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Abstract. Gestures during spoken dialog play a central role in human
communication. As a consequence, models of gesture generation are a key
challenge in research on virtual humans, embodied agents capable of face-
to-face interaction with people. Machine learning approaches to gesture
generation must take into account the conceptual content in utterances,
physical properties of speech signals and the physical properties of the ges-
tures themselves. To address this challenge, we proposed a gestural sign
scheme to facilitate supervised learning and presented the DCNF model, a
model to jointly learn deep neural networks and second order linear chain
temporal contingency. The approach we took realizes both the mapping
relation between speech and gestures while taking account temporal rela-
tions among gestures. Our experiments on human co-verbal dataset shows
significant improvement over previous work on gesture prediction. A gen-
eralization experiment performed on handwriting recognition also shows
that DCNFs outperform the state-of-the-art approaches.

1 Introduction

Embodied conversational agents (ECAs) are virtual characters capable of engag-
ing face-to-face interaction with human and play an important role in many
applications such as human-computer interaction [6] and social skills training
[29]. A key challenge in building an ECA is giving them the ability to use appro-
priate gestures while speaking, as users are sensitive to whether the gestures of
an ECA are consistent with its speech [11]. This challenge is also true for social
robotic platforms [30]. Such co-verbal gestures [36] must coordinate closely with
the prosody and verbal content of the spoken utterance. Manual development
of an agent’s gestures is typically a tedious process of manually handcrafting
gestures and assigning them to the agent’s utterances. A data-driven approach
that learns to predict and generate co-verbal gestures is a promising alternative
to such manual approaches.

However, the prediction and generation of co-verbal gestures presents a diffi-
cult, novel machine learning challenge in that it must span and couple multiple
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Fig. 1. The overview of our framework for predicting co-verbal gestures. Our Deep
Conditional Neural Field (DCNF) model predicts gestures by integrating verbal and
acoustic while preserving the temporal consistency.

domains: the conceptual content in the utterance, utterance prosody and the
physical domain of gestural motions. The coupling between these domains has
several complex features. There is a tight coupling between gesture motion, the
evolving the content of the utterance as well as the prosody of speech. This
coupling is the product of the information conveyed through both speech and
gestures [4] that may be shared at a hidden, abstract level [25] which relates
utterance content and physical gestures. These properties suggest that gener-
ating gestures from speech can exploit a representation that takes into account
this relation between form and function (what the gesture conveys) and a model
capable of modeling the deep and temporal relationship between speech and ges-
tures. Additionally, speech and gesture are closely coupled in time, which raises
its own challenges since gestures are physical motions with tight temporal and
spatial constraints if the motion is to look natural.

In this paper, we introduce a deep, temporal model to realize the predic-
tion of gestures from verbal content and prosody of the spoken utterance. The
structure of the entire framework is shown in Fig.1. Our model, called deep
conditional neural field (DCNF), is an extension of previous work [10,13] that
combines the advantages of deep neural network for mapping complex relation
and an undirected second-order linear-chain for modeling the temporal coordi-
nation of speech and gestures. We also propose a gesture representation scheme
that takes advantage of previous literature that relates the form and commu-
nicative function of gestures [4,18,24].
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We assess our framework by evaluating the prediction accuracy on actual
co-verbal gesture prediction data involving dyadic interviews, showing that our
model outperforms state-of-the-art approaches.

2 Related Work

Data-driven approaches to generate co-verbal gestures for intelligent embodied
agent have received increasing attention in gesture research. Reference [32] took
the co-generation perspective in which the framework synthesizes both speech
and gestures based on the determined utterance during the conversation. Ref-
erence [27] addressed modeling individual gesture styles through analyzing the
relation in the data between extracted utterance information and a person’s
gestures. Our technique can be applied to predict this information, and their
approaches can then be applied to accomplish the gesture generation process.
Reference [19] also took the co-generation perspective and focused on modeling
individual styles on iconic gestures to improve human-agent communication.

Some of the previous work focused on realizing the relation between prosody
and motion dynamics [8,22,23]. By using only prosody as input, these models do
not require speech content analyses but are limited to the subset of gestures that
correlate closely to prosody, for example, a form of rhythmic gesture called beats.
Our approach goes beyond prosody to realize a mapping from the utterance
content to more expressive gestures and can be integrated to extend existing
work to generate animations beyond beat gestures.

