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Abstract

Deep convolutional neural networks (Deep ConvNets
or CNNs) have exhibited their promise as a universal im-
age representation for recognition. In this work we ex-
plore how the transferability of such deep ConvNet repre-
sentations trained on large-scale annotated object-centric
datasets (ImageNet) can be further enhanced for other vi-
sual recognition tasks with limited amount of unlabeled
training data. We use group-sparse non-negative matrix
factorization (GSNMF), a variant of NME, to identify a rich
set of high-level latent variables built from the pre-trained
Imagenet deep ConvNets that are informative across scene
and fine-grained recognition tasks. The resulting architec-
ture can itself be seen as a feed-forward model that com-
bines deep ConvNets and two-layer structured NMF. We
demonstrate state-of-the-art image clustering performance
on challenging scene (MIT-67) and fine-grained (Birds-200,
Flowers-102) benchmarks. The consistent superior perfor-
mance of our GSNMF-CNN shows that it is more generic
for novel tasks/categories compared to the deep ConvNets
activations.

1. Introduction

Deep convolutional neural networks (Deep Con-
vNets) have recently demonstrated breakthrough per-
formance on various visual recognition and image process-
ing tasks [T0]. Compared to hand-crafted or shallow
features, an attractive property of deep ConvNets is their
transferability. Once trained on a large corpus of annotated
source data, deep ConvNets tend to learn powerful generic
image representations, which can be either used off-the-
shelf on the target tasks or through fine-tuning when enough
labeled training data is available [} 26]].

Despite such universal and invariant representation
across different tasks, the transferability of ConvNets is still
limited [20]. Discrepancy of different domains still could
not be removed. Dataset shift as a bottleneck to the trans-
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Figure 1: Transfer Deep ConvNet Representation via
Group-Sparse Non-Negative Matrix Factorization. Con-
vNets learn invariant factors underlying different popula-
tions (left). Pre-trained on ImageNet, off-the-shelf deep
ConvNet features are limited to describe complex indoor
scenes and subtle differences among fine-grained cate-
gories. We feed the pre-trained deep ConvNet representa-
tions to an additional NMF layer with group-sparse regular-
ization as a unified feed-forward model (right). We learn a
better representation with enhanced transferability for target
tasks, especially with limited unlabeled training data where
conventional fine-tuning with Back-propagation is infeasi-
ble.

ferability of ConvNets results in statistically unbounded risk
for target tasks [2 33]. As found in []], the transferabil-
ity is clearly correlated with the distance of the target task
from the source task. In particular, in situations with lim-
ited amount of unlabeled training data, where conventional
fine-tuning with Back-propagation is infeasible, e.g., image



clustering, how to enhance the transferability of deep Con-
vNet representations is still an open challenge.

In the unsupervised scenarios, it is known that non-
negative matrix factorization (NMF) and its variants are
able to disentangle exploratory factors of variations under-
lying data samples, and have been successfully applied in
many applications such as image processing[34], clustering
and classification [35, 132]. Similar to ConvNets, NMF is
also based on certain physiological and psychological ev-
idence that perception of the whole is based on percep-
tion of its parts [30]. By incorporating the non-negativity
constraints into the linear decomposition model, NMF ob-
tains parts-based representations and thus enhances the cor-
responding interpretability.

Meanwhile, the deep ConvNet activations of interest are
those after the rectified linear units (ReLUs), which con-
sistently show better recognition performance for various
tasks and which are also non-negative. Hence, it is a natural
way to combine both deep ConvNets and NMF as shown
in Fig. 2] which could potentially learn more semantic and
meaning components on the target tasks, leading to en-
hanced transferability. More precisely, to select a group of
correlated deep ConvNet activations, we introduce a vari-
ant of NMF—group-sparse non-negative matrix factoriza-
tion (GSNMF), to identify a rich set of informative and dis-
criminative latent variables across tasks. Given that NMF
could also be interpreted as a two-layer neural network [18]],
our GSNMF-CNN model can be regarded as a principled
feed-forward model.

