye gaze, facial expression,
speech prosody and breathing patterns. All participants in
this research were treated in accordance with APA guide-
lines for the ethical treatment of research participants.

4.2 Distress Assessment Interview Corpus (DAIC)

Within this work we utilize the Distress Analysis Inter-
view Corpus, a large multimodal collection of semi-struc-
tured clinical interviews [23], [40]. These interviews are
designed to simulate standard protocols for identifying
people at risk for post-traumatic stress disorder or major
depression and to elicit nonverbal and verbal behavior
indicative of such psychological distress. In order to
increase the comparability of behaviors between individu-
als, we use a virtual human as an interviewer.2 A virtual
human, i.e. a digital graphical representation of a human,
in the present work allows for a higher level of control
for the administration of stimuli (e.g. asking questions of
varying levels of intimacy or acoustic parameters of the
interviewer). It is known that with human interviewers
accommodation effects or mirroring is persistent in
human interactants [41], [42], [43] and could lead to
biases in the observed results [44]. The interviews were
collected as part of a larger effort named SimSensei to cre-
ate a virtual agent that interviews people and identifies
verbal and nonverbal indicators of mental illness [45].

4.2.1 Participants

The DAIC was recorded at the USC Institute for Creative
Technologies (ICT). Participants are drawn from two dis-
tinct populations: veterans of the U.S. armed forces and U.S.
general population. They are coded for depression and
PTSD based on accepted psychiatric questionnaires. In total
253 subjects interacted with the automatic SimSensei sys-
tem. Overall, 186 male subjects and 67 female subjects with
an average age of 44.7 (SD = 12.37) years were recorded.

2. Sample interaction between the virtual agent and a human actor
can be seen here: http://youtu.be/ejczMs6b1Q4.
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Out of the 253 subjects 40.3 percent have some college
education (N ¼ 102), 42.2 percent are African American
(N ¼ 107), and 11.6 percent are of Hispanic ethnicity
(N ¼ 30). The sessions all followed the same general proce-
dure introduced below. On average each conversation
lasted for 18.76 minutes with a standard deviation of
SD ¼ 7:85.

The sample of subjects consisted of individuals recruited
from Craigslist and the direct recruitment of veterans at a
US Vets facility in Long Beach. One posting on Craigslist
asked for participants who had been previously diagnosed
with depression, PTSD, or traumatic brain injury, while
another asked for any subjects between the ages of 18 and
65. All subjects who met requirements (i.e. age require-
ments, adequate eyesight) were accepted. Some subjects
were connected to a BIOPAC3 to measure psychophysiolog-
ical signals.

When participants were asked about their history of par-
ticular psychological disorders, 54 percent reported that
they have been diagnosed with depression in their past and
32 percent reported PTSD. Following the assessment using
the self-assessment questionnaires introduced in the follow-
ing sections, 18.6 percent scored positive for depression
(N ¼ 47; 33 male and 14 female) and 34.6 percent for PTSD
(N ¼ 88; 58 male and 29 female). The self-reported condi-
tions for PTSD and depression are significantly correlated
for both the categorical (i.e. positive versus negative)
as well as the score assessments (i.e. assessed severity
scores). In particular, the observed categorical correlation is
r ¼ :494 (p < :001) and the continuous correlation r ¼ :814
(p < :001). In our previous investigations we have observed
similar correlations between these conditions [23]. Here, it
is important to note that the self-assessment questionnaires
do not constitute diagnoses of depression or PTSD and that
participants who scored positively for both conditions were
included in both the PTSD and depression groups. Sample
distribution across distress groups are summarized in
Table 1.

4.2.2 Procedure

For the recording of the dataset we adhered to the following
procedure: after a short explanation of the study and giving
consent, participants were left alone to complete a series
of questionnaires at a computer. Questionnaires included

the following: basic demographic information, the PTSD
Checklist-Civilian version (PCL-C), and the Patient Health
Questionnaire depression module (PHQ-9). This process
took from 30-60 minutes, depending on the participant.

Upon completion of the questionnaires, the partici-
pants were asked to sit down in a chair facing the virtual
human interviewer directly, which was displayed on a
large 50 inch monitor at about 1.5 meter distance. Within
this work we utilize the SimSensei virtual human plat-
form designed to create an engaging interaction through
both verbal and nonverbal communicative channels [45].
For verbal processing, the platform integrates modules to
recognize spoken words (e.g., using CMU’s PocketSphinx
recognizer [46]), analyze the spoken responses [47] and
decide on the proper response or question using the
Flores dialogue manager [48]. For nonverbal processing,
acoustic and visual signals (e.g., facial expressions, gaze
and voice quality) are automatically recognized using
MultiSense4 before being integrated with the verbal
responses in the dialogue manager [49].

The participants are video recorded with an HD webcam
(Logitech 720p) and a depth sensor (Microsoft Kinect). A
confederate helped the participant set up the head mounted
microphone (Sennheiser HSP 4-EW-3) and then the virtual
human appeared and proactively started the semi-struc-
tured conversation. The audio is recorded at 16 kHz and a
16 bit resolution. The interaction between the participants
and the fully automatic virtual human was designed as fol-
lows: the virtual human explains the purpose of the interac-
tion and that it will ask a series of questions. It further, tries
to build rapport with the participant in the beginning of the
interaction with a series of ice-breaker questions about Los
Angeles, the location of the recordings. Then a series of
more personal questions with varying valence polarity fol-
low. The positive phase included questions like: “What
would you say are some of your best qualities?” or “What
are some things that usually put you in a good mood?”. The
negative phase included questions such as: “Do you have
disturbing thoughts?” or “What are some things that make
you really mad?”. Neutral questions included: “How old
were you when you enlisted? ” or “What did you study at
school?”. The recordings of the entire interviews are used in
the present study. The questions were pre-recorded and
animated using the SmartBody architecture [50]. In addition
to SmartBody, ICT’s Cerebella software automates the gen-
eration of physical behaviors for virtual humans, including
nonverbal behaviors accompanying the virtual human
interaction, responses to perceptual events, as well as listen-
ing behaviors [51], [52].

Finally, the participant was asked to complete a final
set of questionnaires, which took between 10 and
20 minutes. Participants were then debriefed, paid $35,
and escorted out.

4.2.3 Measures

Standard clinical screening measures were used to assess
symptoms of PTSD and depression.

