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Abstract

Recognizing human activities from video data is being leveraged for surveillance
and human-computer interaction applications. In this paper, we introduce the problem
of time-slice activity recognition which aims to explore human activity at a smaller tem-
poral granularity. Time-slice recognition is able to infer human behaviors from a short
temporal window. It has been shown that the temporal slice analysis is helpful for motion
characterization and in general for video content representation. These studies motivate
us to consider time-slices for activity recognition. To this intent, we propose a new family
of spatio-temporal descriptors which are optimized for early prediction with time-slice
action annotations. Our predictive spatio-temporal interest point (Predict-STIP) repre-
sentation is based on the intuition of temporal contingency between time-slices. Further-
more, we introduce a new dataset which is annotated at multiple short temporal windows,
allowing the modeling of the inherent uncertainty in time-slice activity recognition. Our
experimental results show performance comparable to human annotations.

1 Introduction
Humans are good at anticipating and correctly predicting the activities of others during so-
cial interactions. For example, we do not need to see a full handshake before being able
to recognize it. In fact, two people getting closer and lifting hands will most likely shake
hands. Humans can naturally model the uncertainty associated with activity recognition.
While great progress has been made in computer-based human activity recognition this past
decade, computational algorithms are often lacking the predictive capabilities of humans.
Also, most recent approaches are expecting a complete video with a large temporal window.
Based on intuition from social psychology, we introduce a time-slice approach to human
activity recognition which is based on short-term observations. We are interested in improv-
ing our understanding of the inherent uncertainty occurring with time-slice observations and
building computational algorithms to properly model them. This work has several practical
applications, outside the basic research question of better understanding human and com-
puter perception of dyadic actions. It can be beneficial when the whole video stream is not
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Figure 1: An illustration of human activity recognition problems: The first row illustrates
“time-slice” recognition and the labels, i.e., Handshake (Hsh.), Hug, and Punch for different
time-slices. The second and third rows show “early” recognition and “holistic” approaches
where the label is the same for the whole sequence.

available and activities are not recorded from the start to the end. It can also be useful in
video indexing, retrieval, and analysis.

We present in Figure 1 an overview of our approach based on time-slice action predic-
tion and contrast it with the conventional approaches which recognize actions based on either
the whole video sequence (referred as “holistic” approach) or the first part of it (early recog-
nition) [30]. Our time-slice approach studies not only the beginning of the action sequence
but generalizes this to any short-term observation anywhere in the video sequence. Another
key novelty is in the explicit modeling of the uncertainty occurring when predicting actions
based on time-slices.

In this paper, we propose a new set of spatio-temporal descriptors using time-slice action
annotations for early activity prediction. We show our predictive spatio-temporal interest
point (predict-STIP) representation is able to infer time slices of human activities based on
discriminative descriptors. We select feature descriptors which are discriminative when an
action is clearly occurring during a time-slice and is also visible outside on time-slices with
uncertain action. Given their broader temporal range, we hypothesize that these descriptors
are better at prediction actions. An overview of our method “Predict-STIP” is illustrated
in Figure 2. Our goal is to identify descriptors with broad temporal coverage. The details
on how we do it can be described later. Our representation is amenable to early activity
recognition. We show the comparison results of this work with the state-of-the-art in early
activity recognition.

We introduce a new dataset, named Time-slice Action Prediction (TAP) dataset, to eval-
uate our proposed feature descriptors and enable future research on this topic. Our dataset
could also be used for early activity recognition as well as holistic activity recognition. The
dataset was created by extracting time-slices from existing public human action datasets and
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Figure 2: An overview of our method, Predict-STIP. Given an input video sequence, we first
extract discriminative segments and then detect Predict-STIPs. HOG3D representation and
BoW models are applied to prepare inputs for SVM classifiers.

perform a perception study with multiple annotators giving continuous ratings for each ac-
tion. The continuous ratings allow to represent the uncertainty in time-slice action prediction.

The outline of the paper is as follows. Section 2 provides an overview of the most relevant
works to our paper in activity recognition. We present our new dataset in Section 3. Section
4 explains the methodology of our proposed method. Section 5 shows our experimental
results, followed by conclusions in Section 6.

2 Related Work

A number of surveys have been published in activity recognition over the past decade [2, 27,
35]. Given the significant literature review in this area, we focus only on the most relevant
works.