Our main contribution is thus three-fold: First, we
show how such a new network GSNMF-CNN, based
on combining non-negative matrix factorization and pre-
trained ConvNet can be operationalized for learning a more
generic feature representation across tasks and datasets
(Section [3). Second, we explicitly enforce group-sparsity
on GSNMF-CNN to better leverage the correlation of deep
ConvNet activations by introducing elastic net regulariza-
tion into NMF (Section . Third, we show how our rep-
resentation can be applied in unsupervised image cluster-
ing tasks. To the best of our knowledge, we are the first to
evaluate the performance of image clustering on challeng-
ing large-scale scene and fine-grained recognition datasets
(Section[).

2. Related Work

This section reviews related work, including Deep Con-
vNets, NMF, and image clustering. This section also intro-
duces notations and formulae used throughout this paper.

2.1. Deep ConvNets

For an image Z, convolutional neural networks (Con-
vNets or CNNs) learn a nonlinear representation 7 —

®(Z) = X from a large corpus of annotated data in a hi-
erarchical fashion in accordance with their relatedness to
invariant factors [3]. AlexNet [16], the pioneering Con-
vNet pre-trained with millions of images from the ImageNet
dataset [9]], has 5 convolutional layers and 3 fully-connected
layers. This model shows a good generalization ability and
transferability. A number of attempts have been made to
improve the original architecture to achieve better recogni-
tion accuracy. To be consistent with recent work, we use the
state-of-the-art VGG ConvNet [28]], which uses very small
3 x 3 receptive fields, but with more layers—16 convolu-
tional layers and 3 fully-connected layers. This model pro-
duces superior performance in ILSVRC classification chal-
lenge [27]] and demonstrates better transferability on other
tasks and datasets.

2.2. Non-negative Matrix Factorization

Given an M-D random vector X with non-negative ele-
ments, e.g. the deep ConvNet activations, whose N observa-
tions are denoted as z;, (j = 1,2, ..., V), let data matrix be
X=[z1, 2, ...,xny]. NMF seeks non-negative basis matrix
W € RY <% and coefficient martrix H € RLX™, such that

X ~ WH. ey

Usually L satisfies L < min(M,N). One commonly used
object function is squared Euclidean distance

1
FW.H) =5 | X=WH [}, st WH>0. ()

The optimization of NMF is non-convex and can be solved
by alternating minimization

W W s XHT
{ = * WHHT (3)

wTx
H<+ Hx WIWi-

Here the coefficient matrix H is new learnt feature repre-
sentation.

2.3. Image Clustering

Image clustering is a challenging problem in computer
vision and image processing, due to the great diversity of
image contents and numerous variations in illumination and
scale conditions. Fergus et al. [13]] modeled objects as con-
stellations of visual parts and used EM algorithm for unsu-
pervised recognition parameter estimation. These methods
assume that the samples have explicit distributions. How-
ever, images are arranged in complex and widely diverg-
ing shapes, making these models difficult to transfer other
image datasets. The majority work uses hand-crafted fea-
tures such as SIFT [21]], HOG [8]] and is evaluated on small
datasets like or subset Image classes. The applications of
deep ConvNet features to image clustering and evaluation
based on large scale datasets still remain unexplored.



3. Our Approach

ConvNets can learn representations that are transfer-
able across different tasks. However, the domain discrep-
ancy remains especially if there is a huge statistical dif-
ference among various vision tasks. For a new unlabeled
target dataset, this assumption may result in statistically
unbounded risk. Meanwhile, due to the non-negativity
and purely additive property, NMF could learn latent part-
components which are physically meaningful in many kinds
of real-world data. Thus we combine NMF and ConvNets to
form a feed-forward model that can identify meaning com-
ponents from non-negative representations learnt by Con-
vNets.