Alternatives to data-driven machine learning approaches are the handcrafted
rule-based approaches [1,7,21,24]. These exploit expert knowledge on speech and
gestures to specify the mapping from utterance features to gestures. While earlier
works based on this approach have focused on addressing the mapping relation
between only linguistic features and gestures [7,21], recent work [24] has also
addressed how to use acoustic features to help gesture determination.

Realizing a mapping from speech to gestures involves learning a model
that relates two sequences, the speech input sequence and the gesture out-
put sequence. Recent advances in neural networks toward modeling the two
sequence problems apply recurrent neural networks (RNNs) [33] and its exten-
sion, long short-term memory (LSTM) network [16]. The RNN-based architec-
ture is designed to address problems in which the input and output time series
can have different lengths and are correlated as whole sequences but may not
have a strong correlation at the frame-by-frame level. The resulting model uti-
lizes less of the structure in the data and make predictions by maximizing only
the distribution of targeting sequences. On the other hand, our approach uti-
lizes the fine-grained synchronization between observed and predicting sequences
and also learns the global conditional distributions of both sequences to further
improve the prediction accuracy.

Previous approaches in deep learning that utilize the synchronized structure
of two sequences trained separately a deep neural network and a linear-chain
graphical model. For example, in speech recognition [26] the common approach
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is to train deep learning with individual frames and then applies hidden Markov
models (HMMs) with the hidden states. Our approach learns both the deep
neural network and temporal contiguity of CRFs with a joint likelihood. There
are previous works that adopt similar perspective on extending CRFs with deep
structure [10,38] and show improvement over a single-layer CRFs or CRFs com-
bined with a shallow layer of neural network [28]. Our experiments show improve-
ment over these approaches.

To our knowledge, this work is the first to introduce a gesture representation
scheme that relates the form and communicative function of gestures and a
deep, temporal model capable of realizing the relation between speech and the
proposed gesture representation. Reference [8] adopt the concept of unsupervised
training of deep belief net [35], but without an effective gesture representation
and a supervised training phase the learning task is much more challenging and
therefore has been limited to realizing the relation between prosody and rhythmic
movement. Our proposed model goes beyond prior work [10,13] by combining
the advantages of deep neural network for mapping complex relation with an
undirected second-order linear-chain for modeling the temporal coordination of
speech and gestures.

3 Predicting Co-verbal Gestures

Predicting co-verbal gestures brings together many core domains of artificial
intelligence, including the conceptual content in the utterance, utterance prosody
and the physical domain of gestural motions. A common function of the parallel
use of speech and gesture is to convey meaning in which gesture plays the com-
plementary or supplementary role [14], and gestures may help to convey complex
representations through expressing complementary information about abstract
concepts [25]. Realizing this relation between speech and gesture requires real-
izing the hidden abstract concept. To build a successful predictive model it is
important to first create a formal representation of its output label, the co-verbal
gestures. Based on this idea, we exploit gestural signs [4] which summarize the
functions and forms of co-verbal gestures to allow the predictions of gestures from
speech signals, including utterance content and prosody. In particular, we focus
on gesture categories that can be more reliably predicted from the utterance
content and prosody: abstract deictic, metaphoric, and beat gestures. Abstract
deictic gestures are pointing movements that indicate an object, a location, or
abstract things which are not physically present in the current surroundings.
Metaphoric gestures exhibit abstract concept as having physical properties. Beat
gestures are rhythmic actions synchronized with speech and they tend to cor-
relate more with prosody as opposed to utterance content. This ignores those
gestures that convey information that is uncoupled or distinct from the utter-
ance content and prosody [5] in the sense that learning would require additional
information to predict the gestural signs.

We design our dictionary of gestural signs based on previous literature in
gestures [4,18,24] and the three gesture categories, and then calculated their



156

C.-C. Chiu et al.

Table 1. A formalized representation of co-verbal gestures for computational predic-

tion.

