
Multimodal Public Speaking Performance Assessment

Torsten Wörtwein
KIT Institute of

Anthropomatics and Robotics
Karlsruhe, Germany

uncwt@student.kit.edu

Mathieu Chollet
USC Institute for

Creative Technologies
Playa Vista, CA, USA

chollet@ict.usc.edu

Boris Schauerte
KIT Institute of

Anthropomatics and Robotics
Karlsruhe, Germany

boris.schauerte@kit.edu
Louis-Philippe Morency

CMU Language
Technologies Institute
Pittsburgh, PA, USA

morency@cs.cmu.edu

Rainer Stiefelhagen
KIT Institute of

Anthropomatics and Robotics
Karlsruhe, Germany

rainer.stiefelhagen@kit.edu

Stefan Scherer
USC Institute for

Creative Technologies
Playa Vista, CA, USA

scherer@ict.usc.edu

ABSTRACT
The ability to speak proficiently in public is essential for
many professions and in everyday life. Public speaking skills
are difficult to master and require extensive training. Recent
developments in technology enable new approaches for public
speaking training that allow users to practice in engaging
and interactive environments. Here, we focus on the au-
tomatic assessment of nonverbal behavior and multimodal
modeling of public speaking behavior. We automatically
identify audiovisual nonverbal behaviors that are correlated
to expert judges’ opinions of key performance aspects. These
automatic assessments enable a virtual audience to provide
feedback that is essential for training during a public speaking
performance. We utilize multimodal ensemble tree learners
to automatically approximate expert judges’ evaluations to
provide post-hoc performance assessments to the speakers.
Our automatic performance evaluation is highly correlated
with the experts’ opinions with r = 0.745 for the overall per-
formance assessments. We compare multimodal approaches
with single modalities and find that the multimodal ensem-
bles consistently outperform single modalities.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Artificial, aug-
mented, and virtual realities

General Terms
Algorithms, Human Factors, Measurement, Performance,
Experimentation

Keywords
Public Speaking; Machine Learning; Nonverbal Behavior;
Virtual Human Interaction
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1. INTRODUCTION
Recent developments in nonverbal behavior tracking, ma-

chine learning, and virtual human technologies enable novel
approaches for interactive training environments [7, 3, 30]. In
particular, virtual human based interpersonal skill training
has shown considerable potential in the recent past, as it
proved to be effective and engaging [15, 25, 2, 12, 4]. Inter-
personal skills such as public speaking are essential assets
for a large variety of professions and in everyday life. The
ability to communicate in social and public environments can
greatly influence a person’s career development, help build
relationships, resolve conflict, or even gain the upper hand in
negotiations. Nonverbal communication expressed through
behaviors, such as gestures, facial expressions, and prosody,
is a key aspect of successful public speaking and interpersonal
communication. This was shown in many domains includ-
ing healthcare, education, and negotiations where nonverbal
communication was shown to be predictive of patient and
user satisfaction as well as negotiation performance [27, 8,
22]. However, public speaking with good nonverbal commu-
nication is not a skill that is innate to everyone, but can be
mastered through extensive training [12].

We propose the use of an interactive virtual audience for
public speaking training. Here, we focus primarily on the
automatic assessment of nonverbal behavior and multimodal
modeling of public speaking behavior. Further, we assess how
nonverbal behavior relates to a number of key performance
aspects and the overall assessment of a public speaking per-
formance. We aim to identify nonverbal behaviors that are
correlated to expert judges’ opinions automatically in order
to enable a virtual audience to provide feedback during a
public speaking performance. Further, we seek to model
the performance using multimodal machine learning algo-
rithms to enable the virtual audience to provide post-hoc
performance assessments after a presentation in the future.
Lastly, we compare subjective expert judgements with ob-
jective manually transcribed performance aspects of two key
behaviors, namely the use of pause fillers and the ability to
hold eye contact with the virtual audience. In particular, we
investigate three main research questions:

Q1: What nonverbal behaviors are correlated with expert
judgements of certain performance aspects of public
speaking to enable online feedback to the trainee?
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Q2: Is it possible to automatically approximate public speak-
ing performance assessments of expert judges using mul-
timodal machine learning to provide post-hoc feedback
to the trainee?

Q3: Are expert judges objective with their assessments,
when compared to ground truth manual annotations
of two key behaviors and how do automatic behavior
assessments compare?

