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ABSTRACT 

Multimodal analysis has long been an integral part of studying 

learning. Historically multimodal analyses of learning have been 

extremely laborious and time intensive. However, researchers 

have recently been exploring ways to use multimodal 

computational analysis in the service of studying how people 

learn in complex learning environments. In an effort to advance 

this research agenda, we present a comparative analysis of four 

different data segmentation techniques. In particular, we propose 

affect- and pose-based data segmentation, as alternatives to 

human-based segmentation, and fixed-window segmentation. In a 

study of ten dyads working on an open-ended engineering design 

task, we find that affect- and pose-based segmentation are more 

effective, than traditional approaches, for drawing correlations 

between learning-relevant constructs, and multimodal behaviors. 

We also find that pose-based segmentation outperforms the two 

more traditional segmentation strategies for predicting student 

success on the hands-on task. In this paper we discuss the 

algorithms used, our results, and the implications that this work 

may have in non-education-related contexts. 

Categories and Subject Descriptors 

H.5.m [Information Interfaces and Presentation]: 

Miscellaneous  

J.4 [Computer Applications]: Social and Behavioral Sciences 

General Terms 

Algorithms, Human Factors, Experimentation, Performance. 

Keywords 

Learning Sciences, Interaction Analysis, Modeling 

1. INTRODUCTION 
Multimodal learning analytics [3,22,28] is still a nascent field. 

Over the past few years there has been increasing interest and 

participation in this research domain [11,12,18]. As researchers 

move towards integrating multimodal human perception with 

education research, there are a host of important questions that 

need to be explored. 

As in all studies that leverage multimodal data, there is the 

question of how to appropriately represent the student’s 

behaviors. This entails selecting a set of modalities which reliably 

capture behaviors that correlate with the dependent variable. As 

an additional question, there are a host of constructs - success, 

persistence, learning, motivation – that may all be of interest for a 

given learning analytics study. Once the dependent variable and 

the modalities have been selected, the researcher must then 

wrestle with how to utilize the data to map between user behavior 

and the dependent variable. One element of mapping between data 

and a learning construct is closely linked to how the data is 

segmented. Comparing different segmentation methods is a 

primary contribution of this paper.  

In multimodal learning analytics research, and multimodal 

interaction research more generally, researchers often use one of 

two approaches for segmenting data. Some rely on human-

annotation to properly denote an appropriate segment of 

interaction. This approach is extremely laborious, but has the 

advantage of incorporating elements of human perception that can 

enable detection of hard to identify interactions of verbal and non-

verbal cues. Another advantage is that human-based segmentation 

can handle variable length segments. Our prior research in 

multimodal learning analytics [24,25] and that of many others, 

was based on human segmentation. At the other end of the 

spectrum is fixed-, or sliding-, window segmentation. Researchers 

select the window size that garners the best results, or that was 

established by prior research, to automatically segment the data. 

This approach has the advantage of being far less laborious, but 

assumes that the appropriate unit of analysis is fixed in length, and 

is tied to a certain amount of time. In this paper we propose two 

approaches that look to simultaneously harness the affordances of 

human-based segmentation and fixed-window segmentation. In 

particular, we compare affect-based segmentation, and pose-based 

segmentation to more traditional models of human-based 

segmentation and fixed-window segmentation, for modeling 

student behavior and learning. These different approaches will be 

compared to see how well they can be used to model and predict 

student behaviors as it relates to three constructs: success, 

experimental condition and learning. (Each of these constructs 
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will be described in more details in the methods section.) (Note: 

some researchers simplify the process of human-based 

segmentation by incorporating ways that allow the data to be 

collected on a per problem, per task or per session basis, for 

example. This often times provides a representation that is too 

coarse, but can offer a middle ground between human annotation 

and automated techniques). 

Our hypothesis is that affect- and pose-based segmentation will 

offer a means for providing a semantically relevant, automated 

approach for understanding and predicting learning-relevant 

constructs that is as good as, or better than, human-based 

segmentation and/or fixed-window segmentation. 

In what follows we briefly present our theoretical framework and 

pertinent prior literature; describe the experiment from which the 

data was derived; delineate the basic algorithm used to analyze the 

data; summarize important results; and discuss the implications of 

this work. 