Gestural signs

Description

Rest

Resting position of both hands

Palm face up

Lift hands, rotate palms facing up or a little bit inward, and hold
for a while

Head nod Head nod without arm gestures

Wipe Hands start near (above) each other and move apart in a straight
motion

Whole Move both hands along outward arcs with palms facing forward

Frame Both hands are held some inches apart, palms facing each other, as
if something is between hands

Dismiss Hand throws to the side in an arc as if chasing away

Block Hand is positioned in front of the speaker, palm toward front

Shrug Hands are opened in an outward arc, ending in a palm-up position,

usually accompanied by a slight shrug

More-Or-Less

The open hand, palm down, swivels around the wrist

Process

Hand moves in circles

Deictic.Other

Hand is pointing toward a direction other than self

Deictic.Self

Points to him/herself

Beats

Beats

occurrences in a motion capture data [12] which records co-verbal gestures per-
formed during face-to-face conversations to filter out those that rarely appeared.
The final set of gestural signs has size of 14, and the list and their descriptions are
shown in Table 1. This discrete set of co-verbal gestures was selected to include
considerable coverage while keeping a clear distinction between gesture labels to
make learning feasible. An important challenge for predicting gestural signs is
to model the temporal coordination between speech and gestural signs. A state-
of-the-art work [22] applies conventional conditional random fields (CRFs) for
learning co-verbal gesture predictions. The limitation of conventional CRFs is
that it requires defining functions for modeling the correlation between input
signals and labels, and manually defining these functions that may express the
relation between high-dimensional speech signals and gestures is no trivial task.
Thus, we argue instead to use a deep model to learn this complex relation.

4 Deep Conditional Neural Fields

In this section, we formally describe the Deep Conditional Neural Field (DCNF)
model which combines state-of-the-art deep learning techniques with the tempo-
ral modeling capabilities of CRF's for predicting gestures from utterance content
and prosody (see Fig.2). The prediction task takes the transcript of the utter-
ance, part-of-speech tags of the transcript, and prosody features of the speech
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Fig. 2. The structure of our DCNF framework. The neural network learns the nonlinear
relation between speech features and gestural signs. The top layer is a second-order
undirected linear-chain which takes the output of the neural network as input and
model the temporal relation among gestural signs. Both the top undirected chain and
deep neural networks are trained jointly.

audio as input x = {z1, z2,..., 2N}, and learn to predict a sequence of gestural
signs y = {y1,¥2,...,yn} in which the sequence has length N. At each time
step t, the gestural sign y; is contained in the set of our gestural sign dictionary
y¢ € Y defined in the previous section (see Table1) , and the input z; is a feature
vector z; € R? where d corresponds to the number of input features (see next
section for a detailed description of our input features).

Following the formalism of [10,13], the DCNF extends previous models to
follow a 2"%-order Markov assumption and is defined as:

P(y[x;0) ZeXp Zek 9i (W1, 1)

+Z491g2 (Ye-1, Y6 Yer1)
+29i,ytﬁ: ¢, 0")]

where model parameters 8 = [#9,092,67, "] and Z(x) is the normalization
term. gs correspond to edge features in which g (v;_1,%:) and ¢%(ys—1, Ys, Yes1)
denote the first and second order edge functions, and 69* and 692 correspond to
their parameters respectively. The 2nd-order term g2 (y;_1, ys, y¢+1) is one of the
the major improvement of the DCNF model. f is related to neural networks in
which f(z, 8“) associates the output of the last layer of the deep neural network
with @/ denotes its parameters, and y and 6% = {0,605, ...,6 |} represents
the network connection parameters of the m neural network layers:

f(xt70w) h(am 197)@ 1) Where
a; = h(a;—10" ), i=2...m—1
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where a; represents the output at ¢th neural network layer, 0, represents the
connection weights between ith and ¢ 4+ 1th layers, and h is the activation func-
tion. This work applies the logistic function (1/1+ exp(—af™)) as the activation
function!. Readers can refer to [10,13] for more background about the combina-
tion of CRF's and neural networks.

Prediction. Given a sequence x and parameters learned from the training data,
the prediction process of DCNFs predicts the most probable sequence yx:

y* = arg max P(y|x; 09,609,607 0%)
y

N
1
_ - E E g
B arg}r’nax Z(x) = el k Vi oty

+Zelg29l(yt71,yt,yt+1)
l

+> 07, filw,0")]

To estimate the probability of each label of frame ¢, the neural networks take the
input z; and forward the value through the network to generate f;, the undi-
rected linear chain performs forward-backward belief propagation to calculate
the values of g and ¢;, and the potential of each label is the weighted summa-
tion of g1, g2, f and the probability of each label is its normalized potential.