Post-traumatic stress disorder checklist-civilian (PCL-C). The
PTSD Checklist-Civilian version (PCL-C) [53] is a self-report

TABLE 1
Participant Distribution Based on Conditions

Distress Group: Gender College African Am. Hispanic

Depression 33/14 16/31 17/30 1/46
No Depression 153/52 88/117 88/117 28/177

PTSD 58/30 33/55 35/53 11/77
No PTSD 128/37 71/94 70/95 18/147

All values are numbers of participants.
Sample distribution over distress groups as assessed using self-assessment
questionnaires. Gender is reported as male/female; College as has college
degree/no college degree; African American (African Am.) as is African
American/not African American; and Hispanic as is Hispanic/not
Hispanic.

3. http://www.biopac.com/ 4. http://multicomp.ict.usc.edu
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measure that evaluates all 17 PTSD criteria using a five-
point Likert scale.5 It is based on the Diagnostic and Statisti-
cal Manual of Mental Disorders, Fourth Edition (DSM-IV;
American Psychiatric Association, 1994). Scores range from
17-85, and PTSD severity is reflected in the size of the score,
with larger scores indicating greater severity. Sensitivity
and specificity are reportedly 0.82 and 0.83, respectively for
detecting DSM PTSD diagnoses. The PCL-C is scored based
on the DSM-IV schema, with symptomatic responses (mod-
erately or above) to at least six items from three categories.
The scores are added to assess the severity of symptoms.
The PCL is widely used in PTSD research [54], [55]. Within
our investigations, we follow the standardized guidelines
that at least six of the 17 items in the PCL-C need to be
scored at moderately or above for an individual to be consid-
ered as scoring positively.

Patient Health Questionnaire-Depression 9 (PHQ-9). The
Patient Health Questionnaire-Depression 9 (PHQ-9) is a 10-
item self-report measure based directly on the diagnostic
criteria for major depressive disorder in the DSM-IV [56].
The PHQ-9 is typically used as a screening tool for assisting
clinicians in diagnosing depression as well as selecting and
monitoring treatment. Further, it has been shown to be a
reliable and valid measure of depression severity [57].
Scores range from 0-27, with higher scores indicating higher
depression severity. Due to IRB requirements, we used a
nine-question PHQ-9 instrument, excluding question 9
about suicidal thoughts. When scoring the PHQ-9, response
categories 2-3 (More than half the days or above) are treated
as symptomatic and responses 0-1 (Several days or below)
as non-symptomatic. At least five of the first eight questions
must be checked as symptomatic, including at least one of
the first two questions. Additionally, the last question must
be checked as at least somewhat difficult.6 Severity is calcu-
lated by totaling the answers to all of the questions. A PHQ-
9 score of at least 10 was used to determine a positive assess-
ment, in addition to the previous requirements. PHQ-9
score of at least 10 (i.e. moderate depression) results in a
specificity and sensitivity of 88 percent for depression as
reported in [57].

4.3 Speech Processing and Formant Tracking

For the processing of the speech signals, we use the freely
available COVAREP toolbox (v 1.1.0), a collaborative speech
analysis repository available for Matlab and Octave [58].7

COVAREP provides an extensive selection of open-source
robust and tested speech processing algorithms enabling
comparative and cooperative research within the speech
community.8

In particular, we employ the following steps for speech
processing: First, we utilize a robust fundamental frequency
tracker and voicing detection algorithm to identify regions
of interest for our vowel space analysis [59]. While formants
can be tracked throughout unvoiced (i.e. the vocal folds are
not vibrating) speech [60], we are primarily interested in the

characteristics of the spoken vowels, which are always
voiced. Next, based on the identified voiced regions, we
track the first two formants F1 and F2 (i.e. the vocal tract res-
onance frequencies) using a robust formant tracker based on
the so-called differential phase spectrum [61]. The first two
formants (i.e. the two spectral peaks with the lowest fre-
quencies) of the speech signal are in large responsible for
the identification and characterization of vowels [62]. Their
formant frequencies are characterized to a large part by the
tongue position and the overall shape of the vocal tract pro-
ducing the vowel. These two steps are applied for each indi-
vidual speech recording. Below, we describe the approach
in more detail. The entire algorithm is shown in Fig. 1.

4.3.1 Voicing Detection and Fundamental

Frequency Tracking

In [59], a method for fundamental frequency f0 tracking and
simultaneous voicing detection based on residual harmon-
ics is introduced. The method is especially suitable in noisy
and unconstrained conditions. The residual signal rðtÞ is
calculated from the speech signal sðtÞ for each frame using
inverse filtering, for all times t. In particular, we utilize a lin-
ear predictive coding (LPC) filter of order p ¼ 12 estimated
for all Hann windowed speech segments. Each speech seg-
ment has the length of 25 ms and is shifted by 5 ms. This
process removes strong influences of noise and vocal tract
resonances. For each rðtÞ the amplitude spectrum EðfÞ is
computed, revealing peaks for the harmonics of f0, the fun-
damental frequency. Then, the summation of residual har-
monics (SRH) is computed as follows [59]:

SRHðfÞ ¼ EðfÞ þ
XNharm

k¼2

Eðk � fÞ � E k� 1

2

� �
� f

� �� �
; (1)

for f 2 ½f0;min; f0;max�, with f0;min ¼ 50 and f0;max ¼ 500, and
Nharm ¼ 5. The frequency f for which SRHðfÞ is maximal
f0 ¼ argmaxfðSRHðfÞÞ is considered the fundamental fre-
quency of the investigated speech frame. By using a simple
threshold u = 0.07, the unvoiced frames can be discarded as
in [59].

4.3.2 Formant Tracking

The formant tracker used in this approach is introduced in
detail in [61]. Initially, the speech signal sðtÞ is windowed
using a Blackman window and differentiated [63]. Each

Fig. 1. Algorithm overview figure. Basic overview figure of the
approach to automatically assess vowel space ratio. The process is
separated into two major steps including speech processing (i.e. voicing
detection and vowel tracking) and the vowel space assessment (i.e. vec-
tor quantization using k-means clustering and vowel space ratio calcula-
tion). The output of the algorithm is the ratio between the reference
sample vowel space (depicted as a red triangle) and the individual’s
vowel space (depicted as a green triangle). The larger the ratio the larger
the individual’s vowel space with respect to the reference.

