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ABSTRACT

Human communication involves conveying messages both
through verbal and non-verbal channels (facial expression,
gestures, prosody, etc.). Nonetheless, the task of learning
these patterns for a computer by combining cues from mul-
tiple modalities is challenging because it requires effective
representation of the signals and also taking into considera-
tion the complex interactions between them. From the ma-
chine learning perspective this presents a two-fold challenge:
a) Modeling the intermodal variations and dependencies; b)
Representing the data using an apt number of features, such
that the necessary patterns are captured but at the same
time allaying concerns such as over-fitting. In this work we
attempt to address these aspects of multimodal recognition,
in the context of recognizing two essential speaker traits,
namely passion and credibility of online movie reviewers. We
propose a novel ensemble classification approach that com-
bines two different perspectives on classifying multimodal
data. Each of these perspectives attempts to independently
address the two-fold challenge. In the first, we combine the
features from multiple modalities but assume inter-modality
conditional independence. In the other one, we explicitly
capture the correlation between the modalities but in a space
of few dimensions and explore a novel clustering based kernel
similarity approach for recognition. Additionally, this work
investigates a recent technique for encoding text data that
captures semantic similarity of verbal content and preserves
word-ordering. The experimental results on a recent public
dataset shows significant improvement of our approach over
multiple baselines. Finally, we also analyze the most dis-
criminative elements of a speaker’s non-verbal behavior that
contribute to his/her perceived credibility /passionateness.
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1. INTRODUCTION

Human communication/interaction is a complex process
that involve both verbal and non-verbal cues (eye gaze, head
gestures, voice pitch, etc.). Very often the motive behind ini-
tiating such a communication or interaction is to persuade
others’ of a person’s opinion on a certain topic. Consider a
public speech or an online video presenting a person’s view-
point, for instance. In such scenarios, the key to effective
communication is, in Aristotle’s words, the three compo-
nents of Ethos, Pathos and Logos [13]. The Ethos of the
speaker refers to his/her perceived credibility by the au-
dience, Pathos emphasizes the importance of building an
emotional connection with the audience by being passion-
ate. Finally Logos underscores the importance of presenting
a logically cogent argument. While Logos often entails an
objective presentation of facts, the other two however, can
be achieved by the effective use of both verbal and non-
verbal communication channels [21].

The proliferation of video-sharing websites (YouTube, Dai-
lymotion, etc.) has meant that more and more of human
communication is taking place online. People now share
their opinions of almost everything from politics to com-
mercial products through online videos, making it more and
more important to study human communication in the on-
line domain. In this work, we therefore focus on recognizing
two important speaker traits, namely the degree of passion
and credibility, of a speaker in online reviews of movies. This
task raises three important research questions.

The first one pertains to the machine learning component
of this task. From the perspective of machine learning, this
task presents a two-fold challenge. On the one hand, we
need to model the variations and dependencies between the



modalities (text, audio, video), since a simplistic representa-
tion of the data without capturing the inter-modality vari-
ations, would most likely fail to uncover important latent
patterns [23]. On the other hand, we need to ensure that
the data is represented using an apt number of effective fea-
tures. A large number of features for modeling the several
complex patterns in the data is both hard to design and also
faces the challenge of potential over-fitting [5]. These issues
raise the central research question, Q1: Is there an effective
technique of representing and classifying multimodal data so
that the important inter-modal dependencies are captured?

In this work, we attempt to address this challenge by
proposing a novel ensemble-based classification scheme that
combines discriminatory information from two different per-
spectives on classifying multimodal data. In the first one,
we combine the features from multiple modalities in a com-
bined space but assume conditional independence across the
modalities. This avoids the task of having to learn too many
parameters. In the other one, we project the data to a
space of few dimensions using Multiview Canonical Cor-
relation Analysis(MVCCA) [14], such that the correlation
between the modalities is explicitly captured. We then clas-
sify using a novel non-parametric approach that relies on
clustering-based kernel similarity. Our inclination towards
a non-parametric approach, stems from the strong theoret-
ical guarantees of performance that they have [9]. Figure 1
presents an overview of our approach.