3.1. GSNMF-CNN Model

As off-the-shelf deep ConvNet features are global repre-
sentations of the whole image, the generalization ability and
transferability are weakened. It has been showed that Joint
I, and [, penalties enjoy a similar sparsity of representation
as [; norm and encourages a grouping effect as [, norm [19].
Thus we impose a weighted mixture of [; and squared o
penalities on coefficient matrix H to achieve group-sparse
representations. The objective function is defined as ({@):

1 o
f(W.H) = | X-WH 1% +5 IIH 15 +8 1 H |1,

st W, H > 0.
“)

3.2. Optimization

Since we impose group-sparsity on the coefficient matrix

H, the updating rule for W is the same as the standard NMF
in (3). To minimize equation (@), a gradient-descent based
method is used and the first-order update rule of H should
be generally
of (H)

oH
where matrix 1) is the step. We take the derivative of f(H)
in Equation (@) with respect to H

af _
oH

H« H-n* 5)

~-WTX + WIWH + aH + 5. (6)

Here we let the adaptive step size 7 to be

H
= . 7
T WTWH 1 oH + 3 ™
Then we get the updating rule
wTxX
H+H . 8
*WTWH + oH + 3 ®

Here the coefficient H is the new feature representation.

4. Experimental Evaluation

In this section, we evaluate the transferability of our
GSNMF-CNN representations on multiple challenging
benchmarks for image clustering, where no labeled data is
provided. We first introduce the datasets and the implemen-
tation details, and then present quantitative and qualitative
results by comparing several state-of-the-art methods and
validating across tasks the generality of GSNMF-CNN. In
absolute terms, we achieve the best performance ever re-
ported on all these benchmarks for image clustering by a
significant margin.

4.1. Tasks and Datasets

Current image clustering algorithms are usually eval-
uvated under small-scale experimental setups [7]], by ei-
ther using relatively simple datasets (e.g., COIL-20 [23]),
or sampling a portion of categories from a large dataset
(e.g., using 4, 7 and 20 sub-categories of the Caltech-
101 dataset [[11]]). Unlike previous work and consistent
with [[7], to show the transferability of our GSNMF-CNN
representations across categories and tasks, we consider us-
ing them for unsupervised scene and fine-grained image
clustering on large-scale benchmarks including the MIT-
67 [23], Caltech-UCSD Birds (CUB) 200-2011 [36] and
Oxford 102 flowers [24] datasets.

These are very challenging tasks since 1) There are
strong domain shifts between the source and target datasets.
Compared to the object-centric ILSVRC dataset where the
deep ConvNet features are pre-trained, the target MIT-67
dataset is more scene-centric and consists of similar ob-
jects presented in different indoor scenes [25], and the tar-
get Birds-200 and Flowers-102 datasets involve very subtle
differences between examples of a visual category [1]. Im-
portantly, the transferability of a ConvNet decreases when
the target task is far from the ConvNet source task [1]], as in
our case. 2) The datasets used for evaluation are standard
classification benchmarks, and they are still very challeng-
ing even for supervised image classification. However, we
tackle a more difficult scenario here by testing the represen-
tations for unsupervised image clustering, without having
access to the label information on these datasets. We will
show that with limited amount of unlabeled training data
from distinct target tasks, our GSNMF-CNN model is ca-
pable of discovering informative and discriminative latent
variables from deep ConvNet activations.

We follow the standard experimental setup (e.g., the
train/test splits) for these dataset during our experiments.
A brief description of the datasets is as follow:

- MIT-67 [25]]: MIT-67 consists of 15K image spanning
67 indoor scene classes such as shoe shop, mall and
garage. As it has a significant statistics difference from
the ImageNet, indoor scenes tend to vary a lot in term



of composition and better characterized by the objects
they contain. This makes it more challenging and an
interesting test case for the feature representation. The
provided training/testing split for this dataset consist
of 80 training and 20 testing images per class.

- Caltech-UCSD Birds (CUB) 200-2011 dataset [36]:
Birds-200 contains 11788 images of 200 birds species
(mostly North American). 5994 images are used for
training and 5794 for testing. As a fine-grained recog-
nition dataset, many of the species in the dataset ex-
hibit extremely subtle differences which are sometimes
even hard for humans to distinguish. Bird bounding
boxes, 15 part landmarks, 312 binary attributes and
boundary segmentation are available for this dataset.
In this work we only use the bounding box annotation
during training and testing.

- Oxford 102 Flowers [24]: it contains 102 flower cate-
gories and each class consists of between 40 and 258
images and 10 images are used as training data and the
rest as testing data. Additionally, the dataset provides
segmentation for all the images. The subtlety of differ-
ence across different subclasses require a fine-detailed
feature representation which makes fin-grained recog-
nition a good test of whether a generic representation
can capture these subtle details.