5. http://tinyurl.com/boa6zar
6. http://tinyurl.com/mjddf7r
7. http://covarep.github.io/covarep/
8. The vowel space assessment algorithm presented within this

work will be made publicly available within COVAREP after
publication.
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analyzed speech segment has the size of 25 ms and shifted
by 5 ms. For each segment we then remove the phase infor-
mation. Subsequently we calculate the chirp z-transforma-
tion and compute the differential phase spectrum as in [61].
For the differential phase spectrum it has been shown that
observable peaks caused by the vocal tract resonance fre-
quencies are more prominent than in the amplitude spec-
trum, which renders the approach more robust and
accurate. Lastly, we identify the peaks within the differen-
tial phase spectrum to identify the formants of the observed
sample. In particular, we are interested in the first and sec-
ond formants F1 and F2. In order to remove small fluctua-
tions we apply a median filter with a filter length n ¼ 15 to
the tracked formants. Here it is important to acknowledge
that formant tracing in general can be noisy or inaccurate
[60], [61], [64]. Hence, we apply a median filter after formant
tracking as well as the subsequent vector quantization to
allow for a robust and accurate assessment of the vowel
space (cf. Fig. 1). Formants are tracked for all voiced regions,
i.e. not only vowels.

4.3.3 Articulation Rate (Manual and Automatic)

We further assess articulation rate approximated by number
of words spoken per second based on manual transcriptions
of 95 of the 253 interactions. Due to the high cost of precise
manual annotations we only annotated a subset of the con-
versations. Based on manual transcriptions, we have con-
ducted further evaluations comprising the valence of the
spoken words, articulation rate, answer onset timings, and
overall answer lengths with respect to the here evaluated
psychological conditions [47]. As an exemplary result, we
find that speakers that scored positively for depression or
PTSD take significantly longer time to respond to the posi-
tive question “When was the last time you felt really
happy?” than those without. Further, their responses are

significantly shorter and include less positively valenced
words. Within the present study we only utilize articulation
rate to assess its influence on the automatically measured
vowel space. In addition, we automatically assessed articula-
tion rate within all 253 interactions. For this purpose we uti-
lize an algorithm developed in Praat for the detection of
syllable nuclei that relies on an intensity peak detection and
subsequent voicing detection algorithm [65]. We observed
some strong outliers after automatically extracting articula-
tion rate from all 253 interactions and removed those for
which the articulation rate was below one syllable per sec-
ond, which is far below the expected rate [66]. We report
results for both the manual and automatic approach.

4.4 Vowel Space Assessment

Based on the tracked formants F1 and F2 for the voiced
regions of speech we compute the vowel space for each
recorded subject individually. Fig. 2 shows an example of
the assessed vowel space for two subjects. In particular, the
observed formant frequency pairs (gray dots), the reference
vowel space (red triangle), and the subject’s vowel space
(green triangle) are seen. We define the vowel space, as seen
in Fig. 2, as the frequency region covered by the triangle in
the two dimensional frequency space spanned by F1 and F2
for the vowels /i/ (as in heed), /a/ (as in hod), and /u/ (as
in who’d) following [3]. These three vowels represent the
vowels with the most extreme positions of the tongue and
are therefore located in the extremes of this triangularly
shaped two-dimensional frequency space [62], [67] (cf.
Fig. 2).

As we do not precisely know when the recorded subjects
produced these vowels, we propose to apply a vector quan-
tization approach, namely k-means clustering, to identify
the prototypical locations of /i/, /a/, and /u/ for each
speaker to automatically assess the individual’s vowel space

Fig. 2. Example vowel space assessment for two male subjects. The male reference sample vowel space (i.e. /i/, /a/, /u/) depicted in red is com-
pared to the subjects’ vowel spaces depicted in green, for a subject that scored positively for depression using the self-assessment questionnaires
(A) and a subject that scored negatively (B). The vowel spaces are visualized on a two-dimensional plot with Formant 1 on the x-axis and Formant 2
on the y-axis (both in Hz). Additional two-dimensional vowel centers are displayed for both the male reference sample (red x-symbols) and the investi-
gated subjects’ vowel space cluster centroids (green circles). The corners of the triangular vowel space for both subjects are determined through
minimal distance of cluster centroids to the reference locations of /i/, /a/, and /u/. The grey dots depict all observations of the first two formants across
an entire interview. The subject’s vowel space scoring positively (A) is visibly smaller than the non-depressed subject’s vowel space (B) resulting in a
smaller vowel space ratio value.
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[68] (cf. Fig. 1). We closely follow a recently proposed
approach to automatically identify the vowel space in
speech, that has been validated to highly correlate with
manual measures of vowel space (r > :7) for both male and
female speakers [69].

In detail the approach comprises the following steps: (1)
To assess an individual’s vowel space using k-means, we
first initialize the k ¼ 12 cluster centers ci with i ¼ 1; . . . ; 12
with the prototypical formant frequencies of F1 and F2 for
the investigated individual’s gender as proposed in [70]
and reported in Table 2. (2) We adapt the cluster centers ci
based on the observed formant frequencies xm 2 R2 for the
investigated individual using the basic k-means algorithm.
The algorithm iteratively minimizes the within cluster sum
of squares and yields prototypical locations for all k cluster
centers. (3) After optimization we identify the three cluster
centers c=i=, c=a=, and c=u= closest to the average formant loca-

tions of the vowels /i/, /a/, and /u/ using Euclidian dis-
tance, as listed in Table 2. At this point we would like to
note that the three cluster centers c=i=, c=a=, and c=u= are not

necessarily located near the formant locations of the vowels
/i/, /a/, and /u/. (4) After identifying the cluster centers
c=i=, c=a=, and c=u=, we compute the area A of the spanned tri-

angle using Heron’s formula A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs� aÞðs� bÞðs� cÞp

with s ¼ aþbþc
2 and a; b; c the lengths of the triangle’s three

sides. We then compute the vowel space ratio vsratio ¼ Aind
Aref

of the individual’s vowel space area Aind and the reference
vowel space area Aref to characterize how large the indi-
vidual’s vowel space is to the reference sample vowel

space with respect to the individual’s corresponding gen-
der. The reported values in Section 5 are vowel space ratios.

5 RESULTS

Here, we report the statistical findings with respect to the
three hypotheses stated in Section 2. It is important to note
that if participants scored positively for both conditions
they were utilized in both the PTSD and Depression groups.