The second research question pertains to effective repre-
sentation of text. The conventional text representation ap-
proach for analyzing online movie reviews, Bag-of-Words [22,
10], suffers from a lack of semantic-awareness of the content
and loss of word ordering [16]. Thus our concern is, Q2:
What constitutes an effective feature representation of text
data in the context of online reviews? As a potential solu-
tion, we explore a recent style of embedding text features,
that has yet remained unexplored in the context of multi-
modal recognition. This technique maps semantically simi-
lar paragraphs as less-distant points in a feature space and
also preserves word-ordering [16].

On the side of non-verbal behavior(acoustic, visual cues),
we are faced with our third concern. By its very nature
such behavior is subtle. We are therefore interested in know-
ing, Q3: What non-verbal behavioral components allows us
to discriminate between passionate/credible reviewers and
those who are not? We attempt to address this by perform-
ing an analysis of the descriptors of non-verbal behavior.

The core contribution of this paper is our attempt to an-
swer these 3 research questions.

Our experiments on the recently released Persuasive Opin-
ion Multimedia Corpus(POM) [22] show that our proposed
solutions to all three research questions(Q1-Q3) hold promise,
for the intended recognition tasks.

2. RELATED WORK

A feature-level stacking technique, called early fusion has
widely been explored for multimodal recognition [4, 22, 24,
6]. While this technique does combine cues from multiple
modalities, however, it does not explicitly model the inter-
modality correlations. Furthermore a fusion of features from
multiple modalities via early fusion, often leads to a blow-up
of the number of feature dimensions. This makes it prone
to over-fitting(high variance), resulting in poor generaliza-
tion [5]. Many of these previous approaches resort to ei-

ther dimension reduction or feature selection techniques to
address this issue [24, 22]. On the contrary, we explore a
novel idea of an ensemble of two classification approaches,
each of which attempts to mitigate this concern in a differ-
ent way. The first of these incorporates the inter-modality
dependencies and variances through a Multiview Canoni-
cal Correlation Analysis(MVCCA) [14]-based technique and
projects the data to a low-dimensional space, allaying con-
cerns related to dimensionality. While the second classifica-
tion technique, stacks up the features in a combined space
like early fusion but assumes inter-modality conditional in-
dependence. This avoids the task of having to learn a large
number of validated parameters.

Recently, Song et al. [23] successfully explored a technique
for multimodal classification that models explicit correlation
between the modalities through Canonical Correlation Anal-
ysis(CCA) [12]-based techniques. Their approach however,
considers only two modalities for fusion. Our MVCCA-
based approach, is an extension of CCA for more than 2
modalities. To the best of our knowledge, this application
of MVCCA to multimodal (> 2) recognition is novel.

For the task of multimodal recognition, mized norm regu-
larization has shown promise [26]. In this approach, Zhuang
et al. regularize data from different modalities using sepa-
rate norms, viz. L; and Lg respectively. We,On the other
hand, in one of our classification approaches, model features
from dissimilar modalities using entirely different probabil-
ity distributions.

Bag-of-Words(BoW) has been a long-standing approach
for capturing patterns in text for a diverse range of appli-
cations [18, 17, 10, 22]. However, an inherent weakness of
this technique is that it only considers frequency of occur-
rence of the words and does not capture the semantic sim-
ilarity between them. This might potentially result in the
model being perplexed about the topic of the document if
prepositions, articles, verbs, etc. occur frequently. Further,
BoW also fails to preserve word ordering. We therefore in-
vestigate a recent technique for text encoding which maps
the text document to a word-order preserving feature space,
where semantically similar paragraphs occur as less-distant
points [16].

Finally in the context of online movie reviews, Park et al.
have probed into “persuasiveness” of the reviewer [22]. We
on the other hand, explore “credibility” and “passion” which
are two well-known attributes of an eloquent speaker [13].
The reader is referred to Mohammadi et al. for a treatise
on how these attributes relate to personality traits [19].