2. PRIOR LITERATURE 

2.1 Theoretical Framework 
The current analyses are influenced by prior literature on 

Interaction Analysis [13], Embodied Cognition [16], 

Epistemological Framing [20,23] and Cognitive Disequilibrium 

[8].  

In particular, Interaction Analysis  

“investigates human activities, such as talk, nonverbal 

interaction, and the use of artifacts and technologies, 

identifying routine practices and problems and the resources 

for their solution. [13] ”  

The emphasis on how individuals interact with one another and 

with the resources at their disposal is of central interest to the 

current analyses. Furthermore, interaction analysis takes a situated 

perspective, in which a given behavior can only be understood in 

the context of the surrounding actions. As such, one way for 

framing the current analyses is towards determining an 

appropriate means for identifying a unit of analysis that can be 

used to develop meaningful segments of interactions. 

Additionally, Interaction Analysis is firmly rooted in human-

based ethnographic video analysis. Accordingly the current effort 

aims to create automated approaches for conducting rich 

interaction analysis.  

Given the apparent ties to Interaction Analysis, the connection to 

Embodied Cognition [16] should be apparent. However, invoking 

embodied cognition goes one step further by actively suggesting 

that there is a dependence on the body in order to fully engage in 

the process of cognition. The multimodal behavioral 

representations that we construct may serve as a window into 

better understanding the connections between body and mind. 

More specifically, the multimodal behavior representation may 

provide a glimpse into the behaviors that foster meaningful 

insights during a given task, and those that seem to detract from 

learning. 

The current work is also informed by the theory of 

Epistemological Frames. [20,23] describe the connection between 

multimodal behavior and epistemology. Moreover, their work 

suggests that a student’s body position, gaze, speech, and 

gesticulations can provide a lens into how a students is 

approaching a given task. It can also reflect the student’s 

understanding of how they think they are expected to approach a 

given task. As an example of this, [23] identified four 

epistemological frames that could be used to model how students 

are approaching group work with their peers. Each of those 

epistemology frames could be reliably coded using multimodal 

data. Given that these multimodal markers can be a good indicator 

of student epistemology it would follow that identifying these 

moments in the context of learning could provide a useful way for 

denoting different “phases” of an activity, and subsequently, be 

useful for data segmentation. 

 

 

Finally, this study is informed by work on Cognitive 

Disequilibrium which suggests that students experience learning 

when they enter into states of confusion [8]. Furthermore, the 

researchers have found that cognitive disequilibrium and feelings 

of frustration are mirrored in individual body movements as 

“fractal scaling” or pink noise [7]. If affective states represent 

such an important aspect of learning, and cognitive disequilibrium 

can be evidenced in body movement, it seems appropriate to 

explore the possibility of using facial expressions, a proxy for 

affective state, as a means for providing semantically relevant 

segments.  

2.2 Multimodal Segmentation 
There are certainly instances of prior research that utilize 

multimodal data to automatically segment data. Several examples 

exist within the television domain where researchers wish to 

utilize audio/visual data to automatically detect commercials, or 

naturally segment news broadcasts [5,10]. Other researchers have 

used multimodal data to conduct better segmentation of spoken 

text [6,19]. However, we know of no prior research that looks to 

use changes in facial expression and/or changes in body pose to 

automatically segment multimodal process data, especially when 

used in the context of trying to better understand and predict 

constructs related to student learning and cognition. 

3. METHODS 
To provide the reader with additional context, we briefly describe 

the research participants and the task that they completed before 

entering into a discussion of the analyses and results. 

The task was motivated by prior work in Constructionism[17]. 

Students were given common household materials: one paper 

plate, 4 ft. of garden wire, four drinking straws and five wooden 

Popsicle sticks. The objective was to use the materials provided to 

create a structure that could support a weight of approximately 

half a pound. Participants were also asked to support the weight as 

high off the table as possible.  