2. RELATED WORK
In general, excellent and persuasive public speaking per-

formances, such as giving a presentation in front of an audi-
ence, are not only characterized by decisive arguments or a
well structured train of thoughts, but also by the nonverbal
characteristics of the presenter’s performance, i.e. the facial
expressions, gaze patterns, gestures, and acoustic charac-
teristics. This has been investigated by several researchers
in the past using political speakers’ performances. For ex-
ample researchers found that vocal variety, as measured by
fundamental frequency (f0) range and maximal f0 of fo-
cused words are correlated with perceptual ratings of a good
speaker within a dataset of Swedish parliamentarians [29, 24].
Further, manual annotations of disfluencies were identified
to be negatively correlated with a positive rating.

In [26], the acoustic feature set, used in [29], was comple-
mented by measures of pause timings and measures of tense
voice qualities. The study shows that tense voice quality
and reduced pause timings were correlated with overall good
speaking performances. Further, the authors investigated
visual cues, in particular motion energy, for the assessment of
the speakers’ performances. They found that motion energy
is positively correlated with a positive perception of speakers.
This effect is increased when only visual cues are presented
to the raters.

A specific instance of public speaking are job interviews.
In [21] researches have tried to predict the hireability in job
interviews. Based on a dataset of 43 job interviews, the
following non-verbal behaviors were used to estimate the
hireability : manual annotations of body activity (gestures
and self-touches), hand speed and position (on table height
or on face height), and the speaking status to mask the
temporal features. The most useful feature was the activity
histogram from the hand position and speed.

Within this work we employ a virtual audience for public
speaking training. Virtual humans are used in a wide range
of social and interpersonal skill training environments, such
as job interview training [2, 14], public speaking training [4,
23], and intercultural communicative skills training [18].

In [4], the use of a virtual audience and the automatic
assessment of public speaking performances was investigated
for the first time. A proof-of-concept non-interactive vir-
tual public speaking training platform named Cicero was
introduced. Three main findings were reported: nonverbal
behaviors of only 18 subjects, such as flow of speech, vocal va-
riety, were significantly correlated with an overall assessment
of a presenter’s performance as assessed by public speaking
experts. A simple support vector regression approach showed
promising results of automatic approximation of the experts’
overall performance assessment with a significant correlation
of r = 0.617 (p = 0.025), which approaches the correlation
between the experts’ opinions (i.e. r = 0.648).

Multimodal 
Behavior Tracking

Eye Gaze
Facial  Expression

Gesture 
Voice Quality

Virtual Audience 
Behavior Control

Lean Forward
Nodding

Clear Throat
Head Shaking

Behavior Analytics

Performance 
Assessment

Overall
Flow of Speech
Gesture Usage

Intonation

Interactive Virtual AudiencePublic Speaking Performance

Figure 1: Depiction of the virtual human driven pub-
lic speaking training interaction loop. The trainee’s
performance is automatically assessed within the be-
havior analytics framework. Multimodal nonverbal
behavior is tracked, the performance is automat-
ically assessed using machine learning approaches
and the virtual audience provides audiovisual feed-
back to the trainee based on training strategies.

Within the present work, we aim to further improve these
promising results using more sophisticated machine learn-
ing approaches. In addition, the present work is concerned
with the assessment of individual speaker improvement after
training rather than how well they present in comparison
to other speakers. The present work is to the best of our
knowledge the first to identify within-subject improvements
and how they relate to changes in nonverbal behavior from
one presentation to the other. Previous work did either not
focused specifically on public speaking performance, did not
investigate a data-driven comparison of presentations, or did
not solely rely on automatically extracted features. There-
fore, we focus on automatic features indicating differences in
public speaking performances between presentations.

3. INTERACTIVE VIRTUAL AUDIENCE
We developed an interactive learning framework based on

audiovisual behavior sensing and learning feedback strategies
(cf. Figure 1). In particular, the speaker’s audiovisual nonver-
bal behavior was registered in the architecture and feedback
was provided to the speaker via the learning feedback strate-
gies. We investigated three such strategies: (1) no feedback,
i.e. the control condition, (2) direct visual feedback, and (3)
nonverbal feedback from the virtual audience itself. Within
this work, however, we solely focus on the performance of
the speakers rather than the effect of learning strategies.