3. DATASET

The Persuasive Opinion Multimedia(POM) Corpus is a
recently introduced public dataset of 1,000 online movie re-
view videos crawled from EzpoTV.com [22]. Each video con-
sists of a speaker, presenting his/her review of a movie, fac-
ing the camera. The crawled videos are controlled for their
video and audio qualities, in order to avoid noisy samples.
The mean length of the videos in the corpus is 94.38 sec-
onds. This corpus consists of just those reviews where the
speaker either assigned 5-stars (most recommended) or 1
or 2-stars (least recommended) for the movie they are re-
viewing and these direct ratings by the speakers are made
available. For 500 of these reviews, the reviewers have as-
signed 5-stars for the corresponding movie while the remain-
ing 500 have been assigned 1 or 2-stars. The dataset along



[

Acoustic Descriptors \

Jobit et

Pitch, MFCC, Harmonics

Y, ]
S

N

) Text De§criptors

\Vecfbnzed Representatloy

/ Visual Descriptors \

\_ Expressions, Eye Gaze / _

/

Featuresof x =[r, r, ryr, rc]

Multiview

Prediction from
probability

Prediction \

Probability

Prediction

Features from the
5 groups

Ensemble

Probability

Clustering &
Kernel Similarity
Classification

CCA >
Prediction

from
probability

Figure 1: The overview of our approach. We extract 5 groups of features from audio(1), text(1) and visual(3) channels. These
features are then fed into two separate classification pipelines. Finally, an ensemble combines the outputs.

with the transcriptions of what the reviewers say (including
para-verbal markers such as stuttering, filled pauses, etc.)
are also made available.

Each review has been annotated for various high-level sub-
jective attributes such as “Persuasion”; “Passion”, “Credi-
bility”, “Confidence”, etc. on a Likert-scale of 1(low) to
7(high) by 3 annotators, from Amazon Mechanical Turk.
This work being targeted at exploring the qualities of an
eloquent speaker, we focus exclusively on the “Passion” and
“Credibility” attributes. The inter-coder agreement, as mea-
sured by Krippendorff’s alpha, is 0.69 and 0.75 for “credibil-
ity” and “passion” respectively. This is suggestive of a high
inter-coder agreement.

4. PROPOSED APPROACH

4.1 Computational Descriptors

We designed descriptors for the acoustic, visual and verbal
modalities. They are as follows:

4.1.1 Descriptors for the Acoustic Modality

Park et al. have successfully explored a set of acoustic
features for determining the degree of persuasiveness of a
speaker in the context of online movie reviews [22]. We re-
computed those features over the full length of the acoustic
signals. It involved computing several statistical functionals
for the first 5 Formants, the first 24 Mel Cepstral Frequency
Coefficients (MFCCs), pitch (F0), and several voice quality
measures including Normalized Amplitude Quotient (NAQ),
Parabolic Spectral Parameter (PSP), Maxima Dispersion
Quotient (MDQ), Quasi-Open Quotient (QOQ), difference
between the first two harmonics (H1 - H2), and peak-slope.
We used the mean, median, percentiles (10th, 25th, 75th,

and 90th), ranges (between min and max, 10th and 90th
percentiles, and 25th and 75th percentiles), and standard
deviation as the statistical functionals.

4.1.2 Descriptors for the Visual Modality

On similar lines with the acoustic modality, we computed
the same set of statistical functionals for automatically tracked
facial features. The statistical functionals were computed
for discrete emotions (anger, contempt, disgust, fear, joy,
sadness, and surprise), valence (positive and negative), sev-
eral Facial Action Units, eye gaze movements (up/down,
left /right), and head movements (about the X, Y and Z
axes). A detailed description is available in Park et al. [22].
Different from Park et al. however, we treat the head mo-
tion, eye gaze and the rest of the descriptors as three sep-
arate groups of features, i.e. we treat them as though they
were descriptors from 3 separate modalities. This is because
they are completely heterogeneous signals with very different
amplitude variations and are computed using three different
trackers, namely GAVAM[20], OKAO[3] and FACET][1].

4.1.3 Descriptors for the Verbal Modality

Modeling text using a bag-of-words (BoW) technique has
been a long standing approach [18, 17]. Recently, this has
also been explored in the context of assessing persuasiveness
of online movie reviewers [10]. However this technique does
not preserve word-ordering nor does it capture the semantic
similarity among words. It treats every word independently
and builds a histogram based on term frequency. This of-
ten results in “significant” words in the context of a certain
problem being dominated by prepositions, articles or other
words that tend to occur more frequently in any text docu-
ment. Filtering out a pre-determined list of words or using



the frequency count to trim down the vocabulary are not
generalizable from one application to another.

To mitigate these weaknesses, we project the text data
into a fixed 100-dimensional continuous feature space where
semantically similar paragraphs across documents map as
less-distant points [16, 2]. This framework is completely
unsupervised and encodes every paragraph as a point in a
multi-dimensional feature space. The approach works by
comparing the word-ordering in a paragraph to their likeli-
hood of occurrence in a training corpus. This likelihood is
used to extract features using a Neural Language Model [7].
Finally, a linear regression like approach maps these features
to a vector.

