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Abstract—Action Unit (AU) detection from facial images is an 

important classification task in affective computing. However 

most existing approaches use carefully engineered feature 

extractors along with off-the-shelf classifiers. There has also been 

less focus on how well classifiers generalize when tested on 

different datasets. In our paper, we propose a multi-label 

convolutional neural network approach to learn a shared 

representation between multiple AUs directly from the input 

image. Experiments on three AU datasets- CK+, DISFA and BP4D 

indicate that our approach obtains competitive results on all 

datasets. Cross-dataset experiments also indicate that the network 

generalizes well to other datasets, even when under different 

training and testing conditions. 

Keywords—Convolutional Neural Networks; Action Units; 

Cross-dataset transfer 

I. INTRODUCTION  

One of the most important classification tasks in affective 
computing is the automatic detection of expressions from facial 
images. Humans communicate through exchange of verbal and 
non-verbal messages in interactions. Facial expressions are an 
important component of human communication dynamics, and 
prior research shows that they convey valuable information 
about emotional state and social interaction [1]. Recognition of 
facial expressions, such as anger, fear, joy or surprise is 
facilitated by the detection of individual, or a combination of 
facial muscle movements, which are commonly referred to as 
Action Units (AUs) [2]. The FACS (Facial Action Coding 
System) introduced by Ekman et al. [1] is a principled standard 
to categorize facial muscle movements. The manual encoding of 
FACS labels is highly time consuming and expensive, which 
necessitates the automatic detection of AUs using machine 
learning algorithms.  

There has been a great deal of work on automated 
approaches for recognition of AUs from still images of faces, as 
well as from videos [3]. AU recognition can be posed as a 
classification task, where the presence/absence of an AU is a 
binary decision, or a regression task where the intensity of each 
AU is estimated. In our paper, we focus on the subject 
independent classification of AU presence/absence from videos. 
Most existing approaches [3][4] employ standard off-the-shelf 
classifiers with feature extractors such as SIFT (Scale-Invariant 
Feature Transform), HoG (Histogram of Gradients), and LBP 
(Local Binary Patterns) along with a classifier such as SVM 

(Support Vector Machine) for detecting  
action units. Further, the recognition of AUs is posed as a set of 
binary classification problems, where the detection of each AU 
is done separately. 

 When evaluating across AU technologies, it is important to 
test across domains and datasets to evaluate generalization. 
Unfortunately, the conventional methodology is to train and test 
on the same dataset. While there has been some effort to 
investigate the cross-domain performance of AU detection 
algorithms [5][6] there has been no formal study of their 
generalization properties when different datasets are used for 
training and testing. It would be useful to characterize the 
performance under different conditions such as lighting, subject 
independence, and acted/spontaneous facial expressions. This is 
particularly useful for “in the wild” scenarios where AU 
detection is performed on real-world camera captures without 
any prior knowledge of the environment or settings in which the 
data is acquired. A suitable example would be YouTube videos, 
where no additional information about the video stream is 
available. 

 Our contributions in this paper are novel in two aspects. 
Firstly, we explore the use of convolutional neural networks 
(CNNs) for the task of AU detection. We are motivated by the 
widespread success of deep learning (and particularly CNNs) for 
large-scale image recognition [7]. We pose the problem of AU 
recognition as a multi-label classification problem, and instead 
of training a separate CNN for each AU, jointly train all the AUs 
through a multi-label softmax classification loss approach. We 
obtain competitive results on various datasets, including CK+ 
(Cohn-Kanade extended) [4], DISFA (Denver Intensity of 
Spontaneous Facial Actions) [8], and BP4D [9], which is part of 
the FERA 2015 (Facial Expression and Analysis Challenge). 
Secondly, we explore the effect of domain mismatch in the 
context of cross-dataset training and testing to obtain an insight 
into the robustness of these networks. Our results, along with 
visualization experiments indicate that CNNs obtain good 
performance even under different training and testing 
conditions.  