Our population of students consisted of twelve 9th- through 12th-

grade students and eight undergraduate students. Pairs of students 

were randomly assigned to either use example- or principle-based 

reasoning, after controlling for prior education experience. Thus, 

each condition had six high school students and four 

undergraduate students. In the example-based condition, students 

generated three example structures from their home, community 

or school in order to motivate their design. In the principle-based 

condition, students identified three engineering principles that 

conferred strength and stability to a ladder, an igloo and a bridge, 

before embarking on the building task.  

The data capture environment included: a Kinect sensor – for 

capturing audio, gesture and video; a high resolution web camera 

- to record how students moved the different materials; and an 

electro-dermal activation sensor – for measuring stress and/or 

arousal. All sensor data was synchronized through the data 

collection software, and also verified by a research assistant. 
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3.1 Activity Sequence 
The overall flow of activities that students completed included: a 

pre-test; an intervention, i.e. one of the two conditions; a 

preliminary design drawing; a hands-on building activity; post-

test; and reflection (Figure 1). 

 

 

Figure 1. Overall study design 

3.2 Learning-Related Constructs 
As previously noted, our analysis was conducted against three 

different learning-related constructs: success, learning and 

experimental condition. 

Success. Success is based on the performance of each pair’s 

structure. Structures that are able to support the weight for more 

than thirty seconds, are coded as being successful. Structures that 

are unable to support the weight for more than thirty seconds are 

coded as being unsuccessful. 

Learning. Learning is based on learning gains from pre-test to post-

test. The pre- and post-tests asked students to identify important 

concepts in engineering design. Students who experienced positive 

learning gains were identified as having learned. Students who did 

not experience positive learning gains were said to have not learned. 

Experimental Condition. As previously noted, students 

participated in one of two interventions. The first intervention, 

example-based reasoning, involved the students working together to 

come up with a design based on a real-world object from their 

home, community or school. The second intervention, principle-

based reasoning, involved the students working together to come up 

with a design based on engineering principles. From prior work, 

we’ve observed that students in the principle-based reasoning 

condition are more successful and experience higher learning gains 

[26]. We’ve also observed that students use a better engineering 

design process when employing principle-based reasoning 

strategies. Hence, even though there is a correlation between 

experimental condition, success and learning, we are independently 

interested in identifying the multimodal behaviors associated with 

the two experimental conditions. 

 

3.3 Data 
The analyses included in this paper are drawn from the following 

multimodal data. 

Audio data. Data was derived from a combination of audio channels 

from an overheard web camera, and from the Xbox Kinect sensor. 

Custom software was developed based on the Carnegie Mellon 

University (CMU) Sphinx Speech Recognition Toolkit [14]. 

Specifically, the source code was modified to leverage the 

program’s voice activity detection feature. Voice activity detection 

is an automated means for determining when voice-based audio is 

being generated. Several speech recognition software solutions 

contain some variant of voice activity detection. The custom 

software provided voice detection start and stop times for all of the 

audio channels. Audio was considered to be present if either of the 

audio sources detected a voice, within a given second of time. Thus 

the final format of this data is a binary representation. Every second 

of the activity is labeled with a zero or one, for the absence or 

presence of audio at that time stamp. Because the audio channel 

captured sound from both participants this piece of data is the same 

for each person in a dyad. 

Hand/wrist movement. Hand/wrist movement data was generated 

from the Xbox Kinect sensor. A custom built application was used 

to store three dimensional data for twelve upper body joints. The 

application uses native features available from the Kinect for 

Windows SDK, specifically, the ability to conduct skeletal tracking 

in the seated position. The custom application stores the data at 10 

Hz. From the file generated, we utilize only the left and right wrist, 

hand and elbow data points. For each successive pair of data points 

we compute the angular displacement for the vectors that connect: 

left wrist and left hand; left wrist and left elbow, right wrist and 

right hand; right wrist and right elbow. The eventual angular 

displacement that is recorded is an average of the four angular 

displacements. Using angle as the means for comparison reduces 

biases introduced by participants having different sized bodies and 

limbs. Accordingly, for each tenth of a second in time we have 

stored the angular hand/wrist displacement. Finally, the cumulative 

angular displacement for each second of time is stored for each 

participant. 