We thus have a total of five(5) sets of features, which we
call feature groups, audio - 1, text - 1 and visual - 3.

4.2 Classification Technique

Our classification technique relies on an ensemble of two
classification approaches that adopt two different perspec-
tives for classifying multimodal data. For the subsequent
explanations, we adopt the following notations. We have a
set of N training samples, X = {x;, yi}ﬁv:l, where every sam-
ple x; is represented by a concatenation of the set of features
obtained from the five feature groups, x; = [rs,, Tiy, ..., Tig].
yi is the class label and y; € {+1, —1}. For a test sample x,
represented by x = [r1,r2, ..., 5|, we want to assign a label
y, where y € {+1,—1}.

4.2.1 Ensemble Classifier

Our proposed ensemble classifier is a linear weighted com-
bination of two classifiers, called the Modality-Independent
Bayesian Classifier and the Similarity Classifier. These two
classifiers adopt two different perspectives on classifying mul-
timodal data. The ensemble allows us to combine the dis-
criminative powers of both the models. For the task of clas-
sification, we compute the posterior probability for x as:

Pg = P(y=1x) = pP1+ (1= p)P;5p€[0,1] (1)
where P, and P» are the posterior probabilities for x ob-
tained from the Modality-Independent Bayesian Classifier
and the Similarity Classifier, respectively. These two classi-
fiers are described in subsequent sections. We then, compare
Pp to Pg = Py = —1x) = 1— P = p(1— P) + (1— p) (1 - Py)
and determine which one is greater and assign the label to
the test sample accordingly. p is chosen to maximizes the
classification accuracy on the training data.

4.2.2 Modality-Independent Bayesian Classifier

Our first perspective on the data is that of conditional
independence of the modalities(feature groups). This as-
sumption is directed at addressing the issue of potential
over-fitting of a large number of model parameters. Such
scenarios are commonplace in early fusion settings, which
attempt to model a full association among all the features
across all modalities [5].

Mized norm regularization is a classification approach that
works by combining decisions from multiple modalities. For
the task of learning the decision boundary, the parameters
for each modality are regularized with a different norm, viz.
Ly and L2 [26]. This allows the model to capture the vari-
ations within different modalities, to some extent. Inspired
by such approaches, we model features from different feature
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groups using entirely different distributions. The posterior
probability for x is computed as,

P(y|x) o< P(x|y)P(y) = H P(rily)P(y),

This is a generative technique of modeling and its use
is inspired by recent successes of such approaches for vari-
ous learning tasks [15]. Our approach might reminisce the
reader about the popular Naive Bayes classifier [9]. How-
ever different from that, we do not assume full conditional
independence among all the features within a feature group.
In fact, we represent each of the class-conditionals for ev-
ery feature group, P(r;|ly) by a separate multidimensional
Gaussian Distribution, N (r;; 1, X), with a fully general co-
variance matrix X, learned from the training data. We then
pick the greater of P, = P(y = 1|x) and Pf = P(y = —1|x)
for label assignment. This results in a model that not only
combines cues from multiple modalities but also drastically
cuts the number of validation parameters. This P; is also
used for the Ensemble classification by substituting it in
Equation 1. We subsequently refer this approach as Cls. 1.

4.2.3  Similarity Classifier

In our second perspective, we explicitly capture the inter-
modality correlations in the process of classifying. Our clas-
sification technique, is a non-paramteric one and banks on
clustering and a kernel similarity ratio. The 3-step proce-
dure for this is as follows:

e MVCCA: We first perform Multiview Canonical Cor-
relation Analysis (MVCCA) to project the data to a 5-
dimensional space where the 5 features groups are corre-
lated the most [14]. This achieves two objectives: a) Maps
the data to a space where the cross-modality features cor-
relate, thereby making them more homogeneous (see Fig-
ure 2); b) Performs dimensionality reduction. The regular
CCA [12] works for two feature groups by computing projec-
tion vectors for each that maximize the correlation between
the two. For 3 or more feature groups however, there are
several options such as maximizing the sum of correlations,
maximizing the variance in the data in the projected space
or minimizing the variance, minimizing the sum of squared
errors, etc. [14]. Each of these approaches optimizes a dif-
ferent objective function. We choose to maximize the sum
of correlations because of the ease of solving the correspond-
ing optimization problem. Let X € RVNX(P1+-4D5) he the
training set of N samples, where D1, ..., D5 are the dimen-
sions of each feature group. We compute the set of projec-
tion vectors hy, ..., hs where h; € RP1*1 and so on s.t.:

5
T
arg max Z h; ¥;h;;

hy,...,
T it g=1

st.hiYiuh; =1;Vi=1,..,5,
where ¥;; € RPi*Pi is the covariance matrix between fea-
ture groups i and j. This optimization is solved by the Gen-
eralized Eigen Value technique [25].

After having projected the data to a 5-d MVCCA space,
we cluster the data:

e Clustering in the MVCCA Space: We first cluster
the training data in the MVCCA space. We perform clus-
tering using the standard Gaussian Mixture Model (GMM)-
Expectation Maximization (EM) technique [8] followed by
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the crisp assignment of every sample to a cluster, i.e. ev-
ery Gaussian component is considered as one cluster and
every sample is assigned to exactly one cluster. The number
of mixture components are automatically chosen based on
whichever number, in the range of 1 to 20, minimizes the
Akaike Information Criterion (AIC) scores.

Now that we have our clusters on the training data in
place, we assign each test sample x (projected in MVCCA
space) to one of these clusters based on the most probable
candidate. Assuming there are T clusters, this step may be
defined as:

arg max
i={1,...

oy 065 i 34)
where p;, %, are the mean and the covariance matrix of the
Gaussian distribution corresponding to the i*" cluster.

Our motivation for clustering the data is two-fold: a) Our
classification technique for the Similarity Classifier is non-
parametric, quite like k-Nearest Neighbor(kNN) [9]. How-
ever, unlike kNN, which is constrained to choose a fixed
number of neighbors for decision making(k), we dynamically
assign all the training samples in the same cluster as the test,
to be the test sample’s “neighbors”. Clustering incorporates
this flexibility.; b) Speed-gain in the process of classification.

e Classification: For the final classification, we adopt a
non-parametric approach. Our reason for being inclined to-
wards such an approach is because theoretically, the empiri-
cal risk for non-parametric classifiers is bounded to be within
twice that of a hypothetical optimal classifier [9]. This gives
an assurance in terms of classification performance of such
algorithms. For classifying the test sample, we look into
that subset of training samples that are in the same cluster
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as the test (say Q). The training samples in Cluster Q have
the most similar feature appearance as the test and thus we
discard all other training samples. This prevents the dissim-
ilar training samples from influencing the inference process
and also adds to the computational speed of our algorithm
(see Figure 3). Now we compute a normalized similarity
score between the test sample and the samples of each of
the classes in cluster Q and see to which one it is more sim-
ilar. In order to capture non-linear similarity patterns, we
compute this similarity using kernel mappings. The normal-
ization allows for a probabilistic interpretation of the simi-
larity score. The posterior probability for the test sample x
is computed by using the kernel similarity ratio as follows:

EX'GX x; € —1 KGauss(x,XﬂEQ)
i€XXi€Q,y;

P,=Ply=1 =
: (y ‘X) inEX,xiEQ KGauss(Xy Xi; EQ)

I

where
K Gauss(%, %5, 8q) = exp(—x" (S + M) ™'xi/2),

is a Gaussian kernel whose variance (3¢) is the variance of
the Gaussian distribution that was fitted to cluster Q in the
previous step, I is the identity matrix and A is the regulariza-
tion term, typically with a very low value. Label assignment
is done by comparing P» with Py = 1 — P» and choosing the
higher one. This P, is also plugged into Equation 1 for com-
puting the ensemble classifier. We subsequently refer to this
approach as Cls. 2.

5. EXPERIMENTS
5.1 Ground-Truth Labels

This work aims at exploring the differences in verbal and
non-verbal behavior between highly passionate and credible
reviewers and their counterparts on the other side of the
spectrum. For our experiments, one for passion and the
other for credibility, we therefore choose only those videos
that had a mean annotator rating of 5.5 or more(highly pas-
sionate/credible) or 2.5 or less(weakly passionate/credible).
For our experiments with passion, this resulted in a total
of 291 videos(116 passionate and 175 phlegmatic) while for
credibility, we ended up with a total of 233 videos(122 of the
reviews deemed highly credible and 111 as not).