II. RELATED WORK 

Since the introduction of FACS (Facial Action Coding System) 
by Ekman et al. in [1], there have been a number of efforts in the 
literature for the automatic recognition of facial AUs. Tian et al. 
[10] proposed an AFA (Automatic Face Analysis) system for 
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facial feature modeling and evaluated their approach on the 
Cohn-Kanade dataset.  Bartlett et al. [11] compared several  
learning algorithms, such as AdaBoost, SVMs (Support Vector 
Machines), and Linear Discriminant Analysis to classify 17 AUs 
on the Cohn-Kanade dataset.  Littlewort et al [12] introduced 
CERT (Computer Expression Recognition Toolbox) for 
estimating AU intensities using SVM classifiers.  

Wu et al. [13] explored multilayer architectures using GEFs 
(Gabor Energy Filters) for AU recognition. Zhang et al. [14] 
modeled AU recognition using the Lp norm MTMKL (Multi-
Task Multiple Kernel Learning) framework. Li et al. [15] used 
DBNs (Dynamic Bayesian Networks) for modeling correlations 
among AUs and estimating their intensities. Song et al. [16] 
modeled AU sparsity and co-occurrence using a Bayesian 
compressed sensing model, reporting 86% accuracy on the 
DISFA dataset, and 94% on the Cohn-Kanade extended (CK+) 
dataset. Jiang et al. [17] explore the problem of which face 
regions features should be extracted from and propose a 
decision-level fusion with LBP (Local Binary Pattern) and LPQ 
(Local Phase Quantization) to obtain a best performance of 0.81 
2AFC (Two-alternative Forced Choice) score on the DISFA 
dataset. 

However, there has been very little work in the literature on 
neural networks for AU recognition. Tian et al. in [35] employed 
a three-layer neural network with one hidden layer for 
identifying lower face AUs. Handcrafted facial features such as 
lip height, width and corners; transient features such as left 
nasio-labal furrow angle, and presence of nose wrinkles were 
used as inputs to the neural network. Fasel [18] explored 
convolutional neural networks (CNN) for multi-scale facial 
expression recognition. These previous methods use a 
combination of hand-engineered feature extractors along with 
standard off-the-shelf machine learning  models ; to the best of 
our knowledge, our approach is the first one in which the facial 
image is used directly as an input to a deep network for learning 
a shared representation of AUs for a subsequent classification 
task. 

CNNs were applied to document recognition by LeCun et al. 
[19], and have enjoyed a resurgence with access to ever-
increasing computational resources, and access to web-scale 
image and video data from media websites such as YouTube and 
Flickr. Krizhevsky et al.  [7] used CNNs for classification of 
images from LSVRC-2010 ImageNet dataset. Data 
augmentation through random distortions, ReLU (Rectified 
Linear Units) and dropout layers were proposed [20] to improve 
generalization capabilities of these networks. In the domain of 
affect recognition, the FER (Facial Expression Recognition) 
2013 challenge [21] was launched on Kaggle for identifying 
facial expressions from images, where the winning entry used a 
CNN with an L-1 SVM as a post-classifier using features 
extracted from the top layer, obtaining an accuracy of 69% on 
the test dataset. Deep CNNs have also been applied recently to 
video classification [35]. This recent success has motivated us 
to explore the use of CNNs for learning representations relevant 
to AU classification. 

 

III. DATASETS 

We perform our experiments on three datasets: Extended Cohn-

Kanade dataset (CK+), DISFA (Denver Intensity of 

Spontaneous Facial Expressions), and the BP4D-Spontaneous 

dataset, which is a part of the FERA 2015 Challenge on AU 

detection.  We choose CK+, since it is a standard dataset for 

AU detection, DISFA since it is a video dataset, and BP4D 

since it is a very new dataset with accurate annotations. While 

performing cross dataset training, we only consider 10 AUs 

which all three datasets share, which are: 1 (Inner brow raiser), 

2 (Outer brow raiser), 4 (Brow lowerer), 5 (Upper Lid raiser), 

6 (Cheek raiser), 9 (Nose wrinkler), 12 (Lip corner puller), 15 

(Lip corner depressor), 17 (Chin raiser) and 20 (Lip stretcher). 