During training, the interactive virtual characters were
configured with a feedback profile as our learning strategies.
These profiles define behaviors the virtual characters will
enact when specific conditions were met. Thus, the virtual
characters can be used to provide natural, nonverbal feedback
to the users according to their performance [5]. In our case,
the characters can change their postures (leaning forward
and being attentive, standing straight on their chairs, and
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leaning backwards in a very relaxed manner), and also nod
or shake their head regularly. Positive behaviors (leaning
forward, nodding regularly) were assigned to trigger when
the speaker’s performance is good, while negative behav-
iors (leaning backwards, head shake) would trigger when the
speaker’s performance is bad. Threshold values for these
triggers were randomly sampled for each virtual character
so that the virtual characters would not behave simultane-
ously. Alternatively, we can provide color-coded direct visual
feedback. A color-coded bar allows us to display the internal
value of a behavioral descriptor directly, giving immediate
feedback to the speaker about his or her performance.

To provide the learning framework with perceptual in-
formation on the speaker’s performance, we made use of a
wizard of Oz interface in order to ensure correct detection
of the target behaviors (i.e. eye contact and pause fillers).
In the future, we will utilize automatic audiovisual behavior
tracking and machine learned models, investigated in this
work, to automatically assess the speaker’s performance, as
suggested in [4]. Within the architecture, the perceptual in-
formation was aggregated into public speaking performance
descriptors that directly influenced either the virtual audi-
ence’s nonverbal behavior as feedback or the direct visual
overlays.

4. METHODS

4.1 Experimental Design
As an initial study, we had users train with our virtual au-

dience prototype with a pre- to post-training test paradigm,
i.e. we compare learning outcomes between a pre-training per-
formance and a post-training performance. By following this
paradigm, we can assess speakers’ relative performance im-
provement while compensating for their initial public speak-
ing expertise.

4.1.1 Study Protocol
Participants were instructed they would be asked to present

two topics during 5-minute presentations and were sent ma-
terial (i.e. abstract and slides) to prepare the day of the
study. Before recording the first presentation, participants
completed questionnaires on demographics, self-assessment,
and public-speaking anxiety. Each participant gave four pre-
sentations. The first and fourth consisted of the pre-training
and post-training presentations, where the participants were
asked to present the same topic in front of a passive virtual
audience. Between these two tests, the participants trained
for eye contact and avoiding pause fillers in two separate
presentations, using the second topic. We specifically chose
these two basic behavioral aspects of good public speaking
performances following discussions with Toastmasters1 ex-
perts. In addition, these aspects are clearly defined and can
be objectively quantified using manual annotation enabling
our threefold evaluation. In the second and third presenta-
tions, the audience was configured to use condition dependent
different feedback strategies: no feedback, direct feedback
through a red-green bar-indicator, or through non-verbal
behavior of the audience. The condition was randomly as-
signed to participants when they came in. Please note, this
work does not rely on these conditions. All three research
questions focus on the pre- and post-training presentation.

1http://www.toastmasters.org/

The virtual audience was displayed using two projections
to render the audience in life-size. The participants were
recorded with a head mounted microphone, with a Logitech
web camera capturing facial expressions, and a Microsoft
Kinect placed in the middle of the two screens capturing the
body of the presenter.

4.2 Participants and Dataset
Participants were recruited from Craigslist2 and paid USD

25. In total, 47 people participated (29 male and 18 female)
with an average age of 37 years (SD = 12.05). Out of the 47
participants 30 have some college education.
Two recordings had technical problems leaving a total of 45
participants On average the pre-training presentations lasted
for 237 seconds (SD = 116) and the post-training presenta-
tion 234 seconds (SD = 137) respectively. Overall, there is
no significant difference in presentation length between pre-
and post-training presentations.

Experts
To compare the pre- with the post-training presentations,
three experienced experts of the worldwide organization of
Toastmasters were invited and paid USD 125. Their average
age is 43.3 year (SD = 11.5), one was female and two were
male. The experts rated their public speaking experience and
comfort on 7-point Likert scales. On average they felt very
comfortable presenting in front of a public audience (M = 6.3,
with 1 - not comfortable, 7 - totally comfortable). They have
extensive training in speaking in front of an audience (M = 6,
with 1 - no experience, 7 - a lot of experience).

4.3 Measures
To answer our research questions we need different mea-

sures. For Q1 as well as Q2 we need an expert assessment
and automatically extracted features. In addition to an ex-
pert assessment, Q3 requires manually annotated behaviors.