5.1 Psychological Condition Group Differences

We report statistical evaluation results below withM denot-
ing the arithmetic mean. Additionally, we present the p-val-
ues of two-tailed t-tests and Hedges’ g values as a measure
of the effect size. The g value denotes the estimated differ-
ence between means of the two samples in magnitudes of
standard deviations [71]. Hedges’ g is a commonly used
standardized mean difference measure that can be trans-
ferred into other measures like Cohen’s d [72]. The observed
mean vowel space measure per condition and the standard
errors are visualized in Fig. 3. The observed mean values
M, standard deviations SD, and Hedges’ g are summarized
in Table 3.

We first consider differences in vowel space by distress
group membership, namely depression and PTSD. Partici-
pants categorized as having depression by the PHQ-9 exhib-
ited smaller vowel space than those not categorized as

TABLE 2
Average Formant Frequencies of F1 and F2 for American English Vowels as Reported in [67]

Formant Gender /i/ /I/ /e/ /e/ /æ/ /a/ / c/ /o/ /

V

/ /u/ /L/ /3/

F1 Male 342 427 476 580 588 768 652 497 469 378 623 474
F1 Female 437 483 536 731 669 936 781 555 519 459 753 523
F2 Male 2,322 2,034 2,089 1,799 1,952 1,333 997 910 1,122 997 1,200 1,379
F2 Female 2,761 2,365 2,530 2,058 2,349 1,551 1,136 1,035 1,225 1,105 1,426 1,588

Fig. 3. Vowel space ratio across conditions. Observed mean vowel
space ratios across conditions depression (D) versus no-depression
(ND) and PTSD (P) versus no-PTSD (NP). The displayed whiskers sig-
nify standard errors and the brackets show significant results with �� ...
p < .01.

TABLE 3
Distress Group Evaluation of Investigated Vowel Space
Measure, F2 Interquartile Range, and Articulation Rate

Distress Group:

Feature M(SD) M(SD) Hedges’ g

Depression No Depression

Vowel space 0.49 (0.15) 0.55 (0.15) �0.43��
F2 IQR 375.72 (37.26) 381.32 (44.90) �0.13
Art. rate 3.15 (0.45) 3.09 (0.35) 0.20
Art. rate (auto) 2.74 (0.94) 2.77 (0.87) �0.03

PTSD No PTSD

Vowel space 0.51 (0.14) 0.56 (0.15) �0.34��
F2 IQR 376.85 (41.93) 382.07 (44.39) �0.12
Art. rate 3.06 (0.42) 3.12 (0.34) 0.14
Art. rate (auto) 2.65 (0.93) 2.83 (0.86) �0.19

Distress group differences with respect to observed acoustic features, namely
the proposed vowel space measure, the standard F2 interquartile range (F2
IQR), and articulation rate (Art. rate) both manual and automatic (auto). The
arithmetic mean M and the standard deviations SD (in brackets) are shown
along with Hedges’ g a measure for effect size. �� . . . indicate significant differ-
ence with p-values < .01.
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having depression (depressed M ¼ 0:49, non-depressed
M ¼ 0:55; tð251Þ ¼ 2:69; p ¼ :008, Hedges’ g ¼ �0:43). Like-
wise, those categorized as having PTSD by the PCL-C had
smaller vowel space than those not categorized as having
PTSD (PTSD M ¼ 0:51, non-PTSD M ¼ 0:56; tð251Þ ¼ 2:55;
p ¼ :01, Hedges’ g ¼ �0:34).

None of the observed differences in vowel space, how-
ever, can be explained by articulation rate (both automati-
cally and manually assessed), as articulation rate did not
differ based on distress. Participants did not significantly
differ in articulation rate based on being categorized with
depression (manual: depressed M ¼ 3:15 non-depressed
M ¼ 3:09, tð92Þ ¼ �0:65; p ¼ :52, Hedges’ g ¼ 0:20; auto-
matic: depressed M ¼ 2:74 non-depressed M ¼ 2:77
tð188Þ ¼ 0:21; p ¼ :83, Hedges’ g ¼ �0:03) or PTSD (manual:
PTSD M ¼ 3:06, non-PTSD M ¼ 3:12; tð92Þ ¼ 0:80; p ¼ :43,
Hedges’ g ¼ 0:14; automatic: PTSD M ¼ 2:65 non-PTSD
M ¼ 2:83tð188Þ ¼ 1:32; p ¼ :19, Hedges’ g ¼ �0:19).

While our measure of vowel space differentiated all
groups of distressed participants, F2 interquartile distance
showed no differences by distress. Participants did not sig-
nificantly differ in F2 interquartile distance based on being
categorized with depression (depressed M ¼ 375:72, non-
depressed M ¼ 381:32; tð251Þ ¼ 0:80; p ¼ :42, Hedges’
g ¼ �0:13) or PTSD (PTSD M ¼ 376:85, non-PTSD
M ¼ 382:07; tð251Þ ¼ 0:91; p ¼ :37, Hedges’ g ¼ �0:12).

5.2 Temporal Analysis of Vowel Space Ratio

We next consider how differences in vowel space by dis-
tress group membership are stable over different lengths of
speech. The observed effect sizes as measured using
Hedges’ g and the 95 percent confidence intervals of g for
the different analyzed interaction lengths are shown in
Fig. 4. First, using repeated measures ANOVA, we examine

differences by distress group at different lengths of conver-
sation including the first minute of conversation after the
introduction by our virtual human, the first three minutes
after this introduction, the first five minutes after, the first
seven after, and the first nine after. When depression was
entered into this repeated measures ANOVA, beyond the
significant main effect (F ð1; 250Þ ¼ 6:86; p ¼ :009) reflecting
the difference in vowel space by depression described
above, there was a trend for a main effect of conversation
length (F ð4; 1; 000Þ ¼ 1:97; p ¼ :10) such that vowel space
peaks at first five minutes of conversation. The difference in
vowel space by group membership did not depend on con-
versation length (interaction F ð4; 1; 000Þ ¼ 1:60; p ¼ :17).
Likewise, when PTSD was entered, analysis revealed a sig-
nificant main effect of PTSD (F ð1; 250Þ ¼ 5:40; p ¼ :02), and
there was a trend for a main effect of conversation length
(F ð4; 1; 000Þ ¼ 1:99; p ¼ :09). However, there was no interac-
tion between PTSD group status and conversation length
(F ð4; 1; 000Þ ¼ 210; p ¼ :08).