Learning. To prevent the overfitting of DCNFs, the model has a regularization
term for all parameters and we define our objective function as follows:

N
1
L(8) = 3 log P(yler:6) — 55 1611%,

t=1

in which 6 denotes the set of model parameters and ~ corresponds to regulariza-
tion coefficients. The regularization term on training the deep neural networks
encourages the weight decay which reduce the complexity increase of the net-
work connections along the parameter updates. We applied stochastic gradient
descent for training DCNFs with a degrading learning rate to encourage the
convergence of the parameter updates?.

To also help prevent co-adaptation of network parameters which result over-
fitting, we apply the dropout technique [17] to change the feed-forward results
of fi(x¢,0™) in the training phase. By performing dropout, at the feed-forward

! We have experimented with both the logistic and the rectified linear (max(a8",0))
functions with similar results. Because of space constraints, we are focusing on the
logistic function.

2 The full derivation of the gradient was omitted because of space constraint.
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phase the output of each hidden node has a probability of being disabled. Con-
sequently the output of hidden nodes in the training phase is different from that
of the testing phase. The dropout nodes are re-sampled at every feed-forward
process. This stochastic behaviors encourage hidden nodes to model distinct pat-
terns and therefore further prevent the overfitting. The dropout technique is not
applied during the testing phase.

Gradient Calculation. To learn our model parameters, we derived the gradi-
ent of our objective function with respect to 891,692, 6f 6*. We derive 691,692, f
following previous work on CRFs [20], and derive 6“ with backpropagation
[10,13]. Backpropagation decomposes the gradient at each layer as the prod-
uct of an error term ¢ with the input and propagates § to the lower layers
to facilitate gradient calculation. Thus, performing backpropagation on DCNF
requires determining d,,—1 of 0 _, in which V0¥ _| = 0,,—1Gm—1 for VOY _,
denotes the gradient of 6} _; and d,,—1 denotes the output at layer m — 1 with
dropout. As the gradient of 62 _, is given by:

dlog P
09m 1

Afi(xy, Ofi(xt,
_ZZ 1Yt fa;jj . ZP y|xt 1,9 fa(ezfus L )]
_ “m—le)
-3

~ 8h(am—19%—1)
= ol N g ]
]

0,

N
ZZ )\z yth’{L amfleﬁ—l)&mfl
Z y|ﬂft )\Z yh (a'm 107n l)d —1]

we can decompose the gradient term and derive

Om—1 = Ny, h (G105 1) = > p(ilwe) X gh! (m—16_1).
7

where DCNF propagates d,,_1 to the lower layers so that it can calculate the
gradient of these layers. One thing to notice is that the gradient is calculated
with a,,_1 instead of a,,_1 due to the influence of dropout.

5 Experiments

Our main experiment is designed to evaluate the performance of our DCNF model
on co-verbal gesture prediction from verbal content and prosody. The follow-
ing sub-section presents our dataset, gesture annotation, input features, baseline
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models and methodology. To help assess the generalization of our DCNF, we eval-
uated the performance with a well-studied handwriting recognition (optical char-
acter recognition) task [34].

5.1 Co-verbal Gesture Prediction Experiments

The dataset consists of 15 videos which in total represent more than 9 hours
of interactions taken from a large-scale study focusing on semi-structured inter-
views [15]. Our experiment focused on predicting the interviewee’s gestures from
his/her utterance content and prosody. All the videos were segmented and tran-
scribed using the ELAN tool [3]. Each transcription was reviewed for accuracy
by a senior transcriber.

Data Segmentation. The data is segmented into sequences based on the speak-
ing period. The segmentation can be due to a long pause or the interviewer asked
a question. Each frame in the sample data is defined to be 1 second of the con-
versations. Some of the sequences contained only a very short sentence in which
the interviewee replied to the question of the interviewer with a short answer
such as “yes/no”. We removed all sentences that are less than 3 seconds. The
resulting dataset has total 637 sequences with average length of 47.54s.