Electro-dermal Activation (EDA). Electro-dermal activation (also 

referred to as galvanic skin response and/or skin conductance) 

readings were captured at 8 Hz. Processing electro-dermal 

activation data involved controlling for individual differences in 

variance, as well as individual differences in stress response. In 

practice, this was achieved by collecting baseline data as students 

completed the task of counting down by 7.We will refer to this as 

the “math” stress test. As additional baseline data, students also 

completed a Stroop test, and had their electro-dermal activation 

recorded during non-task related activities. As before, each data 

point was time-stamped with the local date and time. Each data 

point was then transformed into an index value by subtracting the 

mean from the “math” stress test, and then dividing by the standard 

deviation of the “math” stress test data for that student. When we 

compared electro-dermal activation index values across the different 

activities, there were no statistically significant differences between 

experimental conditions for the baseline data, the Stroop test, or the 

math test. However, across the intervention, design phase and the 

building activity, differences were statistically significant. This 

provided validation that this normalization was effective. Electro-

dermal activation index for each second of time was determined by 

taking the average electro-dermal activation index for a given 

second in time. 

Facial Expression: Facial expression was extracted from frontal 

images using FACET SDK [15]. The facial expressions included: 

joy, anger, sadness, surprise, fear, contempt, disgust, confusion, and 

frustration. Evidence values for each of the facial expressions were 

used as an indicator for the presence and/or absence of each facial 

Pre-Test

Intervention

Design Sketch

Activity

Post-Test

Reflection
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expression. Data points were recorded and stored at 1-second 

increments. All facial expressions were used for affect-based 

segmentation, while only confusion was used when quantifying 

multimodal behaviors. This will be described in more detail in the 

following sections. 

Head Pose: Head pose estimation was determined from frontal 

images using a custom Constrained Local Neural Fields [2] 

application. The software provided pitch, roll and yaw at 1-second 

increments. Because participants have oppositely signed yaw values 

when they are looking at each other (they were seated side by side), 

the yaw values were transformed so that positive yaw corresponds 

to looking toward their partner and negative yaw corresponds to 

looking away from their partner. Finally, pitch and yaw are stored 

separately in the resultant vector. 

3.4 Algorithm 
The approach follows our previous work [25,27] on analyzing 

design strategies and success in hands-on engineering tasks. Here 

we significantly extend that work by incorporating different data 

segmentation strategies. A visualization of the general algorithm is 

provided in Figure 2 and Figure 3. A summary of each step is 

included below. 

Time-stamp. The first step of extracting process data is to ensure 

that all data is properly time-stamped. This provides a means for 

synchronizing across the different modalities and results in a 7- 

dimensional matrix for each student. The dimensions of this matrix 

are time, confusion evidence, pitch, yaw (in terms of looking away 

from or towards one's partner), electro-dermal activation index, 

hand/wrist displacement and audio. 

Segment. The time-stamped data is then segmented. We will refer to 

these segments as “data segments.” Segmentation was adopted to 

help smooth the data, and provide units of analysis that are 

meaningful given the learning constructs of interest.  

For this study we compare four different segmentation strategies: 

human-based, pose-based, affect-based and fixed-window.  

Human-based segmentation creates a new segment every time a 

pair’s structure is tested. This approach is based on interpreting 

testing as an instance in which at least one person in the pair is 

eliciting feedback that will update the students on the current 

stability of their structure. Testing usually takes the form of a team 

member placing the weight on the structure. Under this 

segmentation strategy dyads had the same number of “data 

segments.” Finally, this approach is informed by traditional 

Interaction Analysis techniques [13] and our prior work [24,25,27]. 

Pose-based segmentation creates a new segment every time a given 

student changes the direction of their head pose. In more precise 

terms, a new segment was defined as a change in the sign of the 

pitch and/or yaw. A minimum pose duration of 8 seconds is 

imposed, though this limit is seldom utilized. Recall that this 

approach is motivated, in part, by Epistemological Framing [20,23]. 