5.2 Methodology

We performed experiments to address our three research
questions (Q1-Q3).

To address Q1, we conduct two separate classification ex-
periments for recognizing “passion” and “credibility”. Our
experiments for passion and credibility, are based on the
ground-truth labels obtained using the procedure described
above. We perform speaker and movie-independent 5-fold
cross-validation experiments, with separate training (4 par-
titions) and test partition (1 partition) for each. Thus we
perform, 5 separate classification experiments for each of
passion and credibility and report the mean classification
accuracy. Our approach consists of two separate classifiers
and one ensemble of the two(Cls. 1, Cls. 2 and Ensem-
ble respectively) that were used for the classification tasks.
The parameters of the models such as the mean and the
covariance matrices of the Gaussian distributions, the co-
variance matrix of the Gaussian kernel used in Cls. 2 or p
in Equation 1, were all directly estimated from the training
data. The regularization parameter A of the Gaussian ker-
nel, K¢auss(.,.) was preset to 107°. We also measured the
correlation between the predictions from Cls. 1 & Cls. 2 to
see how often they predicted the same label.

We compared our approach with several baselines for both
the classification tasks. Firstly, we explored the efficacy of
unimodal classifiers, using features from each of the 5 feature
groups separately and the popular polynomial(poly) kernel
Support Vector Machine(SVM) [9] as the classifier(Audio,
Text/Doc2Vec, Facet, Gavam, Okao). This also allows us to
test the effectiveness of the feature encoding scheme for the
text modality, which is our second research objective (Q2).

Next, we explored traditional multimodal classification
approaches as baselines, stacking up(early fusion) of fea-
tures of the modalities followed by a poly kernel SVM clas-
sifier(MM Full) and a Naive Bayes classifier(MM Full NB).
The MM Full_NB setting allows us to test if a full conditional
independence assumption across all the features is effective
or not. We also investigated the effect of dimension reduc-
tion techniques. For this, we first performed early fusion of
features, then projected the data down to a 5-dimensional
space(because Cls. 2 also projects into 5-dim.) using Princi-
pal Component Analysis(PCA) and then used a poly kernel
SVM classifier for classification(MM Proj).

We also tried several baseline approaches using the fea-
tures projected in the MVCCA space. First, we used a
poly kernel SVM classifier on the data projected on to the
MVCCA space, as a baseline(CCA). Further in the last step
of Cls. 2, we compute a kernel-similarity ratio for the clas-
sification. An alternative classification technique would be
to assign the test sample, the label of the majority class of
the cluster to which the test sample is assigned. We there-
fore, also explore this as a baseline(Cls_F). Our final base-
line classifier, is the majority vote classifier on the ground-
truth(Baseline/ Majority Baseline).

The hyper-parameters for the poly kernel SVMs are de-
termined using 4-fold cross-validation(with 1-partition for
validation/ development) on the training data for each of
our experiments.

Moreover, we also performed two sample t-tests between
our proposed approaches and the baselines to test for sta-
tistical significance in classification performance.

For task @3, where we intend to explore what non-verbal
characteristics contribute most significantly to the perfor-
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mance of our model, we ranked the non-verbal features, in
their original feature space, by their Information Gain(IG)
scores [9]. A more discriminatory feature is expected to have
a higher IG score. We report the most significant feature
from each feature group for both “passion” and “credibility”.

6. RESULTS AND DISCUSSION
6.1 Classification Experiments

6.1.1 Unimodal Classifiers

The performance of the unimodal classifiers (see Table 1)
show that the classifier for the text modality performs either
better or no-worse than the other unimodal classifiers for
both credibility and passion. Since all the unimodal clas-
sifiers use the same poly kernel SVM classifier and differ
only in the features used, we therefore conclude, that our
semantic-similarity based feature encoding for text is the
most effective amongst all cues individually, for our recog-
nition tasks. This, presents a probable solution to Q2. Fig-
ure 4 presents a visualization of the performance of the uni-
modal classifiers.