4.3.1 Expert Assessment
Three Toastmasters experts, who were blind to the order

of presentation (i.e. pre-training vs. post-training), evaluated
whether participants improved their public speaking skills.
Experts viewed videos of the presentations. The videos are
presented pairwise for a direct comparison in a random order.
Each video showed both the participant’s upper body and
facial expressions (cf. Figure 1). Each expert evaluated the
performance differences for all pairs on 7-point Likert scales
for all ten aspects. In particular, they assessed performance
aspects derived from prior work on public speaking assess-
ment [27, 4, 26, 24] and targeted discussions with experts
apply more to the pre- or post-training presentation3:

1. Eye Contact

2. Body Posture

3. Flow of Speech

4. Gesture Usage

5. Intonation

6. Confidence Level

7. Stage Usage

8. Avoids pause fillers

9. Presentation Structure

10. Overall Performance
The pairwise agreement between the three experts is mea-

sured by the absolute distance between the experts’ Likert

2http://www.craigslist.org/
3Aspect definitions and a dummy version of the questionnaire
are available: http://tinyurl.com/ovtp67x
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scale ratings. The percentage of agreement with a maximal
distance of 1 ranges between 63.70% and 81.48% for all 10
aspects, indicating high overall agreement between raters.

4.3.2 Objective measures
To complement expert ratings, we evaluated public speak-

ing performance improvement using two objective measures,
namely eye contact and the avoidance of pause fillers. The
presenters were specifically informed about these two aspects
in the training presentations for all three conditions. In order
to create objective individual baselines, we annotated both
measures for all pre-training and post-training test presen-
tations. Two annotators manually marked periods of eye
contact with the virtual audience and the occurrence of pause
fillers using the annotation tool ELAN [28]. For both as-
pects we observed high inter-rater agreement for a randomly
selected subset of four videos that both annotators assessed.
The Krippendorff α for eye contact is α = 0.751 and pause
fillers α = 0.957 respectively. Krippendorff’s α is computed
on a frame-wise basis at 30 Hz.

For eye contact we computed a ratio for looking at the
audience ∈ [0, 1], with 0 = never looks at the audience and 1
= always looks at the audience, over the full length of the
presentation based on the manual annotations. The number
of pause filler words were normalized by the duration of the
presentation in seconds.

The improvement is measured by the normalized difference
index ndi between the pre-training and post-training test
presentations for both objectively assessed behaviors and
was calculated by

ndi =
post− pre
post+ pre

. (1)

4.3.3 Automatic Behavior Assessment
In this section the automatically extracted features and

the used machine learning algorithms are introduced. The
following features of the pre- and post-training presentations
are combined with equation 1 to reflect improvement or the
lack thereof.

Acoustic Behavior Assessment.
For the processing of the audio signals, we use the freely

available COVAREP toolbox (v1.2.0), a collaborative speech
analysis repository [6]. COVAREP provides an extensive
selection of open-source robust and tested speech processing
algorithms enabling comparative and cooperative research
within the speech community.

All following acoustic features are masked with voiced-
unvoiced (VUV) [9], which determines whether the partic-
ipant is voicing, i.e. the vocal folds are vibrating. After
masking, we use the average and the standard deviation of
the temporal information of our features. Not affected by
this masking is VUV itself, i.e. the average of VUV is used
as an estimation of the ratio of speech to pauses.

Using COVAREP, we extract the following acoustic fea-
tures: the maxima dispersion quotient (MDQ) [17], peak
slope (PS) [16], normalized amplitude quotient (NAQ) [1],
the difference in amplitude of the first two harmonics of the
differentiated glottal source spectrum (H1H2) [31], and the
estimation of the Rd shape parameter of the Liljencrants-
Fant glottal model (RD) [11]. Beside these features we also
use the fundamental frequency (f0) [9] and the first two
KARMA filtered formants (F1, F2) [20]. Additionally, we use

the first four Mel-frequency cepstral coefficients (MFCC0−3)
and extract the voice intensity in dB.

Visual Behavior Assessment.
Gestures are measured by the change of upper body joints’

angles from the Microsoft Kinect. Therefore, we take the sum
of differences in angles (from the following joints: shoulder,
elbow, hand, and wrist). To eliminate noise, we set the
difference to zero when not both hands are above the hips.
To avoid assigning too much weight to voluminous gestures,
we truncate the differences when the difference is higher
than a threshold, which we calculated from manual gesture
annotations of 20 presentations. In the end, we use the
mean of the absolute differences as an indicator for gesturing
during the presentation.