Affect-based segmentation creates a new segment every time there 

is a change in the most evident facial expression. Once again, a 

minimum segment duration of 8 seconds is imposed. A primary 

motivation for this segmentation strategy is research on the 

importance and manifestations of cognitive disequilibrium [7,9] 

Fixed-window segmentation creates a new segment at every second 

of time. In conducting our analysis, we tested varying fixed-window 

sizes (e.g. 4, 8, 10 and 30 seconds) but found that 1 second windows 

worked the best. Because the data is preprocessed to be grouped on 

a per second basis, fixed-window segmentation requires no 

additional processing at this step. 

 

 

Figure 2. General algorithm 

As a whole, the segmentation process serves to smooth the data. 

Instead of having to take into account each of the spikes and troughs 

that may emerge from any of the data streams, segmentation allows 

us to look at broader trends. Noise reduction is also achieved during 

the forthcoming clustering step. 

Segmentation always resulted in a single value for each data stream. 

For the audio data the value is the speech fraction. For the 

hand/wrist movement data, the value is the average total angular 

displacement during that “data segment.” For electro-dermal 

activation, the value is the average index value during that particular 

“data segment.” Similarly, for head pose estimation, and confusion 

evidence, the values indicate the average pitch, yaw, and confusion 

evidence. 

Cluster. After the segmentation step, there are hundreds to 

thousands of unique “data segments.” Some of these will be very 

similar to one another, only differing by an infinitesimal amount, 

while others will vary quite extensively from one another. The goal 

of clustering is to identify natural groupings among the various 

“data segments” and ultimately provide a common set of states, or 

behaviors, by which to compare students. However, before 

proceeding with clustering, we first do data standardization. 

Namely, we adjust each value, such that all of the data in a given 

column has a mean of zero and a standard deviation of one. This 

process eliminates bias in clustering, by ensuring that each column 

contributes equally to the distance metric, which in the case was 

Euclidean distance. After standardizing the data, we used K-Means 

clustering, with a Euclidean distance metric, to group the data points 

into a set of four clusters that place each “data segment” with the 

other “data segments” that it is most similar to. Four clusters was 

used based on our prior experience with this dataset. Specifically, in 
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[27] we found through human observation that four clusters 

provided the most meaningful semantic meaning.  

Several iterations were completed to avoid local maxima. Once 

each “data segment” has been grouped with similar “data 

segments,” each cluster, or group, can be described based on the 

cluster centroid value. These values provide the basis for 

determining common behavioral practices in later sections. 

Note: We tried variable sized clusters, allowing for each 

segmentation strategy to use the number of clusters that conferred 

the greatest predictive accuracy.  However, there was very little 

difference in the results. Hence, we used the same number of 

clusters for each segmentation strategy, as to reduce algorithmic 

variation, and simplify the analysis. 

Re-label. All “data segments” that are put into the same cluster are 

given the same name and value. Accordingly, each student’s 

sequence of “data segments” is represented as a list of clusters. 

Normalize. In the normalization step, each student’s data is reduced 

to a four dimensional vector that features the frequency that cluster 

was used by that student (L-1 normalization). 

Compare Behavior Frequency. After L-1 normalization, the next 

step is to compare behavior frequency data across the three metrics 

of interest: success, experimental condition; and learning. The 

comparisons are based on two-tailed t-tests along each of the 

individual clusters for a given segmentation strategy. 

Train and Compare Classifiers. The frequency values are used to 

train classifiers for predicting the three metrics of interest: success, 

experimental condition; and learning. In this study we trained a 

support vector machine, with a linear kernel. Sixteen fold leave-one 

out training and testing was completed to determine the 

effectiveness of each approach. Comparisons were based on F-score 

from the test data, as compared to a majority class classifier.  

4. RESULTS 

4.1 Correlations between cluster frequency 

and learning constructs 
We begin our presentation of the results with a discussion of the 

cluster frequencies, paying particular attention to how well each 

cluster correlated with success, learning and experimental condition 

(Tables 1 – 4). We report Pearson correlation values, and p-values 

based on two-tailed t-tests, with 15 degrees of freedom. 

Specifically, for each construct we compute the level of correlation 

and the probability that successful students used a given cluster 

(multimodal behavior) with greater frequency than unsuccessful 

students, for example. In each table “*”, “**” and “***” correspond 

to p < 0.05, 0.01 ad 0.001, respectively. 