CK+ Dataset [4]:  The CK+ dataset consists of 582 fully FACS 

coded image sequences of both spontaneous and 

nonspontaneous facial expressions from 123 subjects.  Each 

frame containing an AU was either given an intensity degree on 

a 7-point ordinal scale or an “unspecified intensity” label.  The 

lack of an AU label indicates absence.  Since we pose AU 

detection as a multi-label binary classification problem, we 

mapped any frame containing an intensity of 3 or higher to a 

positive presence label.  The CK+ dataset was substantially 

smaller than DISFA or BP4D. Hence we used it strictly for the 

testing phase in cross dataset experimentation.   

DISFA Dataset [8]:  The DISFA dataset contains stereo videos 

of 27 subjects spontaneously generating facial expressions 

when watching an emotive video stimulus, with a total of 54 

videos.  Each video consists of 4845 FACS coded frames for 12 

AUs: 25 (Lip part) and 26 (Jaw Drop) in addition to the above, 

with presence, absence, and intensity labels.  For this 

experiment, we only used presence and absence labels.                                                                                                                       

FERA 2015 BP4D-Spontaneous Dataset [9]:  This partition of 
BP4D was part of the 2015 FERA challenge dataset.  It consists 
of 41 subjects and 34 AUs, and the subjects  were young adults 
who spontaneously generated emotional responses to stimulus 
tasks.  For this experiment, we only used the 10 common AUs 
shared between the CK+ and DISFA datasets.  Binary presence 
and absence labels were available, so these were straight-
forwardly parsed without thresholding the AU intensities for 
every frame. 

IV. REPRESENTATION LEARNING OF ACTION 

UNITS 

Convolutional neural networks (CNNs) are very effective at   

learning image representations with shift-invariant features,   

directly from a raw input image without any extraction of 

handcrafted features. This is also referred to as “representation 

learning” and it also generalizes well to unseen data. These 

properties motivate us to explore CNNs for AU recognition. We 

use a multi-label loss function since each facial image could 

have more than one AU associated with it, and train the CNN 

with this loss function. 
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Multi-label softmax classification-:  We pose the problem of 

detecting AUs as a multi-label binary classification task. Let us 

assume that there are C AU categories, N data points 

{ 𝒙𝒊 },  where each   𝒙𝒊 denotes the i-th image and               𝑦𝑖𝑗 ∈
{0,1} is a label denoting presence or absence of the j-th AU. Let 

𝑓(𝒙𝒊) be the transformation learnt by the neural network at the 

hidden layer just prior to computation of the loss function. 

Similar to [22], we define the multi-label softmax classification 

loss as: 

 

𝐽 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑗 log(𝑝̂𝑖𝑗) = −

1

𝑁

𝐶

𝑗=1

𝑁

𝑖=1

∑ ∑ log(𝑝̂𝑖𝑗)             (1)

𝐶+

𝑗=1

𝑁

𝑖=1

 

 
Where 𝐶+is the number of AUs actually present in image 𝒙𝒊 , 

𝑝̂𝑖𝑗  are the prediction probabilities from the last softmax layer 

for the i-th input image and the j-th AU, obtained as: 

 

                              𝑝̂𝑖𝑗 =
exp (𝑓𝑗(𝒙𝒊))

∑ exp (𝑓𝑗(𝒙𝒊)) 
                                     (2) 

 
Our experimental results, as described in Section VI show that 
the joint representations learnt by the network are effective at 
learning correlations among the AUs. 