We evaluate eye contact with the audience based on two
eye gaze estimations. The eye gaze estimation from OKAO
[19] head orientation from CLNF [3] are used separately to
classify whether a participant is looking at the audience or
not. The intervals for the angles, which we use to attest
eye contact, are calculated from our eye contact annotations.
Finally, we use the ratio of looking at the audience relative
to the length of the presentation as a feature.

Emotions, such as anger, sadness, and contempt, are ex-
tracted with FACET [10]. After applying the confidence
provided by FACET, we take the mean of the emotions’
intensity as features.

Machine Learning.
To approximate the experts’ combined performance as-

sessments we utilize a regression approach with the experts’
averaged ratings as targets for all ten aspects. For this, we use
Matlab’s implementation of a least squared boosted regres-
sion ensemble tree. We evaluate our predictions with a leave
one speaker out cross-evaluation. Since we have relatively
many features with respect to the number of participants, we
use the forward feature selection to find a subset of features
using the speaker independent validation strategy. This kind
of feature selection starts with an empty set of features and
iteratively adds the feature that decreases together with the
chosen features a criterion function the most. The resulting
feature subset might not be optimal. As a criterion func-
tion we use (1− corr(ŷ, y))2, where ŷ are the predictions of
the leave one speaker out cross-evaluation and y the ground
truth.

5. RESULTS

5.1 Q1 - Behavioral Indicators
We report correlation results with the linear Pearson cor-

relation coefficient along with the degrees of freedom and
the p-value. Table 1 summarizes the features, which change
between the pre- and post-training presentation measured
by ndi (Eq. 1) strongly correlates with aspects of public
speaking proficiency. We list only detail statistical findings
for a reduced number of aspects due to space restrictions.
Please note, this table and the following paragraphs are not
complete in respect to all aspects nor do they mention all
features. For a complete list of all aspects and correlating
features see Table 1 of the supplementary material.

Eye Contact: Experts’ eye contact assessments slightly
correlate with an increase of the average eye contact as
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Table 1: Overview of correlating features for each
improvement aspect. Arrows indicating the direc-
tion of the correlation, i.e. ↑ means positive correla-
tion and ↓ means negative correlation.

Improvement Aspect Correlating Behavior

Eye Contact ↑ eye contact
↓ contempt
↓ VUV std
↓ H1H2 std

Flow of Speech ↑ voice intensity variation
↑ peak slope std
↑ MFCC0 std
↓ H1H2 std
↓ MFCC0 mean
↓ VUV std

Gesture Usage ↑ ratio of speech and pauses
↑ gesture
↑ MDQ mean

Intonation ↑ pitch mean
↑ peak slope std
↑ vocal expressivity
↓ peak slope mean

Confidence ↑ F1 mean
↑ vocal expressivity
↑ ratio of speech and pauses
↑ pitch mean
↓ MFCC0 mean
↓ peak slope mean

Pause Fillers ↑ peak slope std
↓ contempt
↓ VUV std

Overall Performance ↑ peak slope std
↓ H1H2 std
↓ contempt
↓ VUV std

assessed by OKAO (r(43) = 0.24, p = 0.105). Also, assessed
contempt facial expressions correlate negatively with the
eye contact assessment (r(43) = −0.33, p = 0.029). We
identify two negatively correlating acoustic features, namely
a decrease of the standard deviation of VUV (r(43) = −0.34,
p = 0.024) and a decrease of the standard deviation of H1H2
(r(43) = −0.45, p = 0.002).

Flow of Speech: Experts’ flow of speech assessment
correlates only with acoustic features. They include an
increase of the standard deviation of the voice intensity
(r(43) = 0.31, p = 0.039), a decrease of the average of
MFCC0 (r(43) = −0.36, p = 0.015) as well as an increase
of the standard deviation of it (r(43) = 0.35, p = 0.019).
Beside these features also a decrease in the standard deviation
of VUV (r(43) = −0.39, p = 0.008), a decrease in the
standard deviation of H1H2 (r(43) = −0.33, p = 0.026), and
an increase in the standard deviation of PS (r(43) = 0.31,
p = 0.040) correlated with flow of speech.