Gestural Sign Annotation. In the annotation process, we first trained the
annotators with the definition of all gestural signs and showed a few examples
for each gestural sign. The annotator then used the ELAN tool, looked at the
behavior of the participants only when they are speaking, and marked the begin-
ning and the ending time of gestural signs in the video. There will be at most one
gestural sign at any time in the data. The annotation results were inspected to
analyze the accuracy and insure the annotator had well understood the definition
of gestural signs.

Linguistic Features. Linguistic features encapsulate the utterance content
and help determine the corresponding gestures. The extracted data has 5250
unique words, but most of them are unique to a few speakers. To make the
data more general, we remove words that happen fewer than 10 times among
all the 15 videos, and the resulting number of unique words is down to 817. We
represent features as a binary values so that features will be set to 1 when the
corresponding linguistic features appear in the corresponding time frame, and 0
otherwise. The linguistic features at the previous time frame and the next time
frame are also helpful. In particular, a gesture can for example, proceeds its
corresponding linguistic features. Therefore, when a linguistic feature appears
at a time frame, its appearance will also be marked in the previous and the next
time frame.

The data collection process extracted text from the transcript and also ran
a part-of-speech tagger [2] to determine the grammatical role of each word.
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POS tags are encoded at the word level and are automatically aligned with the
speech audio through using the analyzing tools of FaceFX.

Prosodic Features. In terms of prosody, the data extracted the following
audio features: normalized amplitude quotient (NAQ), peak slope, fundamental
frequency (f0), energy, energy slope, spectral stationarity [31]. The sampling rate
is 100 samples per second. All prosodic features within the same time frame are
concatenated into one feature vector. As the time frame is 1s and the sampling
rate is 100 in our dataset, all 100 samples are concatenated into one feature
vector as the prosodic features for that time frame. The extraction process also
determines whether the speaker is speaking based on f0, and for the periods in
the speech that identified as not speaking all audio features are set to zero.

Baseline Models. Our experiments compared DCNF's with models represent-
ing state-of-the-art approaches. We include CRFs, which is applied in the state-
of-the-art work [22] on gesture prediction, for comparisons. We also compared
with the second-order CRFs. Additionally, we include support vector machines
(SVMs) and random forests, two effective machine learning models. The SVM is
an approach that applies kernel techniques to help find better separating hyper-
planes in the data for classifications. The random forest is an ensemble approach
which learns a set of decision trees with bootstrap aggregating for classification.
Both approaches have a good generalization in prior work. Additionally, two
existing works that combine CRFs and neural networks, CNF [28] and Neuro-
CRF [10], are evaluated in the experiment. The experiment also evaluated the
performance of DCNF's without using the sequential relation learned from CRF's
(denoted as DCNF-no-edge).

Methodology. The experiments use the holdout testing method to evaluate the
performance of gesture predictions in which the data is separated into training,
validation, and testing sets. We trained DCNF's with three hidden layers each
with 256 hidden nodes and set the initial learning rate to 0.1 with 0.0003 degrad-
ing rate at each iteration. The choice of these hyperparameters are determined
based on the validation results. The final result is the performance on the testing
set. Each videos in the co-verbal gesture dataset corresponds to a different inter-
viewee. We chose the first 8 interviewees (total clip length correspond to 50.86 %
of the whole dataset) as the training set, 9 through 12 interviewees (23.18 % of
the whole dataset) as the validation set, and last 3 interviewees (25.96 % of the
whole dataset) as the testing set.

Results. The results are shown in Table 2. Both the DCNF and DCNF-no-edge
models outperform other models. The performance similarity of DCNFs with
and without edge features suggest that the major improvement comes from the
exploitation of deep architecture. In fact, models that rely mainly on sequen-
tial relation show significantly lower performance, suggesting the bottleneck
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Table 2. Results of co-verbal gesture prediction.

Models Accuracy (%)
CRF [22] 27.35
CRF second-order 28.15
SVM 49.17
Random forest 32.21
CNF [28§] 48.33
NeuroCRF [10] 48.68
DCNF-no-edge 59.31
DCNF (our approach) | 59.74