Next, we examine differences by distress group at differ-
ent lengths of actual participants’ voiced speech including
the first 30 seconds of speech, the first minute of speech, the
first minute and a half of speech, the first two minutes of
speech, the first two and a half minutes of speech, and the
first three minutes of observed voiced speech. The observed
effect sizes as measured using Hedges’ g and the 95 percent
confidence intervals of g for the varying amounts of actual
speech analyzed are shown in Fig. 5. When depression
was entered into this repeated measures ANOVA it
revealed only a significant main effect of depression group
(F ð1; 250Þ ¼ 6:04; p ¼ :02), barely a trend for a main effect of
speech length (F ð4; 1; 000Þ ¼ 1:71; p ¼ :13) such that vowel
space peaks at one and a half minutes, and no
interaction (F ð4; 1; 000Þ ¼ 0:54; p ¼ :74). When PTSD was
entered, we again saw a significant main effect of PTSD

Fig. 4. Development of effect size Hedges’ g over varying intervals
of the virtual human interviews. Observed Hedges’ g value for the
investigated conditions over the initial intervals of the virtual human inter-
views, namely after the first, third, fifth, seventh, and ninth minute of the
interaction. Hedges’ g values are depicted (symbols) with their 95 per-
cent confidence intervals. Significant differences in the investigated
groups are found if the entire confidence interval is below zero for a two-
tailed test.

Fig. 5. Development of effect size Hedges’ g over intervals of the
individuals’ actual voiced speech. Observed Hedges’ g value for the
investigated conditions over the initial observed time intervals of the indi-
viduals’ actual voiced speech, namely 30 sec, 1, 1.5, 2, 2.5, and 3 min.
Hedges’ g values are depicted (symbols) with their 95 percent confi-
dence intervals. Significant differences in the investigated groups are
found if the entire confidence interval is below zero for a two-tailed test.
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(F ð1; 250Þ ¼ 7:31; p ¼ :007), and this time a significant main
effect of speech length (F ð4; 1; 000Þ ¼ 2:22; p ¼ :05), but no
interaction (F ð4; 1; 000Þ ¼ 0:43; p ¼ :83).

5.3 Demographic Differences

We next consider differences in vowel space by demo-
graphic variables including gender, race, ethnicity, and edu-
cation. We present the p-values of two-tailed t-tests and
Hedges’ g values as a measure of the effect size.

Within our analysis, male and female vowel spaces
are not significantly different (Female M ¼ 0:51, Male
M ¼ 0:55, tð251Þ ¼ �1:73; p ¼ :09, Hedges’ g ¼ 0:25). Afri-
can-American participants do not differ from other
races (African-American M ¼ 0:55, other race M ¼ 0:54,
tð251Þ ¼ �0:28; p ¼ :78, Hedges’ g ¼ 0:04), nor do partici-
pants of Hispanic ethnicity differ from non-Hispanics (His-
panic M ¼ 0:57, non-Hispanic M ¼ 0:54; tð251Þ ¼ �0:97;
p ¼ :33, Hedges’ g ¼ 0:19). Additionally, participants with
some college education do not differ from those who never
attended college (college M ¼ 0:56, no college M ¼ 0:53,
tð251Þ ¼ �1:33; p ¼ :19, Hedges’ g ¼ 0:17).

Although vowel space did not tend to differ by these
demographic characteristics, F2 interquartile distance showed
more differences. Females show a significantly larger F2 inter-
quartile distance than men (Female M ¼ 401:22, Male
M ¼ 372:70; tð251Þ ¼ 4:79, p < :001, Hedges’ g ¼ �0:68). Like
vowel space, African-American participants do not differ
from other races in F2 interquartile distance (African-Ameri-
can M ¼ 383:85, other race M ¼ 377:66, tð251Þ ¼ �1:12;
p ¼ :27, Hedges’ g ¼ 0:14), nor do participants of Hispanic
ethnicity differ from non-Hispanics (Hispanic M ¼ 382:14,
non-Hispanic M ¼ 380:01, tð251Þ ¼ �0:25; p ¼ :81, Hedges’
g ¼ 0:05). However, participants with some college education
show marginally larger F2 interquartile distance those who
never attended college (college M ¼ 386:20, no college
M ¼ 376:97, tð251Þ ¼ �1:82, p ¼ :07, Hedges’ g ¼ 0:23).

None of the observed differences in vowel space or F2
interquartile distance, however, are likely due to articula-
tion rate, as articulation rate did not differ based on
demographic characteristics (both manual and automati-
cally assessed). Among the 95 participants for whom man-
ual transcriptions, and therefore articulation rate as words
per second, were available, participants did not signifi-
cantly differ in articulation rate based on gender (Female
M ¼ 3:04, Male M ¼ 3:12, tð92Þ ¼ �0:82, p ¼ :42, Hedges’
g ¼ 0:10), race (African-American M ¼ 3:06, other race
M ¼ 3:12, tð92Þ ¼ 0:81; p ¼ :42, Hedges’ g ¼ �0:27), ethnic-
ity (Hispanic M ¼ 3:22, non-Hispanic M ¼ 3:08, tð92Þ ¼
�1:01, p ¼ :32, Hedges’ g ¼ 0:18), or education level (col-
lege M ¼ 3:07, no college M ¼ 3:12; tð92Þ ¼ 0:61; p ¼ :55 ,
Hedges’ g ¼ 0:02).

Similarly, participants did not significantly differ in auto-
matically assessed articulation rate based on gender (Female
M ¼ 2:70, Male M ¼ 2:79, tð188Þ ¼ �0:58; p ¼ :56, Hedges’
g ¼ 0:08), race (African-American M ¼ 2:68, other race
M ¼ 2:82; tð188Þ ¼ 1:09; p ¼ :28 , Hedges’ g ¼ �0:16), eth-
nicity (Hispanic M ¼ 2:97, non-Hispanic M ¼ 2:73; tð188Þ ¼
�1:19; p ¼ :24, Hedges’ g ¼ 0:17), or education level (college
M ¼ 2:79, no college M ¼ 2:75, tð188Þ ¼ �0:33; p ¼ :74,
Hedges’ g ¼ 0:05). The observed mean values M, standard
deviations SD, and Hedges’ g are summarized in Table 4.