Confidence: Experts’ confidence assessment correlates
with several acoustic features. It correlates with an increasing
average pitch (r(43) = 0.32, p = 0.034), an increase of
mean of VUV (r(43) = 0.32, p = 0.031), a decrease of
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Figure 2: Color coded visualization of the Pearson
correlation between the expert assessments of all
evaluated aspects and the automatic prediction us-
ing both single modalities and both combined.

VUV standard deviation (r(43) = −0.40, p = 0.006), the
decrease of the standard deviation of H1H2 (r(43) = −0.36,
p = 0.016), and a decrease of the average PS (r(43) = −0.32,
p = 0.034). In addition to these features, an increase of
the standard deviation of MFCC2 (r(43) = 0.30, p = 0.044)
correlate with confidence, too. Lastly, the following formants
correlate with confidence of the first formant an increase in
the average (r(43) = 0.34, p = 0.021) as well as an increase
of the standard deviation (r(43) = 0.31, p = 0.037) and of
the bandwidth from the second formant a decrease of the
average (r(43) = −0.32, p = 0.033) as well as a decrease of
the standard deviation (r(43) = −0.40, p = 0.007).

Avoids Pause Fillers The assessed avoidance of pause
fillers correlates with a decrease of the standard deviation
of VUV (r(43) = −0.52, p < 0.001) and an increase of PS’s
standard deviation (r(43) = 0.32, p = 0.030). Furthermore,
it correlates with two visual features, namely being less
contempt (r(43) = −0.36, p = 0.016) and having more
neutral facial expressions (r(43) = 0.35, p = 0.019).

Overall Performance: Finally, the assessed overall per-
formance correlates with showing less contempt facial ex-
pressions (r(43) = −0.32, p = 0.030) and the following
acoustic features: a decrease of the standard deviation of
VUV (r(43) = −0.46, p = 0.002), a decrease of the stan-
dard deviation of H1H2 (r(43) = −0.31, p = 0.039), an
increase in PS’ standard deviation (r(43) = 0.36, p = 0.015),
and a decrease of the bandwidth from the second formant
(r(43) = −0.30, p = 0.042).

5.2 Q2 - Automatic Assessment
In Figure 2 we report Pearson’s correlation results for every

aspect using the three feature sets (visual, acoustic, and
acoustic+visual). As seen in Figure 2, the acoustic+visual
feature set outperforms the other two modalities consistently.
We present the p-values of two-tailed t-tests and Hedges’ g
values as a measure of the effect size. The g value denotes
the estimated difference between the two population means
in magnitudes of standard deviations [13].

In addition to correlation assessments, we investigate mean
absolute errors of our automatic assessment using tree en-
sembles. As a comparison performance we use the mean over
all expert ratings for every aspect and all participants as a
constant baseline and compare it with the automatic assess-

47



.601

.648

.630

.494**

.595

.694*

.381*

.355

.549*

.567**

1.070

.805

1.080

.991

1.032

1.274

.789

.679

1.014

1.170

Ensemble Baseline

Eye contact

Body Posture

Flow of Speech

Gesture Usage

Intonation

Confidence

Stage Usage

Pause Fillers

Presentation Structure

Overall Performance

1.2

.4

M
ea

n 
Ab

so
lu

te
 e

rr
or

.431

.376

.463

.537

.309

.505

.538

.444

.358

.493

.503

.612

.636

.647

.647

.554

.636

.691

.668

.686

Visual Acoustic Visual + Acoustic

Eye contact
Body Posture

Flow of Speech
Gesture Usage

Intonation
Conf dence

Stage Usage
Pause Fillers

Presentation Structure

Overall Performance

.8

.3

Co
rre

la
tio

n

.559

.540

.645

.820

.647

.653

.779

.691

.670

.745

Figure 3: Color coded visualization of the mean ab-
solute error of the ensemble tree approach and the
baseline assessment. Significant improvements are
marked with ∗ (p < 0.05) and ∗∗ (p < 0.01).

ment using the mean absolute error. Our prediction errors
(M = 0.55, SD = 0.42) are consistently lower compared to
the baseline errors (M = 0.74, SD = 0.57) and significantly
better (t(898) = 0.50, p < 0.001, g = −0.372) across all
aspects. Additionally, for overall performance alone the auto-
matic assessment (M = 0.57, SD = 0.46) is also significantly
better than the baseline (M = 0.88, SD = 0.61; t(88) = 0.54,
p = 0.008, g = −0.566). For a full comparison of all aspects
between our prediction errors and the constant prediction
errors see Figure 3.