4.2. Implementation Details

Our feed-forward GSNMF-CNN model includes two
modules. For the deep ConvNet layers, we use the Caffe
VGGNet pretrained on ILSVRC (All the weights of the
deep ConvNet are frozen to those learned on ILSVRC with-
out fine-tuning on any other datasets) [14, 28|]. For each
image, we extract features on the center 224 x 224 crop of
the 256 x 256 resized image. It is a d=4,096-D feature
vector fc7 taken from the last hidden layer of the network.
For the GSNMF layers, we use the unlabeled training data
on the target task to learn the weights or bases. L is set to be
1,024. The test images are then fed forward to the learned
GSNMF-CNN model, producing a final d=1,024-D feature
representation. As our main purpose is to validate whether
the proposed approach is able to boost the transferability
of the deep ConvNet features for image clustering, we use
the standard clustering algorithm—k-means for fair com-
parison. All experiments were done following the standard
training/test splits.

Parameter settings. For the parameters a and f in
GSNMFE, in a preliminary experiment, we tested image
clustering on the Scenel5 dataset [[12]], which is relatively
small dataset. After searching « and 8 on a 2D grid
100-3:1:21 % 10[=3:1:2] e observed that the best perfor-
mance was achieved when o = 10 and 5 = 10. In all our

experiments, we then simply set o and 3 to be 10. Even bet-
ter performance could be obtained by further tuning them.

Baselines. We compare our GSNMF-CNN feature
against the following related representations: 1) deep Con-
vNet, the original pre-trained deep ConvNet feature of size
4,096; 2) PCA-CNN, which applies principal components
analysis (PCA) to deep ConvNets, leading to d=1,024-D
feature vectors; 3) EP-CNN, which generates an ensem-
ble of classifiers based on deep ConvNet features and rep-
resents images by the concatenation of their classification
scores [5 16, [7]. We use the same setup and default param-
eters as in [7]], leading to d=3,000-D feature vectors. All
the representation models, such as the PCA bases and the
ensemble classifiers, are learned on the unlabeled training
dataset, and their discriminative ability is evaluated on the
test dataset for k-means clustering. Note that in our clus-
tering scenarios, without labeled data, we cannot conduct
conventional fine-tuning with Backpropagation on the tar-
get dataset.

Evaluation Metrics: To be consistent with previous
work, Accuracy and Normalized Mutual Information [4}[37]]
are used as the evaluation criterion. For the definition of
accuracy, suppose the clustering algorithm is tested on H
samples. For a sample x;, the cluster label is denoted as 7,
and ground truth is ¢;. The accuracy is defined as follows:

S0t O(t:, map(r:))

N )
where 0(z,y) equals to 1 if x is equal to y and 0 other-
wise. Function map(z) denotes the best permutation map-
ping function gained by Kuhn-Munkres algorithm, which
maps cluster to the corresponding predicted label. So the
more labels of samples are predicted correctly, the greater
the accuracy is.

For Normalized Mutual Information (NMI), let C' de-
notes the cluster centers of ground truth, and C’ denotes the
cluster centers by clustering algorithm. The NMI is defined
as follows:

accuracy =

€))

MI(C,C")

NMI(C,C) = o G B )

(10)

where H(C) and H(C') are the entropies of C' and C'.
MI(C,C") is the mutual information of C' and C'. NMI
measures the dependency of two distributions and higher
value of NMI means greater similarity between two distri-
butions.

4.3. Image Clustering Results

Table [1] and Table 2] summarize the K-Means clustering
performance of our GSNMF-CNN representation and re-
lated baseline features on the scene and fine-grained recog-
nition datasets. We can see that our GSNMF-CNN repre-
sentation outperforms the original CNN feature and its PCA



| MIT-67 | Birds-200 | Flowers-102

CNN 0.471 0.361 0.474
PCA-CNN 0.464 0.360 0.482
EP-CNN [3,[6,[7] | 0.420 0.354 0.453
GSNMF-CNN 0.509 0.389 0.528

Table 1: Accuracy of scene and fine-grained image cluster-
ing on three large-scale benchmark datasets. Ours signifi-
cantly outperform all the other baselines.