5.4 Interaction of Depression and PTSD

We also consider the combined influence of depression and
PTSD, as assessed using self-assessment questionnaires,
while controlling for demographic characteristics that are
related to our dependent variables (gender, college educa-
tion). A two-way ANOVA revealed a trend for participants
in the depressed group to have smaller vowel space
(depressed M ¼ 0:49, non-depressed M ¼ 0:55; F ð1; 246Þ ¼
2:54; p ¼ :11, Hedges’ g ¼ �0:20), whereas vowel space did
not differ based on PSTD (PTSD M ¼ 0:51, non-PTSD
M ¼ 0:53; F ð1; 246Þ ¼ 0:60; p ¼ :44, Hedges’ g ¼ �0:09) or
the interaction of depression and PTSD (F ð1; 246Þ ¼ 0:02;
p ¼ :90, Hedges’ g ¼ 0:04). In this analysis, gender was a
marginally significant covariate (F ð1; 246Þ ¼ 3:43; p ¼ :07,
Hedges’ g ¼ 0:24) and there was a trend for college atten-
dance (F ð1; 246Þ ¼ 2:26; p ¼ :13, Hedges’ g ¼ 0:19).

Again, the trend for depression to be associated with
reduced vowel space cannot be attributed to articulation
rate. Articulation rate (manual) did not differ based on
depression (depressed M ¼ 3:14, non-depressed M ¼ 3:10;
F ð1; 59Þ ¼ 0:05; p ¼ :83, Hedges’ g ¼ 0:06), PTSD (PTSD
M ¼ 3:13, non-PTSD M ¼ 3:11; F ð1; 59Þ ¼ 0:02; p ¼ :90,
Hedges’ g ¼ 0:02), their interaction (F ð1; 59Þ ¼ 0:12; p ¼ :74,
Hedges’ g ¼ 0:09), gender (F ð1; 184Þ ¼ 0:14; p ¼ :72,
Hedges’ g ¼ 0:09) or college attendance (F ð1; 59Þ ¼ 0:54;
p ¼ :46, Hedges’ g ¼ 0:19). Using the automatically derived
measure of articulation rate, articulation rate did not differ

TABLE 4
Demographic Evaluation of Investigated Vowel Space Measure,

F2 Interquartile Range, and Articulation Rate

Demographics:

Feature M(SD) M(SD) Hedges’ g

Male Female

Vowel space 0.55 (0.16) 0.51 (0.12) 0.25
F2 IQR 372.7 (39.66) 401.22 (47.14) �0.68���
Art. rate 3.12 (0.35) 3.04 (0.42) 0.10
Art. rate (auto) 2.79 (0.87) 2.70 (0.95) 0.08

African Am. Other Race

Vowel space 0.55 (0.14) 0.54 (0.16) 0.04
F2 IQR 383.85 (42.51) 377.66 (44.23) 0.14
Art. rate 3.06 (0.37) 3.12 (0.37) 0.27
Art. rate (auto) 2.68 (0.91) 2.82 (0.87) �0.16

Hispanic Other Ethnicity

Vowel space 0.57 (0.18) 0.54 (0.15) 0.19
F2 IQR 382.14 (39.70) 380.01 (44.09) 0.05
Art. rate 3.22 (0.34) 3.08 (0.37) 0.32
Art. rate (auto) 2.97 (0.72) 2.73 (0.91) 0.17

Some College No College

Vowel space 0.56 (0.14) 0.53 (0.16) 0.17
F2 IQR 386.2 (46.53) 376.97 (40.97) 0.23
Art. rate 3.07 (0.41) 3.12 (0.34) 0.02
Art. rate (auto) 2.79 (0.90) 2.75 (0.88) 0.05

Demographic differences with respect to observed acoustic features, namely the
proposed vowel space measure, the standard F2 interquartile range (F2 IQR),
and articulation rate (Art. rate) both manual and automatic (auto). African
American is abbreviated as African Am. The arithmetic mean M and the
standard deviations SD (in brackets) are shown along with Hedges’ g a mea-
sure for effect size. Significant results are marked with the following symbols:
��� ... indicate significant difference with p-values < .001.
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based on depression (depressed M ¼ 2:92, non-depressed
M ¼ 2:73; F ð1; 184Þ ¼ 0:83; p ¼ :36, Hedges’ g ¼ 0:13), PTSD
(PTSD M ¼ 2:66, non-PTSD M ¼ 2:99; F ð1; 184Þ ¼ 2:26;
p ¼ :14, Hedges’ g ¼ �0:22), their interaction (F ð1; 184Þ
¼ 0:59; p ¼ :44, Hedges’ g ¼ 0:11), gender (F ð1; 184Þ ¼ 0:09;
p ¼ :76, Hedges’ g ¼ 0:06) or college attendance ðF ð1; 184Þ ¼
0:13; p ¼ :73, Hedges’ g ¼ 0:06).

While our measure of vowel space showed a trend to dif-
ferentiate distressed participants, F2 interquartile distance
still showed no differences when both depression and
PTSD were considered in the model with demographic
covariates. In this model, only gender was a significant pre-
dictor of F2 interquartile distance (F ð1; 246Þ ¼ 22:30;
p < :001, Hedges’ g ¼ �0:60). F2 interquartile distance did
not differ based on depression (depressed M ¼ 372:02, non-
depressed M ¼ 378:72; F ð1; 246Þ ¼ 0:58; p ¼ :45, Hedges’
g ¼ �0:09), PTSD (PTSD M ¼ 375:38, non-PTSD M ¼
375:36; F ð1; 246Þ ¼ 0:00; p ¼ :99, Hedges’ g ¼ �0:01), their
interaction (F ð1; 246Þ ¼ 1:39; p ¼ :24, Hedges’ g ¼ 0:16),
or college attendance (F ð1; 246Þ ¼ 0:82; p ¼ :37, Hedges’
g ¼ 0:11).