on co-verbal gesture prediction lies in the realization of the complex relation
between speech and gesture. The results are unexpected, as based on the work
of McNeill, Calbris and others [4,25], it is reasonable to expect temporal depen-
dencies. Calbris talks of ideation units and rhythmic-semantic units that span
multiple gestures, for example. The fact that our models could not exploit tem-
poral dependencies may due to that some of the the gestural signs defined in
this task obscure the temporal dependency. For example, some gestural signs
that express semantic meanings more specifically can break this kind of tempo-
ral correlation. Take wipe as an example, when someone does a wipe, it does not
indicate much about whether a frame or a shrug will follow. Given that these
are co-speech gestures, if a dependency at this aggregate/abstract level would
to occur at the gesture level, it suggest that the same constraint should co-exist
at the language level. However, since a speaker can reorder or compose different
phrases, it is essentially common for a speaker to alter the verbal content and
the underlying gestural behaviors. On the other hand, other subsets of gestural
signs might reveal stronger dependencies, for example ones comprising rhetorical
structures like enumeration and contrasts, or gestural signs tied to the establish-
ment of a concept such as a container gesture showing a collection of ideas,
followed by operations on the concept, such as adding or removing ides/items
from the container. Even in these cases, there is the question of whether the
features currently being used make it feasible to learn such dependencies. In
addition to these fundamental difficulty on formulating the temporal relation,
another possible reason is that the data collected in this task may still be too
limited for learning the temporal relation.

5.2 Handwriting Recognition

To access the generality of DCNFs, we also applied it to a standard hand writing
recognitions dataset [34]. This dataset contains a set of (total 6877) handwrit-
ing words collected from 150 human subjects with average length of around 8
characters. The prediction targets are lower-case characters, and since the first
character is capitalized, all the first characters in the sequences are removed.
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Each word was segmented into characters and each character is rasterized into
16 by 8 images. We applied 10-fold cross validation (9 folds for training and 1
fold for testing) to evaluate the performance of our DCNF model and compare
the results with other models. We trained DCNF's with three hidden layers each
with 128 hidden nodes and set initial learning rate to 0.2 with 0.0003 degrading
rate at each iteration. The choice of these hyperparameters are also determined
based on the validation results.

Baseline Models. In addition to the models compared in the gesture predic-
tion task, this experiment also compared with the state-of-the-art result previ-
ously published using the structured prediction cascade (SPC) [37]. The SPC is
inspired by the idea of the classifier cascade (for example, boosting) to increase
the speed of the structured prediction. The process starts filtering possible states
at 0-order and then gradually increase the orders with considering only the
remaining states. While the complexity of a conventional graphical model grows
exponentially with the order, SPC’s pruning approach reduces the complexity
significantly and therefore allows applying higher order models. The approach
is the state-of-the-art results on the handwriting recognition task. The compar-
ison results of DCNF's with SPC, along with other existing models, are shown
in Table 3.

Table 3. Results of handwriting recognition. Both the results of NeuroCRF and Struc-
tured prediction cascades are adopted from the original reported values.

Models Accuracy (%)
CRF 85.8

CRF second-order 93.32

SVM 86.15
Random forest 96.97

CNF 91.11
NeuroCRF [10] 95.44
DCNF-no-edge 97.21
Structured prediction cascades [37] | 98.54

DCNF (our approach) 99.15

Results. In this handwriting recognition task DCNF shows improvement over
published results. Compared to the gesture prediction task, the mapping from
input to prediction targets is easier to realize in this task, and therefore the sequen-
tial information provides an influential improvement, as shown by the improve-
ment of DCNF over DCNF-no-edge. We have also applied [10,13] on the task and
the results are similar to DCNF-no-edge.
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6 Conclusion

Gesture generation presents a novel challenge to machine learning: prediction of
gestures must take into account the conceptual content in utterances, physical
properties of speech signals and the physical properties of the gestures them-
selves. To address this challenge, we proposed a gestural sign scheme to facili-
tate supervised learning and presented the DCNF model, a model to jointly learn
deep neural networks and second-order linear chain temporal contingency. Our
approach can realize both the mapping relation between speech and gestures
and the temporal relation among gestures. Our experiments on human co-verbal
dataset shows significant improvement over previous work on gesture prediction.
A generalization experiment performed on handwriting recognition also shows
that DCNF's outperform the state-of-the-art approaches.

Our framework predict gestural signs from speech, and by combining with
existing gesture generation system, for example [9], the overall framework can
be applied to animate virtual characters’ gestures from speech. The framework
relies only on linguistic and prosodic features that could be derived from speech
in real-time, thus allowing for real-time gesture generation for virtual character.
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