When we compare the different modalities, i.e. acoustic
and visual features separately as well as jointly, we identified
the following results: Acoustic features only (M = 0.59,
SD = 0.45; t(898) = 0.50, p = 0.002, g = −0.202) and
acoustic+visual features (M = 0.55, SD = 0.42; t(898) =
0.48, p < 0.001, g = −0.297) significantly outperform the
visual (M = 0.70, SD = 0.54) features. We do not observe a
significant difference between acoustic and acoustic+visual
(t(898) = 0.44, p = 0.140, g = 0.099).

5.3 Q3 - Expert Judgments
We annotated eye contact and pause filler words in all

pre- and post-training presentations, see Section 4.3. For
the eye contact annotation, we use the normalized value of
the annotated aspect, the annotated period divided by the
length of the presentations. The count of pause filler words
is used directly as a score. Thereby, we have scores of the
annotated aspects representing the annotated behavior in
the pre- and post-training presentation.

To have a score comparable to the expert assessment,
we use equation 1 to combine the scores of the pre- and
post-training presentation. We do not observe a significant
correlation between the experts’ eye contact assessment and
the annotated eye contact (r(43) = 0.20, p = 0.197) as well
as no correlation between the pause filler annotations and the
assessed pause fillers (r(43) = −0.05, p = 0.739). However,
we observe a strong correlation between the automatic mea-
sures of eye contact using OKAO (r(88) = 0.62, p < 0.001)
and CLNF (r(88) = 0.66, p < 0.001) and the manually
annotated eye contact.

6. DISCUSSION

6.1 Q1 - Behavioral Indicators
Our first research question aims at identifying within-

subject nonverbal behavioral changes between pre- and post-
training presentations and how they relate to expert assess-
ments. All reported behaviors are automatically assessed
and changes are identified using the ndi (see Section 4).
We correlate the observed behavioral changes with expert
assessed performances in all ten aspects. Our findings con-
firm that large portions of a public speaking performance
improvements are covered by nonverbal behavior estimates.

As summarized in Table 1, we can identify a number of mul-
timodal nonverbal behaviors that are correlated with expert
assessments for the investigated aspects as well as for overall
performance improvement (due to space restrictions we ex-
cluded three aspects from our analysis). For several aspects,
such as intonation and gesture usage prior intuitions are con-
firmed. For example vocal expressivity, increased tenseness
(as measured by peak slope), and pitch are correlated with
an improvement in the assessment of intonation. Further,
the increased usage of gestures from pre- to post-training
presentations is correlated with an assessed improvement
of gesture usage. In addition, multifaceted aspects such as
confidence show a broad spectrum of automatic measures
that are correlated, both positively and negatively. For the
assessment of overall performance, we identified that the use
of contempt facial expressions is negatively correlated with
performance improvement. This could be interpreted that
if the presenter accepted the virtual audience and engaged
in training they gained more from the experience. Further,
changes in pause to speech ratio and increased variability in
the voice as measured with peak slope correlate with overall
performance improvement. Change of the standard devia-
tion of VUV negatively correlates most prominently with a
number of aspects. As VUV is a logical vector, i.e. whether
a person is voicing or not, the standard deviation is similar
to the entropy. This indicates that a decrease in speaking
variety or the development of a more regular flow of speech,
is a key feature of public speaking performance improvement.

As shown in Figure 1, we plan to incorporate the identified
automatic measures of behavioral change as input to control
the virtual audience online feedback. We anticipate to use
both targeted feedback behavior, such as a virtual audience
member clears its throat to signify that it feels neglected
by lack of eye contact, as well as complex feedback cover-
ing multiple aspects. The exact types of behavioral online
feedback need to be further investigated in future studies;
it is important that the behaviors of the virtual audience
are clearly identifiable. Only then will the trainee be able to
reflect on his or her behavior during training and ultimately
improve.