6.1.2 Multimodal Classifiers

The major observation that emerges from the classifica-
tion results of the multimodal classifiers for both passion and
credibility, is that combining cues from multiple modalities,
in a judicious fashion, adds more discriminatory power as
compared to considering cues from just one modality (Table 1).
We observe this from the performance of our proposed mul-
timodal approaches(Cls. 1, Cls. 2 and Ensemble), which sig-
nificantly outperform all unimodal baseline classifiers. Ta-
ble 1 also shows the significance levels for the classification
results. Further, the Pearson’s correlation measure between
the predicted labels of Cls. 1 and Cls. 2 across the 5-folds,



was 0.2028 for “passion” and 0.319 for “credibility”. Thus
the two predictions were only moderately correlated, thereby
suggesting that Cls. 1 and Cls. 2 exploit somewhat different
patterns in the data for inference.

Our experiments reveal that not all techniques of combin-
ing cues from multiple modalities are equally effective.

In the MM Full setting we perform an early fusion of all
the features, in an attempt to model the dependencies be-
tween the features of the various feature groups and then
classify using a SVM. Again MM Full NB, presents the com-
plete contrastive setting where we classify using the Naive
Bayes classifier, thereby assuming full conditional indepen-
dence. Our experiments show that neither approaches are
ideal for classification, in our context. A sweet-spot be-
tween these two extreme assumptions, where we assume
conditional-independence between just the feature groups
in the combined feature space is more effective. The perfor-
mance of Cls. 1 compared to MM Full or MM Full_NB shows
this. Furthermore, to assuage concerns regarding the issue of
high dimensionality of the early fusion feature space leading
to over-fitting, we used a PCA baseline(MM Proj). How-
ever, it also provides no significant performance improve-
ment because PCA treats all the features from the same
perspective. It is incognizant of the fact that the concate-
nated set of features is a heterogeneous mixture of signals
from multiple sources, each with different levels of noise in
them. It gives equal importance to all the features and thus,
fails to combine the cues effectively.

Another different approach to modeling multimodal data
is to explicitly capture the dependencies between every fea-
ture group but in a space of few dimensions. MVCCA at-
tempts to address this concern. For our experiments, this
results in atleast a marginal gain in performance, over mul-
timodal classification techniques that rely on a modality-
unaware dimensionality reduction. We see this when we
compare CCA, Cls_F and Cls.2 approaches to MM Proj
(atleast a gain of 0.67%).

We also investigated the role of clustering and non-parametric

classification techniques in this correlated space. Our experi-
ments divulged that such an approach of clustering followed
by classification by assigning the majority class of a clus-
ter(Cls_F) is almost at a-par with a kernel SVM classifier
that uses the features directly from the correlated space(CCA).
Here we must note that a kernel SVM, is able to capture non-
linear patterns in the feature space through the use of a ker-
nel, which is an inherent weakness of the Cls_F model where
we simply assign the majority class. Once this weakness is
mitigated in our clustering-based model(Cls. 2), we notice
a statistically significant performance boost over other uni-
modal/multimodal baseline classification techniques. This
is observable when comparing Cls. 2 with other approaches.
Finally, the linear ensemble of Cls. 1 and Cls. 2 allows
us to combine their respective inferences on the data. This
brings together the best of both worlds, giving us a per-
formance that is either better or no worse than Cls. 1 or
Cls. 2 individually and is better than all other baselines.
The parameter p allows us to prefer one classifier over the
other. For our classification experiments with “passion” the
mean p across the 5-folds was 0.7280, suggesting the ensem-
ble favored Cls. 1 over Cls. 2. Indeed, even in terms of the
classification accuracy on the test-set, for “passion”; Cls. 1
is clearly better. For “credibility”, the mean p across the 5-
folds was 0.2040, suggesting the ensemble’s tilt towards Cls.

2. Again this in agreement with the results on the test set.
We are thus, able to answer Q1.

Figure 5 presents a visualization of the performance of
the proposed multimodal classification approaches and a se-
lected set of multimodal baselines.

6.2 Feature Analysis

Our experiments on analyzing the discriminatory power
of the non-verbal behaviors of the speaker, our third re-
search goal, brings several interesting observations to light.
Tables 2,3 list the most discriminative feature from each cat-
egory based on their IG scores for “passion” and “credibility”
respectively. The higher the score the more discriminative
is the feature.