6 DISCUSSION

6.1 Hypothesis 1—Effect of Psychological
Conditions on Vowel Space

Our experiments indeed reveal that the observed vowel
space for individuals that scored positively for depression,
as categorized by the utilized PHQ-9 questionnaire, are sig-
nificantly smaller than those that scored negatively (cf.
Table 3 and Fig. 3). The measure assesses the longitudinal
frequency coverage of the first and second formant for an
individual in an unconstrained interaction. Specifically, the
measure captures the range and extremes of a speaker’s
vowel articulation and aims to capture assessments of psy-
chomotor retardation, a commonly found symptom of
depression and Parkinson’s disease [10], [26]. While prior
work often focused on the analysis of fundamental fre-
quency, pitch variations, and inflection for the purpose of
automatically quantifying lack of expressivity, the present
work aims to assess a more holistic measure of vowel articu-
lation over longer periods of time for this purpose [6], [18],
[73]. One notable exception is recent work investigating a
measure of probabilistic acoustic volume [2]. Similar to the
present work the researchers found a reduced volume for
individuals that suffer from depression.

Vowel space assessment for the characterization of
speech motor control in general has been investigated for
various conditions including cerebral palsy [3], amyotro-
phic lateral sclerosis [4], and Parkinson’s disease [5]. How-
ever, the present work is the first to automatically identify
reduced vowel space in conversational speech for individu-
als that scored positively for symptoms of depression.
While we expect that psychomotor retardation is correlated
with the assessed vowel space measure further investiga-
tions are required to draw the direct link. Within the present
study, we do not have access to diagnosis and expert assess-
ments of psychomotor retardation, which we plan to accom-
plish in the near future.

As for individuals scoring positively for depression, the
vowel space for individuals within our study that scored

positively for PTSD are also found to be significantly
reduced. This finding can be explained as a characteristic of
PTSD or by the high overlap and correlation between condi-
tions of PTSD and depression within the investigated sam-
ple. Indeed the comorbidity between PTSD and depression
has been previously identified in the literature [21], [22] and
the observed strong correlation between conditions has
been further discussed in our prior work, where we have
identified the more generic condition of general distress as a
common denominator of the investigated instruments [23].
Overall, speech characteristics of PTSD have been widely
understudied in the past, which renders these results inter-
esting and promising. Specifically, future applications for
PTSD screening, diagnosis, and symptoms monitoring
could highly benefit from our findings if confirmed and ver-
ified in subsequent investigations.

In order to confirm our investigations with the DAIC cor-
pus, we analyzed the vowel space measure with two addi-
tional datasets of depressed and suicidal speech in a
separate study [74]. Specifically, we analyze the AVEC 2013
audio-visual depression corpus (AVEC) read speech por-
tions [29]. We found that the vowel space ratio is again
reduced for depressed subjects. While the effect is not sig-
nificant (depressed M = 0.47, non-depressed M = 0.51, t(66)
= 1.12, p = .268, Hedges’ g = �0.27), several factors might
have influenced the findings: Read speech is articulated dif-
ferently from conversational speech, reading proficiency
might be a confounding factor, and the individuals spoke
German. We are planning to further investigate this as the
probabilistic acoustic volume was found to be reduced for
this sample [2]. In addition, we expanded our investigations
to an interview dataset of suicidal and non-suicidal adoles-
cents recorded at the Cincinnati Children’s Hospital Medi-
cal Center [44]. In fact this separate study reveals that
suicidal adolescents showed a reduced vowel space when
compared to their non-suicidal peers (suicidal M = 0.36,
non-suicidal M = 0.42, t(57) = 2.14, p = .037, Hedges’ g =
�0.55). This finding is aligned with prior work reporting
high comorbidity between PTSD as well as suicidality and
depression [21], [75].

Further, we compare our measure of vowel space with
the commonly used interquartile range of F2 to assess artic-
ulatory motility within longer segments of speech [76], [77].
Overall, we found no significant effect for any of the
assessed conditions and F2 interquartile range (cf. Table 3).
In general, F2 is gender dependent due to the anatomical
differences of the vocal tract length [70], [78], which could
have possibly influenced the finding (cf. Table 4). This sug-
gests, that the interquartile range of F2 is less robust against
demographic influences and would require subsequent nor-
malization steps. Further, we are convinced that the incor-
poration of F1 measures into the assessment of the vowel
space adds to the robustness and the holistic assessment of
articulatory characteristics.

One of the clear benefits of the present approach is the
possibility to assess an individual’s vowel space in an
unconstrained automatic fashion during conversational
speech instead of under laboratory conditions, allowing for
much needed objective assessments of conversational
speech that can be of great benefit to healthcare personnel
[6]. For example, tele-health interviews with mental health
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providers could add such objective acoustic measures to
better assess a patient’s mental distress and compare it from
visit to visit. This is possible because in our evaluation, no
specifically designed and structured tasks, such as pro-
longed articulation of vowels, or specifically designed read-
ing tasks are necessary. In fact conversational speech might
reveal clearer voice characteristics of depression than con-
strained reading tasks as it can be assessed in a less obtru-
sive and more naturalistic manner.

Our approach could be of advantage for the assessment
of an individual’s condition over long periods of time. As
this approach allows the assessment of unconstrained con-
versational speech, the biasing effect of boredom in highly
constrained tasks over repeated measures is minimized.

Automatic assessment approaches, as the proposed one,
are of additional value in a wide range of speech related
research including manifold affective computing applica-
tions, as the automatic setup allowed us to assess the vowel
space of a much larger sample than commonly investigated
with tedious and expensive manual assessments. In total,
here we investigate the vowel space of over 250 individuals.
Such large scale investigations have a lot of potential to
understand the connection between nonverbal behaviors
and various affective, psychological, and neurological
disorders. Further, the analysis of nonverbal behavior
with respect to such disorders is not limited to speech alone.
In fact, researchers have started to approach the characteri-
zation of depression and other psychological conditions
using audiovisual or multimodal behavior quantization
approaches [79], [80], [81], [82], [83], [84], [85], [86].

6.2 Hypothesis 2—Robustness of Vowel Space
Measure Based on Limited Data

It is known that formant tracking in general can be noisy or
inaccurate [60], [61], [64], however, as proposed here the
applied median filter after formant tracking as well as the
subsequent vector quantization step allow for a robust and
accurate assessment of the vowel space. In order to assess
the required amount of data to obtain a robust assessment
of vowel space, we investigate the measure on segments of
the available conversational data. Within our experiments
we found that conversation length is not significantly influ-
encing the discriminative faculty of the vowel space mea-
sure for depression. For the condition PTSD we observed a
minor interaction with conversation segment length (p =
.08), which can be explained by a reversal of observed vowel
space when analyzing the first minute of conversation only.
This underlines the robustness of the measure after only
several minutes of interaction. Overall, we see that the
vowel space measure stabilizes for each condition within
the first 5 minutes of the conversation. The measure shows
significant differences in observed vowel space for both
conditions at 5 minutes of conversation (cf. Fig. 4), which
corresponds to a quarter the average length (i.e. 18 minutes)
of the interactions in this study.