‘ MIT-67 | Birds-200 | Flowers-102
CNN 0.646 0.661 0.660
PCA-CNN 0.653 0.661 0.660
EP-CNN [3l6.[7] | 0.619 0.646 0.632
GSNME-CNN 0.661 0.670 0.671

Table 2: Normalized Mutual Information of scene and fine-
grained image clustering on three large-scale benchmark
datasets. Ours significantly outperform all the other base-
lines.

transformed version by a considerable margin. For exam-
ple, in terms of clustering accuracy, GSNMF-CNN outper-
forms CNN by 5.2% on MIT-67, 3.3% on Birds-200 and 1%
on Flowers-102. Moreover, EP-CNN reported improved
performance over CNN in transductive learning, where the
EP representation (ensemble of classifiers) is learned us-
ing both the training and test datasets [3]]; however, in our
case of learning representation on the training dataset and
conducting clustering on the test dataset, EP-CNN shows
inferior performance to CNN. This means that having ac-
cess to the distribution of the test data is advantageous for
EP-CNN. The superior performance of our GSNMF-CNN
reveals that it could learn a more generic and transferable
representation to capture the subtlety of differences across
different subordinate classes and tasks.

Size of Training Dataset. We evaluate clustering perfor-
mance as a function of the number of training examples per
class on the MIT-67 dataset. For the standard training/test
split (80 training and 20 test images per class), we randomly
select 40, 60 images out of the 80 training images per class
for training, and use all the same 20 test images for test-
ing. Fig. 2] summarizes the average performance over 10
random splits. In all cases, our GSNMF-CNN outperforms
the baseline approaches, and shows consistently improved
performance with more training data.

4.4. Qualitative Visualization

We visualize the model features to gain insight into the
semantic capacity and transferability of GSNMF-CNN.

Semantic Groups. By using the t-SNE algorithm [31]],
we find a two-dimensional embedding of the high-
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Figure 2: Clustering result based for scene clustering on the
MIT-67 dataset. X-axis: number of training examples per
class. Y-axis: average clustering accuracy.

Figure 4: Representative inversion and reconstruction of
GSNMF-CNN bases in the image space on the Birds-200
dataset. GSNMEF successfully identifies some localized fea-
tures that correspond with intuitive notions of the parts of
bird species, such as eyes, beak and wings.

dimensional feature space, and plot them as points colored
depending on their ground-truth labels. Since it is visually
difficult to represent and distinguish too many classes on
the t-SNE embedding, we randomly select 10 classes of the
Birds-200 dataset. As shown in Fig. [3] compared to CNN
and PCA-CNN, GSNMF-CNN shows very good cluster-
ing of semantic classes, even for the fine-grained categories
with extremely subtle differences. This behavior explains
the improved clustering performance of GSNMF-CNN in
Table [Tl and Table

Bases Inversion. By using the representation inversion
technique [22]], we reconstruct the learned GSNMF bases in
the image space. We show some representative reconstruc-
tions on the Birds-200 dataset in Fig.[4] Consistent with the
conventional NMF, now in the CNN feature space, GSNMF
also identifies some localized features that correspond with
intuitive notions of the parts of bird species, such as eyes,
beak and wings, in the image space.

5. Conclusion

In this paper, we have addressed to boost the transfer-
ability of a deep ConvNet representation for other visual
recognition tasks with limited amount of unlabeled training
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Figure 3: t-SNE feature visualizations on 10 random classes of the Birds-200 dataset for (a) CNN, (b) PCA-CNN, and (c)
GSNMF-CNN. The better clustering behavior suggests that GSNMF-CNN is a transferable representation even for fine-
grained categories with subtle differences.

data, where conventional fine-tuning with Backpropagation
is infeasible. By imposing group-sparse non-negative ma-
trix factorization (GSNMF) on deep ConvNet activations to
constitute a feed-forward model, we discovered a rich set
of informative and discriminative latent variables. Exten-
sive large-scale image clustering experiments confirm that
the new feature representations are significantly universal
for scene and fine-grained recognition tasks.
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