 

Figure 3. Pictorial representation of the data algorithm. 

Numbers 1 through 17 represent different seconds in time. A 

through E represent “data segments” that are defined based 

on the individual timestamps associated with them. C-1, C-2, 

C-3, C-4 represent multimodal behavior clusters. The clusters 

are based on using K-means to group “data segments”. 

 

Table 1. Pearson r values and p-values for cluster usage by 

construct for fixed window segmentation  

Fixed Window 

Cluster Success Condition Learning 

1 0.50* 0.44* 0.62* 

2 0.48* 0.44 0.29 

3 0.22 0.11 0.25 

4 0.34 0.11* 0.46 

 

Table 2. Pearson r values and p-values for cluster usage by 

construct for affect-based segmentation 

Affect 

Cluster Success Condition Learning 

1 0.50* 0.46* 0.67* 

2 0.49 0.45 0.41 

3 0.35 0.32* 0.44 

4 0.25 0.12 0.25 

 

Table 3. Pearson r values and p-values for cluster usage by 

construct for pose-based segmentation 

Pose 

Cluster Success Condition Learning 

1 0.44* 0.55* 0.90*** 

2 0.38 0.48* 0.56* 

3 0.19 0.25 0.25 

4 0.19 0.25 0.25 

 

Table 4. Pearson r values and p-values for cluster usage by 

construct for human-based segmentation 

Human 

Cluster Success Condition Learning 

1 0.42* 0.37 0.35 

2 0.47 0.25 0.25 

3 0.52 0.29 0.22 

4 0.48 0.32 0.25 

 

Substantively, we see that cluster 1 from affect-, pose- and fixed-

window based segmentation, significantly correlate with success, 

learning and experimental condition (see Table 1, Table 2 and 

Table 3) all with relatively large effect sizes (between 0.44 and 

0.90). Additionally, cluster 2 from fixed-window segmentation 

(Table 1), cluster 3 from affect-based segmentation (Table 2) 

segmentation, and cluster 1 from human-based segmentation all 

correlate with success (Table 4). We also see that cluster 2 from 

pose-based segmentation correlates with experimental condition 

and learning (Table 3).  

Looking at the Pearson r values we see that across learning 

constructs, affect- and/or pose-based segmentation are typically of 
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equal or greater correlation than fixed-window and human-based 

segmentation. This is especially true for experimental condition 

and learning. 

In summary, then, affect-, pose- and fixed-window-based 

segmentation result in cluster centroids that offer greater 

correlation with the three learning constructs of interest, than 

human-based segmentation. Furthermore, we see the pose-based 

segmentation provided the greatest number of significant 

correlations among the cluster centroids and learning constructs, 

all with relatively large effect sizes. 

4.2 Cluster Interpretation 
Now that we have seen that the clusters have significance for 

drawing correlations between multimodal behaviors and the three 

learning constructs, we now turn to briefly analyzing the 

behaviors associated with the clusters.  

To simplify the interpretation of each cluster centroid, and 

facilitate comparison, we transformed the cluster centroid values 

into relative values along each dimension, as follows: 

High: cluster centroid value more than a half of the standard 

deviation above the mean. 

Medium: cluster centroid value more than a tenth of a standard 

deviation above the mean, but less than half of a standard 

deviation above the mean. 

Low: cluster centroid value less than a tenth of a standard 

deviation above the mean (includes values that are less than the 

mean). 

Head pose estimation was transformed into a single value that 

describes overall gaze. A prefix of “u” denotes looking up, while 

a prefix of “d” denotes down. “p” refers to looking toward their 

partner, while “a” denotes looking away from their partner.  

Table 5 describes cluster 1 for each segmentation technique. 

Recall that cluster 1 usage frequency generally correlated with 

success, learning and experimental condition. 

Table 5. Characteristics for Cluster 1 from each approach. In 

the Pose dimension, “d” denotes down, “u” denotes up, “p” 

denotes towards their partner, “a” denotes away from their 

partner  

 
Confusion Pose EDA Gesture Audio 

Fixed 

Window 

medium 
d p low medium high 

Affect medium d p low medium high 

Pose medium u p high medium medium 

Human medium u p low medium high 

 

From Table 5, we see that cluster 1 from fixed window 

segmentation and affect-based segmentation constitute a very 

similar multimodal behavior that is typified by actively engaging 

the task while looking in the direction of one’s partner. 