As we cannot guarantee the amount of speech pro-
duced by the investigated individual is adequate when
segmenting the data based on conversation segments of
one or more minutes, we further investigate the observed
vowel space measure based on parts of actual individual

speech. In particular, we analyze the observed vowel
space measure for each individual on 30 seconds up to 3
minutes of actual speech in the interaction. Here, we
found that speech length is not significantly influencing
the discriminative faculty of the vowel space measure for
depression. Again, for the condition PTSD we observed a
marginally significant effect of speech length (p = .05).
Overall, the observed discriminative faculty of the vowel
space measure stabilizes around only 2 minutes of actual
required speech (cf. Fig. 5). This finding suggests that as
little as 2-3 minutes of speech per individual is enough to
characterize an individual’s vowel space robustly, render-
ing the proposed method valuable for manifold applica-
tions, such as distress call center hotlines or mobile health
applications monitoring the severity or changes of an
individual’s psychological condition over time.

The validity of our findings is further supported by prior
research, where the automatic measure of vowel space was
first validated against actual manual assessments. The
researchers could find strong correlations that support the
present investigations based on only 10 sentences per
speaker [69], which resembles a similarly small amount of
required data as in the present study.

6.3 Hypothesis 3—Robustness of Vowel Space
Measure with Respect to Demographic
Variables and Articulation Rate

Lastly, we investigate the approach’s robustness against
other factors such as demographics (i.e. gender, race, ethnic-
ity, and education), as well as articulation rate, which can
reportedly have an influence on vowel space [67]. Overall,
we could not find any significant differences between the
automatically assessed vowel space measure and gender,
race, ethnicity, or education, which suggests that the mea-
sure is quite robust against such factors. In particular, eth-
nicity, race, and accordingly varying dialects (e.g. African
American Vernacular English) have no observed effect on
the assessed measure. In fact, the identified cluster centers
for the vowels might be dependent on dialect and gender,
however, the overall measure of vowel space is not affected
by this. The approach using vector quantization and a sub-
sequent ratio calculation allows for a much wanted and
needed generalization capability.

In addition, the initialization of the cluster centers (cf.
Table 2) renders the approach flexible for future adaptations
and investigations. For example, in the present study we ini-
tialize the cluster centers based on gender and calculate the
vowel space ratio with respect to the reference gender. This
allows the evaluated measure to remain gender indepen-
dent, in contrast to the reference approach (i.e. interquartile
range of F2), which is highly gender dependent (cf. Table 4).
Further, the approach could easily be extended to other lan-
guages, e.g. German formant frequencies [87], or age
groups, e.g. average vowel frequencies of children [70].

As suggested by prior work, articulation rate can have a
significant impact on the size of the observed vowel space
[67]. Our investigations reveal that the vowel space measure
negligibly correlates negatively with the articulation rate
with r = �.12 (p = .25). Nor can the effect of observed
reduced vowel space for subjects with psychological condi-
tions be explained by articulation rate (cf. Table 3). This
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suggests that the assessed psychological conditions of the
individuals dictate the reduction of the vowel space.

6.4 Why Virtual Human Interviewers?

The investigated unconstrained speech samples in this work
are recorded using a fully automatic virtual human inter-
viewer [45]. We chose this approach as virtual humans hold
several advantages over their natural counterparts [88]: the
involvement and use of virtual humans increases the avail-
able level of control for the investigators or clinical person-
nel over the assessment process and the presentation of
stimuli (e.g. questions with positive or negative affect);
the virtual human’s behavior can be pre-programmed to the
slightest detail and no behavioral bias is introduced into the
interview process. This enables comparability between each
session, as it reduces contagion effects that have been
observed in human-human interaction [19], [32], [44]. Fur-
ther, findings suggest that virtual humans can reduce the
stress and fear associated with the perception of being
judged, and thereby, lower emotional barriers to seeking
help [88]. Virtual humans have also been studied within the
context of schizophrenia, depression, and autism [20], [89],
[90], [91].

Another potential benefit of using virtual human inter-
viewers is that researchers may be able to get more, or
richer samples of speech than with real human inter-
viewers. Interacting with a virtual human can increase
participants’ willingness to say more. In particular, an
investigation of the effects of framing the character as
human-controlled or autonomous showed that partici-
pants felt more comfortable disclosing personal informa-
tion with a character that was framed as autonomous
than when it was framed as human-controlled [92], [93].
Specifically, participants reported experiencing lower fear
of negative evaluation and engaged in less impression
management when the character was framed as autono-
mous than when it was framed as human-controlled [92],
[93]. In fact, actual method of data collection (human-con-
trolled versus automated agent interviews) had no impact
on fear of negative evaluation or impression manage-
ment, but participants who believed they were interacting
with human versus computer effected both fear of nega-
tive evaluation and impression management.

7 CONCLUDING REMARKS

Overall, we showed that the proposed method reveals
promising results that are robust against varying factors
including demographic variables, articulation rate, as well
as only small amounts of data. Our investigations show that
the assessed reduced vowel space indeed is associated with
conversational speech of individuals with symptoms
related to depression or PTSD, as assessed with self-assess-
ment questionnaires. The possibly largest caveat of our
investigations is the lack of gold standard clinical assess-
ments of the individuals’ psychological conditions, which
we are planning to investigate in the near future. We would
like to further acknowledge that the proposed measure of
vowel space is not specific to depression or PTSD, but
should also be investigated in the context of other condi-
tions. Hence, we would like to expand our investigations to

conditions such as Parkinson’s disease and schizophrenia,
for which speech deficits have also been reported [94].

Further, we plan to extend our investigations towards
the longitudinal assessment of vowel space in conversa-
tional speech. With this we aim towards creating a measure
that could be of help in identifying various psychological
conditions, affective states, and related symptoms at an
early stage or assess therapeutic success for different condi-
tions. We are convinced that automatically assessed vowel
space from conversational data could become an essential
piece for the objective analysis and assessment by health-
care providers for a wide range of psychological or neuro-
logic conditions.
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