CNN architecture-:  We use the open-source Caffe toolbox [23] 
for our experiments. Since the multi-label softmax regression is 
not built in by default, we created a new layer for this task. The 
CNN contains a large number of parameters, and since we have 
limited participant data, we used three techniques to avoid over-
fitting the dataset: (1) two dropout layers between fully 
connected ones (2) data augmentation by random mirroring and 
cropping when creating data batches for the CNN, and (3) usage 
of L2 regularization with a suitable validated learning rate. Fig.1 
shows the architecture of the CNN trained on the BP4D dataset. 
Our preliminary experiments also indicate that a Mean-Variance 
Normalization layer improves detection performance. After the 
CNN is trained, it still remains an interesting problem to map the 
prediction probabilities {𝑝𝑖𝑗} into a set of binary labels. 

 AU classification-:  We use the learnt top layer representations 
for each data point as training data for a QDA (Quadratic 

Discriminant Analysis) [24] classifier to predict each AU. QDA 
is a probabilistic classifier with a quadratic decision boundary. 
Its usage was motivated by two design considerations. Firstly, 
QDA requires the classifier to have minimal tuning, since it is 
probabilistic in nature, without any hyper-parameters, and thus 
additional validation is not required (unlike a hyper-parameter 
based classifier such as an SVM or a Maximum Entropy 
Classifier). Secondly, the usage of a simple classifier helps us 
obtain an insight into the efficacy of the representations learnt 
by the CNN. 

Assuming 𝒉𝒊  is the feature vector (representing the  i-th test 
example) obtained from the last fully-connected layer of the 
network and that 𝑦𝑖𝑗 has a value of 0/1 depending on the 

respective absence or presence of the j-th AU for the image 
example, each classifier estimates the posterior probability 
𝑃(𝑦𝑖𝑗|𝒉𝒊) and predicts the class with the higher likelihood.   

Data imbalance-: The sparsity of the AU occurrences also poses 
an additional challenge. Previous work [25] in the literature 
reports that performance improvements are obtained by 
balancing the dataset prior to training. However, unlike in a 
single label setting, balancing one AU may result in another AU 
being unbalanced, since we consider all AUs jointly in the multi-
label loss function. We solved this issue by trying out different 
approaches to multi-label balancing, so that the fraction of 
positive/negative classes across all AUs is as balanced as 
possible. While leading to some improvement overall, this did 
not result in any significant performance improvements.  

V. EXPERIMENTAL METHODOLOGY 

Preprocessing the datasets-: The datasets were preprocessed, 
with an OpenCV face detector (frontal) being applied on every 
frame to obtain the bounding box of the face. Subsequently, the 
face was cropped out. We assume that multiple facial images of 
each participant are available to us for training and testing, 
where the mean facial image of each participant can be 
computed for mean normalization. This technique is similar to 
subtraction of a person’s face from his “neutral” face to obtain 
a subject-independent analysis of expressions. It has been 
widely used in the literature [26], and we assume that the mean 
face averaged over all frames is very similar to the neutral face. 
This also removes the need for a separate neutral facial image 
to aid the classification. After subject specific normalization, 

Fig 1. Architecture of the CNN trained on the BP4D dataset. There are two convolutional stages and two fully-connected layers interspersed by 

max-pooling layers, with the size of the output layer equal to the number of AUs. 
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we also normalize each facial image using the entire dataset, 
and divide each pixel’s intensity by 255 to keep it between 0 

and 1. It is worth noting that this is a simple normalization 
method, and usage of advanced methods such as facial 
landmarks [10] would definitely improve performance. 
 
Train/validation set splits-: We employed a leave-one-subject-

out testing scheme, and split the DISFA and BP4D datasets into 

training, validation and testing sets, where. For DISFA, in each 

testing fold, 75% of the subjects were used for training, and the 

remaining 25% for validation according to a random seed. All 

experiments were performed in a subject independent manner 

for all datasets. For BP4D a similar scheme was used, except 

that the train-validation split was done according to that 

predefined in the FERA 2015 challenge guidelines [9]. With the 

CK+ dataset, we performed only testing, since the number of 

images in the dataset are inadequate to train the large number 

of weights in the network (~100,000) without risk of over-

fitting. It also helps us measure the generalization ability of the 

network, and compare with baseline results reported in existing 

literature. 