Engagement is observed by the high audio, and medium 

gesticulation values. In fact, all of the cluster 1’s share above 

average hand/wrist movement, and above average audio, 

suggesting that the participants are engaged. This is in contrast to 

a cluster that may be typified by low gesticulation and low audio. 

Deviating away from a behavior that is characterized by active 

engagement, appears to be associated with less successful designs, 

lower learning gains, and example-based reasoning. This result 

mirrors what was observed in our prior work [27]. 

To summarize, then, our comparison across the four different 

approaches, in terms of correlations between multimodal 

behaviors to the three learning-related constructs, shows that 

affect- and pose-based segmentation appear to be equally as 

effective as fixed-window segmentation, and superior to human-

based segmentation. Part of this correlation appears to be couched 

in detecting “engaged” behavior. Additionally, pose-based 

segmentation stands out as a particularly good strategy for 

examining these correlations. In the next section we examine if 

this is also true for making predictions about success, learning and 

experimental condition. 

4.3 Predictive power of segmentation 

approach 
An SVM classifier with a linear kernel was trained using the 

cluster centroid frequencies for each student, and each approach. 

Precision and recall were computed for each class, against ground 

truth. Those values were then used to compute the average F-

score as a point of comparison across the four different 

approaches. Results are summarized in Table 6.  

Table 6. Average F-score by learning construct and 

segmentation approach (baseline denotes a majority class 

single assignment classifier). Bold denotes high performer. 

Approach Condition Learning Success 

Pose 0.73 0.26 0.62 

Fixed 

Window 

0.68 0.54 0.56 

Affect 0.68 0.11 0.55 

Human 0.52 0.64 0.62 

Baseline 0.33 0.45 0.38 

 

From Table 6, we see that for predicting each student’s 

experimental condition, pose-based segmentation results in the 

highest average F-score, clearly outperforming the majority class 

classify, human-based segmentation and fixed-window 

segmentation. Additionally, pose-based segmentation matched 

human-based segmentation for predicting success. However, as it 

relates to “learning,” human-based segmentation and fixed-

window segmentation significantly outperformed affect- and 

pose-based segmentation. Furthermore, affect- and pose-based 

segmentation failed to outperform the majority class classifier for 

“learning.” 

5. DISCUSSION 
The current analyses were motivated by a desire to identify data 

segmentation strategies that could provide comparable results to 

those achieved using human-based segmentation and fixed-

window segmentation. More specifically, we hypothesized that 

affect- and pose-based segmentation would be as effective, or 

more effective, than human-based and fixed-window 

segmentation, for correlating and predicting the learning-related 

constructs: success, learning and experimental condition.  

The correlation analysis made salient the relative effectiveness of 

affect- and pose-based segmentation for drawing connections 

between multimodal behaviors and all three of the learning 

constructs. In particular, the analysis revealed that fixed-window, 

affect-based, and pose-based segmentation, all produced at least 

one cluster that constituted a multimodal state of “active 

engagement.” Students who performed better, learned more and 

came from the principle-based reasoning condition were more 
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likely to evidence this multimodal state of “active engagement.” 

In this way, the affect- and pose-based segmentation strategies 

proved to be just as effective as the fixed-window segmentation 

strategy. Additionally, pose-based segmentation outperformed 

fixed-window segmentation in that it had a second cluster centroid 

that correlated with experimental condition and learning. As such, 

the hypothesis that affect- and pose-based segmentation can be 

equally as effective for correlating among multimodal behaviors 

and learning-related constructs appears to be confirmed. 

On the topic of predicting each of the learning-related constructs, 

the results were slightly different. The classifier built using the 

pose-based segmentation approach was the best for predicting 

both success and experimental condition. And while affect-based 

segmentation was generally the worst for all three of the learning 

constructs, it did outperform both human-based annotation and the 

majority class classifier for predicting experimental condition. 