Partially observed videos: Very few works have been devoted to recognizing activities
from partially observed videos. Ryoo [30] performed the first attempt in early activity
recognition and studied how feature distributions change over time. Li and Fu [20] used
autoregressive moving average model, ARMA, to model the temporal order of activities for
early recognition. Raptis and Sigal [28] trained a model to recognize actions in videos
using key-poselets as latent variables for partially observed activity recognition. Yu [38]
trained a model using relative locations of space-time points extracted from a video to the
center position of that video. A Semantic framework was proposed by Li et al. [21] for
early recognition of long-duration complex activities by discovering the casual relationships
between action units. Early event detection and recognizing human activity from gapped
videos have also been studied in [3, 13] which used partially observed videos as input.

Space-time interest points: Recently, space-time interest points (STIPs) have received
increasing interest due to their scarcity and reasonable performance for activity recognition.
STIP-based methods are invariant to geometric transformations which result in low variation
by changes in scale, rotation, and viewpoint. Laptev and Lindeberg [19] proposed the notion
of STIP built on the idea of the Harris and Stephens interest point operators [12]. Several
other methods have been reported [9, 14, 25] to improve STIP detection for human activity
recognition. Chakraborty et al. [5] proposed a model for robust Selective STIP detection (S-
STIPs) by applying background suppression as well as local and temporal constraints. This
method outperforms existing STIP detection techniques and detects more stable and distinc-
tive STIPs. We benefit from the advantages of S-STIPs to extract the initial interest points
in our work. For exploring more approaches, we refer readers to a recent comprehensive
survey of human action recognition with STIP detector by Das Dawn and Shaikh [8].
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Key-components: The use of informative components (frames or time-slices) is in
contrast to most research in video-based action recognition which often extracts features
from much longer videos. Using a sparse set of frames allows the model to focus on the
most discriminative parts of the action which are referred to key-frames in literature review
[4, 22, 32, 39]. Key-frames are discrete sets of frames that capture discriminative parts of a
video. On the other hand, time-slices are continues sets of frames which represent temporal
ordering and dynamic structure of the discriminative part of a video. This paper is the first
effort to introduce time-slice for activity recognition.

Trajectory data: Among the local space-time features, tracking interest points through
video sequences have been shown to be an efficient representation for action recognition
[24, 33, 36]. Shape, appearance, and motion descriptors are extracted from the trajectories
of interest points to analyze detailed levels of human movements. Sun et al. [33] represented
activities using trajectory transition and trajectory proximity descriptors. The trajectory ex-
traction process is based on matching SIFT descriptors between two consecutive frames. The
descriptors that are too far apart are discarded. Wang and Schmid [36] proposed a method
using improved dense feature trajectories. They estimated the camera motion and removed
it from the optical flow to have better motion-based descriptors. In this paper, we track the
position of specific spatiotemporal interest points backward and forward in time and extract
predictive features based on the persistency of this trajectory data.

3 TAP Dataset

We are interesting in social interactions, more specifically dyadic interactions. We preferred
using publicly available datasets so that people can replicate and extend our experiments.
We looked for datasets with similar action labels in order to make the time-slice annotation
task possible for crowdsourcing.

We have extracted 2132 time-slices from 4 challenging datasets, i.e., UT-Interaction (seg-
mented sets 1 and 2) [29], HMDB [17], TV Interaction [26], and Hollywood [18] datasets.
Each time-slice contains one of seven interactions: handshake, high five, hug, kick, kiss,
punch, and push. The dataset also contains 204 negative examples, time-slices of full videos
that do not have any of the mentioned interactions. We performed a preliminary experiment
to validate how many frames were necessary to have good agreement between annotators.
We requested some annotators to recognize dyadic interaction examples with 5-, 10- and
15-frame time-slices. We decided to choose 10-frame time-slices for our work since 5-fram
time-slices were too short and 15-frame time-slices were not fit to our goal which is studying
the inherent uncertainty in activities. Our dataset is available as a public dataset to encourage
researchers to continue this line of research. 1

During our experiments, we grouped together videos from constrained and unconstrained
datasets. Constrain, here, refers to the restriction in the settings and activity executing. UT-
interaction is our constrained dataset which contain acted interactions with a fixed back-
ground and profile viewpoint that are performed for research purpose. On the other hand,
unconstrained datasets include activities which are taken in realistic settings, e.g. from TV
shows. Unconstrained datasets are more challenging for activity recognition. HMDB, TV
Interaction, and Hollywood are our unconstrained datasets. We selected videos of these
datasets based on the camera angle ranging from -45 to +45 degree.