Hyper-parameter Validation-: The relevant hyper-parameters 

to tune for the CNN, along with search range were (1) Optimal 

training iterations – the number of iterations beyond which 

over-fitting occurs (5000 to 10000) (2) Base learning rate of the 

network (0.0001 to 0.01) (3) Weight decay parameter      (5e-3 

to 5e-6) (4a) Kernel size for the convolutional layers (5 to 15) 

(4b) Kernel size for the pooling layers (2 to 4) (5) Learning 

momentum (0.5 to 0.9). A detailed description of the           

hyper-parameters can be found in [27]. Due to the large number 

of hyper-parameters involved, we have resorted to a random 

search over the hyper-parameter space in place of a grid search. 

It has also been reported in the literature, that random search is 

more beneficial in this setting [28]. We defined two mega 

layers, each consisting of a convolutional, ReLU (Rectified 

Linear Unit), dropout layer and max-pooling layer, with two 

fully-connected layers on top.  After validation is complete, we 

retrain the network with a combination of training and 

validation data prior to leave-one-out testing. Early stopping is 

used for training, with the optimal model being selected 1000 

iterations after the validation error starts increasing. We 

extracted the top layer representation {𝒉𝒊}  from the trained 

CNN, and for each AU, we trained a QDA (Quadratic 

Discriminant Analysis) classifier to predict presence/absence of 

the AU in the frame of interest.  

Performance Metrics-: To measure the performance of the 

CNN classifier on the task of AU detection, we use two 

measures – (1) Accuracy and (2) 2AFC (Two-alternative 

Forced Choice) score. We were motivated to use these metrics 

due to the ease of comparison with baselines in existing 

literature, and our concern that the choice of evaluation metrics 

should be insensitive to the amount of skew in the testing set, 

as reported by Jeni et al. in [30]. The accuracy is equal to the 

percentage of testing examples correctly classified, while the 

2AFC score is the fraction of correctly classified examples in a 

2AFC trial experiment, which has been shown to be a good 

approximation to the AUC score (Area under ROC curve) [9].  

VI. RESULTS 

In this section, we present the results of experiments for two 

paradigms: dataset specific and cross-dataset evaluation.  We 

also perform visualization experiments to obtain an insight into 

the representations learnt by the CNN, and its ability to 

generalize across datasets. 

 

Dataset specific evaluation-: The methodology of these 

experiments are explained in Section V and in this section, we 

present results in a subject independent manner. In Table I, we 

show the accuracy and 2AFC scores for each of the 12 AUs in 

TABLE II.  LEAVE-ONE-OUT   TEST CLASSIFICATION AND HELD-

OUT DEVELOPMENT PERFORMANCE OF MULTI-LABEL CNN ON 

BP4D DATASET (10 ACTION UNITS) 

Action Unit 
Classification Performance 

Accuracy 2AFC Score 

1 70.85 0.643 

2 76.11 0.675 

4 73.53 0.720 

5 85.49 0.619 

6 73.82 0.839 

9 81.36 0.763 

12 79.49 0.878 

15 65.97 0.642 

17 65.25 0.665 

20 86.08 0.728 

Average 75.80 0.717 

7-AU subset 

average on dev 
75.69 0.751 

FERA  2015 

Baseline [9] 
72.00 0.427 

 

TABLE I.   LEAVE-ONE-OUT   CLASSIFICATION PERFORMANCE 

OF MULTI-LABEL CNN ON DISFA DATASET (12 ACTION UNITS) 

Action Unit 
Classification Performance 

Accuracy 2AFC Score 

1 87.5 0.702 

2 88.6 0.715 

4 78.5 0.704 

5 90.6 0.773 

6 83.9 0.855 

9 90.2 0.829 

12 86.1 0.913 

15 86.7 0.683 

17 81.4 0.679 

20 88.4 0.639 

25 78.5 0.838 

26 74.9 0.757 

Average 84.6 0.757 

Baselines 

[16][29] 
86.8  0.76  
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the DISFA dataset. We compare our results to papers [16] and 