Table 2: Most discriminative non-verbal descriptors
of Passion as measured by Information Gain

Modality || Statistical Functional | Feature | IG Score
Audio Standard Deviation MFCC_5 0.0400
Facet Standard Deviation AU 28 0.0200
Gavam Standard Deviation Ang. D_Z 0.0100
Okao 75" Percentile Gaze_LR 0.0311

From the acoustic modality we find the lower(5"" or the

6" order) MFCC coefficients to be significant. This is in line
with our expectations, since they have denser resolutions
and are more robust to noise [22].

From amongst the descriptors obtained from Facet, Ac-
tion Unit(AU) 28 assumes significance.

Table 3: Most discriminative non-verbal descriptors
of Credibility as measured by Information Gain

Modality || Statistical Functional | Feature [ IG Score
Audio Standard Deviation MFCC_6 0.0025
Facet Standard Deviation AU 28 0.0046
Gavam Standard Deviation Ang. D_7Z 0.0032
Okao Standard Deviation Gaze_UD 0.0009

The most significant descriptor from Gavam is Angular
Diplacement around Z-axis. This corresponds to in-plane
head motion and is suggestive of the more expressive ges-
turing of “passionate”, engaging and “credible” speakers.

Finally, we surmise that the most differentiating descrip-
tor from OKAO, namely Gaze deviations up/down(UD) or
left /right(LR) hint at the wavering engagement(eye contact)
with the audience that is characteristic of non-passionate or
inexperienced speakers.

7. CONCLUSIONS & FUTURE WORK

In this work, we attempted to answer 3 research questions
in the context of classifying reviewer “passion”(Pathos) and
“credibility”(Ethos). As an answer to the first, we proposed
two multimodal classifiers that made polar-opposite assump-
tions, and both were shown to be effective independently and
a linear ensemble of the two was shown to hold promise. We
thus, conclude that indeed multimodal cues add discrimi-
natory power compared to just unimodal cues. However,
the technique of fusion of these cues plays a pivotal role for
achieving good performance. An analysis of the unimodal
classifiers showed that the most effective unimodal classifier



Table 1: Classification Performance of our proposed approach and multiple baselines for Credibility and
Passion. The numbers in parenthesis “()” indicate the standard error levels. “[symb,symb,symb]” indicates
statistical significance levels between Cls. 1, Cls. 2 and the Ensemble respectively and the current baseline
classifier. symb could be either &, A x for p-value < 0.001, 0.01 and 0.05 respectively.

Passion | Credibility
Majoritir Baseline 54.55%(1.77) [©,0,0 57.38%(2.55) [©,0,0
Audio 54.46%(2.00) [©,0,0 57.39%(1.45) [©,0,0
Doczvee || 56.15%(1.88) [0,0,0] || 61.98%(1.62) [©,0,0]
Unimodal Facet 56.15%(1.88) [0,0,0] || 56.65%(2.89) [©,0,0
Gavam 55.51%(1.32) [©,0,0] || 57-39%(1.95) [©,0,
Okao 55.10%(2.51) [©,0,0] || 55.02%(0.97) [©,0,0
MM Full || 55.40%(1.95) [©,0,0] || 55.05%(1.79) [©,0,0
MM FulLNB || 57.04%(2.66) [©,0,0] || 57.36%(3.18) [5,5,4)]
MM Proj || 55.17%(1.45) [©,0,0 59.69%(4.59) [#,%,4]
Multimodal cca 55.84%(1.36) [©,0,0] || 60.63%(2.70) [15,A,4]
Cls F 57.21%(1.64) [0,0,0] || 59.70%(0.62) [©,0,0]
Cis. 1 74.93%(1.51) 72.11%(0.50)
Cis. 2 72.78%(0.92) 74.38%(1.64)
Ensemble 76.85%(1.50) 74.38%(1.64)

was the one corresponding to the text modality, where we
represented the text in a space that captures semantic sim-
ilarity and preserves word-ordering. This seemed to be a
promising response to our second research question. As a
response to the third research question, we looked into what
non-verbal cues were discriminatory. Finally we note, that
all our algorithms generalized well for both “passion” and
“credibility”, giving comparable performance.

For future work, we intend to extend our proposed ap-
proach for multi-label classification, try it on other multi-
modal recognition tasks, and explore feature-selection tech-
niques. On the lines of Chatterjee et al. we also intend to
investigate the effect of considering meta-information in the
problem context, such as reviewer rating of the movie, for
the task of classification [10, 11].
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