1http://vision.gel.ulaval.ca/en/Projects/Id329/Pro jet.php
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Figure 3: Human annotation: This figure shows the average rate of 3 annotators for two
video examples: hug and push. For each possible activity and for each time-slice, the la-
bel provided by one annotator is first converted to a number on a linear scale from 0 to 1.
The average of those numbers for more than one annotator (we used 3 here) is called the
average rate annotation for the time-slice. This average rate will be used to evaluate the per-
formance of our method. Time-slices between dashed lines is the discriminative segment of
the interaction.

All time-slices was annotated by multiple online annotators (using the Crowdflower plat-
form [1]). 3 annotators rated each time-slice on how likely a specific action is occurring.
For each time-slice and for each action, the annotator was asked to pick one of 5 likelihoods
from “Definitely Not Occurring” to “Definitely Occurring”.

Figure 3 illustrates how annotators rated for two example videos. From the figure, we
can see the confusion and uncertainty of annotators in first time-slices of videos. As time
passes and more information about the activity of interest is observed, they will be better
able to recognize the activity.

4 Methodology

Our approach to dyadic human activity recognition consists of three major contributions:
i) a new learning approach in which discriminative video segments are used on the basis
of human annotations and efficient spatio-temporal features (called predictive) are obtained
on the basis of their persistence and ii) a more general definition of the activity recognition
problem in which the uncertainty arising from observing a short time-slice from anywhere
in the video sequence is explicitly taken into account, and iii) a demonstration that a baseline
multi-label classification method can reproduce the features of the human annotation using
the proposed learning model for this problem. We introduce discriminative segments since
we need feature descriptors which are good when the human agree that an action is clearly
occurring. We also require descriptors which have predictive powers when their broader
temporal range is considered. We first determine discriminative segments of each video
activity based on annotated data where all annotators agreed an interaction of interest is
occurring. We then use these segments to select predictive space-time interest points. Each
predictive point is described by motion and appearance descriptors to learn the model. In the
following subsections, the above steps are explained in more detail.
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4.1 Discriminative segments
When analyzing an interaction, we can definitely recognize the ongoing activity from spe-
cific time slices such as “two people are shaking each other’s hands” slice in handshaking
activity. These slices are referred to discriminative segments in this paper. Discriminative
segments, therefore, encode the most relevant slices of video to interested interaction. We
define the temporal location of a discriminative segment based on annotated data. In prepar-
ing our dataset, we asked 3 users to annotate each time-slice as described in Section 3. To
measure the reliability of agreement between annotators, we used Fleiss’ kappa coefficient
k [11] that assesses the agreement between more than two raters. This coefficient takes
into consideration the agreement occurring by chance as shown in Equation 1. For each
interaction video, time-slices where the annotators are in complete agreement, i.e. k=1, on
definitely including the interaction of interest, are selected as discriminative segments.

k =
P̄i−Pl

1− P̄i
(1)

where P̄i is the mean value to which annotators agreed for the certain interaction of interest
and Pl is the sum of the square of the quantity of all assignments which were to the certain
likelihood category. The degree of agreement that is achievable above chance and actually
attained above chance are provided by factors 1− P̄i and P̄i−Pl respectively.

4.2 Predict-STIP
In this paper, we follow the recent progress in STIP-based recognition strategy. Existing
STIP detectors are vulnerable to model the inherent uncertainty in partially observed ac-
tion recognition and prediction, and therefore, are insufficient for time-slice recognition. To
overcome this problem, we introduce a predictive representation which measures how long
STIPs are observable in a video. STIPs which are active during the whole video are selected
as Predict-STIP (P-STIP). In other words, P-STIPs are the STIPs that exist in first frames of
the video and still will appear in upcoming frames.

Given a set of interaction video sequences {Ai | i = 1 : n} and their associated discrim-
inative segments {Si | i = 1 : n}, our purpose is to detect P-STIPs Pi of each Ai. Our input
variables are sequence of frames Ai = { f 1

i , ..., f ei
i } and Si = {s1

i , ...,s
Ni
i } where ei and Ni are

the length of the full video and the discriminative segment, respectively. To extract P-STIP,
we first detect “stipNew” of s1

i as initial landmarks. We then track them backward and for-
ward using Kanade-Lucas-Tomasi (KLT) algorithm [23, 34] to f 1

i and f ei
i and check whether

or not they have existed during the whole video. We repeat these steps for all frames of Si.
Landmarks that are continuously observable are selected as P-STIPs Pi:

Pi = {p(x j,t ,y j,t ) ∈ st
i, t = 1, ...,N | ∀p Vp = 1} (2)

where V is a validity matrix provides a logical array, indicating whether or not each point
has existed during the whole video. (x j,t ,y j,t) is the position of stipNew p j in the frame st

i .
To speed up the tracking step and increase the efficiency of our algorithm, we select a new

subset of S-STIPs [5], stipNew, instead of using all densely sampled S-STIPs from Si. We
initialize stipNew as S-STIPs extracted from s1

i and track them. We then generate putative
matches between previously tracked-stipNew, stipT , and extracted S-STIPs, stipE , of the
current frame by finding points that have minimal differences in oriented phase data within
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Algorithm 1 Predict-STIP detection from a discriminative segment

Input: Discriminative segment (H×W ×N): S;
S = {si | i = 1 : N} (contains all frames of a discriminative segment)
Definition:
f1: The first frame of the full video
fe: The last frame of the full video
V: Validity matrix provides an M-by-1 logical array, indicating whether or not each point
has existed
Ensure: Predict-STIP: PredectivePoints

1. N = size(S,3); (Total no. of the discriminative segment’s frames)
2. Initialize stipNew
3. Initialize stip
4. for i = 1→ N do
5. Track stipNew backward to f1 and forward to fe and restore V matrixes
6. Let stipT be stip tracked from si−1

7. Let stipE be S-STIPs extracted from si

8. Match stipT with stipE and set stipM = stipT ∩ stipE
9. Update stipNew via stipE /∈ stipM

10. Update stip via stipN ∪ stipT
11. end for
12. Check V matrixes
13. Find points where Vpoints are always equal to 1 and set as PredectivePoints
14. Return (PredectivePoints)

windows surrounding each point [16]. Only points that correlate most strongly with each
other in both directions are returned as matched points, stipM . Oriented phase data matcher
performs better compared to normalized grayscale correlation. We also set a maximum
search radius threshold for matching points to improve speed and accuracy since we do not
want to match points, e.g. from an arm with points extracted from a leg. Consequently,
only points whose Euclidean distance is below the threshold are considered for matching.
Afterward, we employ RANSAC algorithm [10] to estimate the fundamental matrix from
matching point pairs to excludes outliers and identify strong inliers. Figure 4.a illustrates
the matching result of a sample frame. Finally, we update stipNew via stipE that does not
belong to stipM . Therefore, the stipNew is a new subset of S-STIPs that are not tracked from
previous frames and appear in each frame. The pseudo code for the full predictive feature
detection is described in Algorithm 1. Figure 4.b shows P-STIPs extracted by our approach
and S-STIPs resulted from [5].

4.3 Descriptors and vocabulary building

Several local and global descriptors have been proposed in the past few years for STIP-based
methods [6, 7, 15, 31, 37]. In this paper, we use HOG3D descriptors [15] to represent each
interaction video. The HOG3D descriptor is based on histograms of 3D gradient orientations,
where mean gradient vectors are computed using integral videos. With integral videos, 3D
gradients can be efficiently calculated for any arbitrary points in a video. Given P-STIPs
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(a) (b)

Figure 4: Predict-STIP detection. The matching result of a sample “high five” action
is shown in the left figure. The right figure displays S-STIP [5] and our predict-STIP
extracted from the example.

of each interaction video, we construct the HOG3D representation. Local regions are deter-
mined first by extracted P-STIPs and then histograms of gradient orientations are computed
over a set of gradient vectors from the cuboid neighborhood (4x4x4) around the P-STIPs.
All histograms are concatenated to one descriptor vector for each video.

We compute the basic Bag-of-words model and quantize the descriptor vectors, HOG3D
extracted at P-STIPs, into 1000 bins associated with visual words using K-means clustering.
BoW features are normalized so their L1 norm is 1.

4.4 Learning

The goal of our Predict-STIP method is to determine the interaction category of time-slices
of video X among a set of classes {1, ...,K}. Therefore, our purpose is to learn a mapping
f (O)→ {1, ...,K} where O ⊂ X refers to the time-slice observations and may occur at any
time in the video. We present the videos with BoW descriptors obtained from P-STIPs. For
each class of interaction, we learn a model with the corresponded BoW descriptors using
multi-class SVM framework in the training phase.