[29], where we have ensured that the same experimental 

methodology and choice of metrics are followed for a fair 

comparison. From an examination of Table I, we find that our 

approach performs best on AUs 12 (Lip corner puller) and 20 

(Lip stretcher) in terms of 2AFC scores. The average accuracy 

over all the twelve AUs is very close to the state-of-the-art 

performance as reported in [16]. Further, the average 2AFC 

score (0.757) is comparable to the performance reported in [17], 

where the authors use region-specific features, along with prior 

knowledge of AU muscle contractions  to obtain average 2AFC 

scores of 0.77 for feature level fusion, and 0.805 for decision-

level-fusion. It is worth noting that prior work uses carefully 

hand-engineered features, whereas our approach learns relevant 

features directly from the facial image with minimal 

preprocessing (simple face detection and normalization) to 

achieve similar performance. 

In Table II, we present leave-one-out testing accuracies and 

2AFC scores for a subset of 10 AUs (1,2,4,5,6,9,12,15,17,20) 

from the BP4D dataset obtained as training and development 

data for the FERA 2015 challenge [9]. For evaluation, we 

compare our development set results with the results reported 

in the baseline paper [9], for a subset of common AUs (1, 2, 4, 

6, 12, 15 and 17), since the organizers have not yet released the 

full test dataset for the challenge. We obtain an average 

development set accuracy of 75.69%, and an average 2AFC 

score of 0.7518, which respectively outperform the baseline 

scores of 72% (Geometric features), and 63.2% (Appearance 

features) for the accuracy; and 0.357 (Geometric features) and 

0.427 (Appearance features) for the 2AFC score. 

Cross-dataset Evaluation-: Our hypothesis is that the CNN will 

learn features which are discriminative between 

presence/absence of AUs not only on the training dataset, but 

also on unseen datasets. To evaluate the generalization ability 

of our network we perform training and validation on DISFA 

and BP4D datasets, and test them on a different dataset. The 

results are presented in Table III. We observe that since the 

training dataset differs from the evaluation dataset, the accuracy 

and 2AFC scores are generally less than those obtained with 

same-dataset testing.  The network trained on DISFA 

generalizes well to BP4D, where a relative accuracy 

improvement of 1.54% is obtained over the BP4D-only 

baseline network with a slight decrease of 0.02 in the 2AFC 

score.  The performance obtained on the CK+ dataset (accuracy 

88.14% and 2AFC 0.78) is similar to that reported in [5] 

(accuracy 80.56% and 2AFC 0.80), which is also in a cross 

dataset setting (training on MMI database [32] and testing on 

CK+) showing that our approach is robust across datasets. 

When trained on BP4D and tested on CK+, the network does 

not generalize as well, obtaining an average accuracy of 77.7%, 

and a 2AFC score of 0.759. However, the testing results on 

DISFA are close to those obtained when trained entirely on it. 

Thus, we can conclude that our network performs well even 

when trained and tested across different datasets.  

Visualization of CNN features:  To obtain an insight into the 

joint representation which the CNN learns from the input 

images and its generalization ability on unseen data, we present 

scatter plots of the representation {𝒉𝒊} extracted from the last 

fully connected layer of the network. We reduce the 

dimensionality of {𝒉𝒊} using t-SNE [33] (t-Stochastic Neighbor 

Embedding). We train the CNN on the BP4D dataset, and 

extract {𝒉𝒊}, both for the BP4D development set and the DISFA 

test set for AUs 12 (Lip corner puller) and 15 (Lip corner 

depressor). The scatter plots are shown in Figure 2. Data points 

corresponding to presence of an AU are marked with red and 

absences are marked blue respectively. Figure 3   shows scatter 

plots corresponding to a network trained 

and {𝒉𝒊}  extracted for the DISFA development set and the 

BP4D test set. We observe that the representations are 

discriminative of the AU presence, including those from the test 

set, of which the network has no knowledge during training 

phase.     