6.2 Q2 - Automatic Assessment
In order to answer the second research question, we con-

ducted extensive unimodal and multimodal experiments and
investigate ensemble trees to automatically approximate the
experts’ assessments on the ten behavioral aspects. Figure 2
summarizes the observed correlation performance of our au-
tomatic performance assessment ensemble trees. In addition,
we investigate mean absolute errors for the regression output
of the ensemble trees compared to an average baseline. For
both performance measures, i.e. correlation and mean abso-
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lute error, we observe that multimodal features consistently
outperform unimodal feature sets. In particular, complex
behavioral assessments such as the overall performance and
confidence of the speaker benefit from features of multiple
modalities. Out of the single modalities the acoustic infor-
mation seems to be most promising for the assessment of
performance improvement. However, we are confident that
with the development of more complex and tailored visual
features similar success can be achieved. When compared
to the baseline, the ensemble tree regression approach sig-
nificantly improves baseline assessment for several aspects
including overall performance.

One of the main reasons for choosing ensemble trees as
the regression approach of choice is the possibility to inves-
tigate the selected features to achieve the optimal results.
This enables us to investigate behavioral characteristics of
public speaking performance improvement in detail. For the
overall performance estimation the multimodal ensemble tree
selected negative facial expressions, pause to speech ratio,
average RD measure, average second and third formants, as
well as the second formant’s bandwidth. This selection shows
the importance for both the facial expressions and the voice
characteristics for the assessment of performance improve-
ment. Overall the ensemble trees’ output is correlated with
the experts’ assessment at r > 0.7, which is a considerably
high correlation and a very promising result.

In the future, we plan to use these automatic performance
improvement estimates to give the trainees targeted post-hoc
feedback on what aspects did improve and which need further
training. Similar to the work in [14], we plan to provide a
visual performance report to the trainee as a first step. In
addition, such visual reports can be enhanced by a virtual
tutor that guides the trainee through the assessment and
possibly replays several scenes from the presentation and
provides motivational feedback to the trainee.

6.3 Q3 - Expert Judgments
When investigating the third research question, we iden-

tified a considerable difference between the manual ground
truth labels of two key behaviors and experts’ subjective
opinions. In particular, we found that there is no correla-
tion between the experts’ assessment of the used number of
pause fillers and the actual number of pause fillers uttered
by the presenters. We also found no correlation between
the assessment of eye contact and the manually annotated
times of actual eye contact of the presenter with the virtual
audience. However, we found a strong correlation between
the automatic measures of eye contact with the manual an-
notation. This finding could explain why the automatically
assessed eye contact only slightly correlates with the experts’
assessment (see Section 5.1).

It is possible to argue that the experts did not accurately
count the number of pause fillers during their assessments
and if they had been provided with the exact numbers their
assessment would have changed, however, this probably does
not hold for the more complex behavior of eye contact. While
both the manual annotation and the automatic assessment
of eye contact are crude measures of the time a presenter
looks at an audience, the experts might inform their decision
on a much more complex basis. In particular, we believe
that eye gaze patterns such as slowly swaying the view across
the entire audience vs. staring at one single person for an
entire presentation might be strong indicators of excellent or

poor gaze behaviors. A distinction between such behaviors
is not possible using the utilized crude measures. As men-
tioned earlier, we plan to investigate more tailored behavioral
descriptors in the near future.

7. CONCLUSION
Based on the three research questions investigated in this

work we can identify the following main findings: Q1 We
could identify both visual and acoustic nonverbal behaviors
that are strongly correlated with pre- to post-training pre-
sentation performance improvement and the lack thereof. In
particular, facial expressions, gestures, and voice characteris-
tics are identified to correlate with performance improvement
as assessed by public speaking experts from the Toastmas-
ters organization. Q2 Based on the automatically tracked
behaviors, we investigated machine learning approaches to
approximate the public speaking performance on ten behav-
ioral aspects including the overall performance. We showed
that the multimodal approach utilizing both acoustic and
visual behaviors consistently outperformed the unimodal ap-
proaches. In addition, we found that our machine learning
approach significantly outperforms the baseline. Q3 Lastly,
we investigated manual ground truth assessments for eye con-
tact and number of pause fillers used in pre- and post-training
presentations and how they relate to expert assessments. We
could identify a considerable difference between expert as-
sessments and actual improvement for the two investigated
behaviors. This indicates that experts base their assessments
on more complex information than just the amount spent
looking at the audience or the number of pause fillers uttered,
but rather identify patterns of behaviors showing proficiency.
We plan to investigate such more complex patterns of behav-
iors in the near future and confer with our public speaking
experts to inform us on their decision process.

Overall, our findings and results are promising and we
believe that this accessible technology has the potential to
impact training focused on the nonverbal communication as-
pects of in fact a wide variety of interpersonal skills, including
but not limited to public speaking.
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