At test time, a query video vi which is a time-slice of a longer video matched to the
models according to the learned appearance and motion predictive features. To this intent,
we extract S-STIPs [5] from vi and match them to the pool of trained P-STIPs. S-STIPs
of vi that matched to P-STIPs are selected as P-STIPs of vi (lookup table technique). Then
BoW descriptors of vi are extracted. Classification is made based on the score of interaction
class-specific models applied on BoW descriptors.

5 Evaluation of predictive model
We present experimental results on two scenarios of our TAP dataset: constrained and un-
constrained sets.
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5.1 Constrained set

Samples in constrained set are time-slices of 5 interactions (handshake, hug, kick, punch,
and push) collected from UT-Interaction dataset. To extract Predict-STIPs, we use a match-
ing function with two adjustable parameters: matching window size and maximum search
radius. We set the matching window size to 11 empirically and maximum search radius to
10 according to the resolution of images in the dataset. The number of P-STIPs is different
from one action to another action and varies between 15-30.

We evaluate the time-slice recognition performance by using the standard “leave-one-
out” method, one video is out each time, and fit the recognition problem in the context of
multi-class classification. The average precision for all interactions ( compared to human
annotation) is given in the second column of Table 1. In order to visualize the performance
of our method, we draw its average precision on a per time-slice basis and compare it to
the average rate of human annotators (see Figure 5). Because the number of time-slices is
not the same for all videos, we compute the averages using video examples with the same
number of time-slices. From the figure, we can see in some time-slices our approach outputs
higher values than human annotators, e.g. time-slices 11 and 12 for the Hug action. In those
cases, our method is thus better in recognizing the action from some limited time-slices.

Interestingly, since Predict-STIP is sufficient for holistic and early activity recognition,
we can also compare it with the state-of-the-art on UT-Interaction dataset for those two
different recognition context problems. Table 2 shows that our predictive representation
outperforms all the state-of-the-art methods.

5.2 Unconstrained set

The unconstrained set is more challenging than constrained set in terms of background clut-
ter, the number of people in the scene, the number of interactions, camera motion, and
changes of viewpoints. This set includes time-slices of 6 realistic human interactions (hand-
shake, high five, hug, kick, kiss, and punch) collected from HMDB, TV Interaction, and
Hollywood TV show datasets.

The experimental setting of this set is similar to constrained set. The performance of
Predict-STIP on this set is also reported in Table 1. The results are obtained based on
the number of correctly labeled time-slices compared to the human annotation. From the
table, we can see that the results on constrained set are better than unconstrained set because
unconstrained set is more challenging. We can also see that the best results are obtained in
handshake interaction for both datasets. High five interaction, meantime, has the minimum
accuracy rate among 7 listed interactions.

6 Conclusions
In this paper, we have introduced a predictive representation for a new problem of time-slice
activity recognition. Time-slice activity recognition aims at exploring and recognizing an
activity using a portion of the whole activity. We represented each video based on spatio-
temporal descriptors of predictive features extracted from discriminative video segments. We
also showed the effectiveness of our approach in a new dataset and compared it to the state-
of-the-art. This dataset is available as a public dataset to encourage widespread researchers
to explore human activities at a smaller temporal granularity.
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Figure 5: Comparison results of our method with the human annotation. Dashed and black
lines show average rate by annotators and average precision of our method at test time,
respectively.

constrained set unconstrained set
handshake 82% 76.3%
high five – 61.4%

hug 81% 71%
kick 78% 73.7%
kiss – 74%

punch 80% 76.2%
push 75% –

Table 1: The average precision of Predict-STIP on constrained (UT-interaction dataset) and
unconstrained sets (selected videos from HMDB, TV Interaction, and Hollywood TV show
datasets).

Acknowledgements: This work is supported by a Discovery Grant to Professor Robert
Bergevin from the Natural Sciences and Engineering Research Council of Canada and the
FRQNT International Internship Grant to Maryam Ziaeefard. This material is also partially
based upon work supported by the National Science Foundation under Grant No. IIS-
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Method Accuracy with Accuracy with
half observation full observation

Our Model 83% 95%
Raptis and Sigal [28] 73.3% 93.3%

Yu et al. [38] 80% 91.7%
Ryoo (Best) [30] 70% 85%

Ryoo and Aggarwal (Best) [29] 31.7% 85%

Table 2: Performance comparison on the UT-Interaction Dataset. Early recognition and
holistic recognition results are reported on the second and third columns, respectively.
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