  

TABLE III.   CROSS-DATASET   GENERALIZATION PERFORMANCE OF MULTI-LABEL CNN 

Action Unit 
Classification Performance 

BP4D to CK+ BP4D to DISFA          DISFA to CK+ DISFA to BP4D 
 Accuracy 2AFC score Accuracy 2AFC score Accuracy 2AFC score Accuracy 2AFC score 

1 86.05 0.791 83.81 0.66 85.21 0.739 75.91 0.676 

2 85.11 0.860 81.17 0.717 86.88 0.786 79.69 0.637 

4 79.94 0.730 83.26 0.740 75.58 0.669 70.95 0.678 

5 93.11 0.723 92.22 0.762 93.73 0.790 92.57 0.706 

6 61.87 0.723 70.33 0.870 85.64 0.729 69.78 0.818 

9 85.37 0.949 90.45 0.841 93.42 0.974 83.87 0.794 

12 55.42 0.889 62.36 0.873 91.07 0.887 63.63 0.838 

15 75.59 0.493 75.17 0.617 85.13 0.618 76.67 0.597 

17 63.08 0.636 68.85 0.585 88.14 0.803 66.92 0.634 

20 92.16 0.798 95.79 0.635 94.59 0.807 93.35 0.525 

Average 77.77 0.759 80.34 0.730 88.14 0.780 77.34 0.690 
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AU 12: (a) BP4D development             (b) DISFA testing set 

   

         
 

AU 15:  (a) BP4D development              (b) DISFA testing set 

 
Fig. 2. Scatter plots representing BP4D development set and DISFA 

testing set when the CNN is trained on BP4D and tested on DISFA. 

The learned representations are discriminative of AU 

presence/absence  
 

Visualization of correlations between AUs: In Figure 4, we 

present a heat map of pairwise correlations among the 12 AUs 

for the development partition of the DISFA dataset, constructed 

using a 75%-25% split. As described in Section III, we augment 

our label set with a 13th label to indicate neutral facial 

expressions, before performing training and validation of the 

network. Since label presence/absence is binary, we use the 

Phi-coefficient [34] as a measure of AU correlation. Figures 

4(a) and 4(b) respectively show the correlations measured from 

the ground truth labels, and the prediction labels generated by 

our approach. The heat-maps are very similar, showing that the 

CNN is able to learn a good approximation of the ground truth 

correlations.  For example, AUs 1 (Inner brow raiser) and 2 

(Outer brow raiser) are highly correlated in Fig. 4(b). Further, 

the 13th label (neutral) is negatively correlated with the other 

AUs, which is evident in Figure 4(b).  

VII. CONCLUSION AND FUTURE WORK 

In this paper, we propose a multi-label convolutional neural 
network based approach to the task of AU detection from facial 
images. Our approach is inherently “multi-task”, where a 
network learns a shared representation among different AUs, 
and each AU-specific classifier can utilize the learnt features for 
effective prediction. Our experiments indicate that 
convolutional neural networks are not only good at learning 
discriminative features for the same dataset, but that the learnt 
features are also robust when tested on different datasets. 
Further, the network also learns correlations among the AUs, 
thus obviating the need to design and train multiple networks for 
each AU. As future work, we plan to extend our approach to 
temporal modeling of AU occurrences in a multi-label setting, 
and regression of AU intensities from facial images. 
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AU 6: (a) DISFA development                  (b) BP4D testing set 

 

AU 12: (a) DISFA development              (b) BP4D testing set 

 

Fig. 3. Scatter plots representing DISFA development set and 

BP4D testing set when the CNN is trained on DISFA and tested 

on BP4D. 

      (a) Ground truth correlations           (b) Predicted correlations 

Fig 4. Pairwise correlations among AUs for ground truth and predicted 

labels (blue indicates -1 phi-index, red indicates +1). The similarity 

between (a) and (b) shows that the CNN learns correlations among AUs. 
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