However, whereas pose- and affect- based segmentation 

demonstrate great promise for predicting success and 

experimental condition, they were both extremely ineffective for 

predicting learning. As such, it may be that learning, as a 

construct, is harder to predict than success and experimental 

condition. Put differently, the link between multimodal behaviors 

and learning, may not be as easily represented, because learning is 

a process that often involves cognitive processes that do not map 

as easily onto multimodal behaviors.  

As we consider the reasons for why affect- and pose-based 

segmentation were effective in this study, we first return to the 

idea of variable length “data segments.” One of our conjectures 

for the utility of human-based segmentation is that it results in 

variable length segments, as opposed to fixed length segments. 

Having variable length segments seems to more closely mirror our 

human experiences, as a lot of how humans learn and operate, is 

situational [4]. Accordingly, it may be that affect- and pose-based 

segmentation are benefiting from improvements related to 

variable length segments.  

Another area for consideration, is the level of granularity across 

the four approaches (Table 7). When we examine the total number 

of segments for each approach, we see that human-based 

segmentation has the fewest, affect-based has the second fewest, 

pose-based has the second most, and fixed-window segmentation 

has the most. This puts affect- and pose- based segmentation near 

the middle of the spectrum and may help in providing enough 

granularity that correlations can be accurately observed. At the 

same time, being at the middle of the spectrum may also provide 

enough aggregation that there is somewhat of a semantic meaning 

to segments, beyond an aggregation of otherwise disconnected 

moment-by-moment actions. In our ongoing research we intend to 

investigate this further. 

Table 7. Number of segments by segmentation approach 

Approach Number of Segments 

Human 236 

Affect 768 

Pose 5995 

Fixed Window 24569 

 

Finally, prior work on levels of abstraction may offer some 

insights here as different constructs are evidenced over markedly 

different time scales [1] and at different levels of abstraction [21]. 

[1] describes learning as happening on the order of days and 

months, whereas something like success, or epistemology can 

more easily be inferred through more fine-grained data. [21] 

makes a similar point that moving across different levels of 

abstraction can be quite challenging, may require larger data sets 

and novel approaches for dealing with uncertainty. 

6. FUTURE WORK 
In future work we plan to examine the efficacy of affect- and 

pose-based segmentation on a larger data set. As part of this 

study, we will be curious to look a more fine grain differences in 

pose and affect that we could not reliably examine with the 

current data set, due to its relatively small sample size. For 

example, the current affect-based segments were based on 

changes in facial expression evidence. With a larger dataset a may 

be possible to pay more attention to actions units, and/or look at a 

larger array of possible poses. With a larger dataset, we would 

also explore modeling how certain multimodal behaviors may 

actually be useful for predicting the subsequent pose, and vice 

versa. Additionally, because pose-based segmentation appeared to 

be particularly promising, future analyses will study dyadic pose-

based interactions, and more in-depth differentiation of poses. 

7. CONCLUSION 
Our primary objective for this paper was to explore the possibility 

of using affect- and posed-based segmentation as an alternative to 

human-based segmentation and fixed-window segmentation. We 

correctly hypothesized that affect- and pose-based segmentation 

would be on par with the two more traditional techniques for 

studying correlations between multimodal behaviors and three 

constructs related to a given learning experience: success, learning 

and experimental condition. Pose- and affect-based segmentation 

both performed extremely well for defining correlations between 

multimodal behavior and the three constructs. Moreover, pose-

based segmentation stood out as extremely relevant for this study. 

Similarly, on the prediction task, pose-based segmentation, proved 

to be a top performer for predicting success and experimental 

condition, easily outperforming the majority class baseline and the 

two traditional forms of data segmentation. However, affect- and 

pose-based segmentation performed quite poorly for predicting 

learning, significantly lagging behind human-based segmentation, 

which proved to be the best for this particular construct. 

Nonetheless, along nearly all of the dimensions of comparison 

affect- and pose-based segmentation performed quite well, 

suggesting that they may present a viable means for automatically 

segmenting process data in a way that results in variable length 

segments, and that maintains semantic meaning. Finally, while 

this process was presented in the context of student learning, it 

may have useful implications in other domains for which variable 

length segments are common. 
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