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ABSTRACT 
The increasing prevalence of psychological distress disorders, 
such as depression and post-traumatic stress, necessitates a serious 
effort to create new tools and technologies to help with their 
diagnosis and treatment. In recent years, new computational 
approaches were proposed to objectively analyze patient non-
verbal behaviors over the duration of the entire interaction 
between the patient and the clinician. In this paper, we go beyond 
non-verbal behaviors and propose a tri-modal approach which 
integrates verbal behaviors with acoustic and visual behaviors to 
analyze psychological distress during the course of the dyadic 
semi-structured interviews. Our approach exploits the advantages 
of the dyadic nature of these interactions to contextualize the 
participant responses based on the affective components (intimacy 
and polarity levels) of the questions. We validate our approach 
using one of the largest corpus of semi-structured interviews for 
distress assessment which consists of 154 multimodal dyadic 
interactions. Our results show significant improvement on distress 
prediction performance when integrating verbal behaviors with 
acoustic and visual behaviors. In addition, our analysis shows that 
contextualizing the responses improves the prediction 
performance, most significantly with positive and intimate 
questions. 
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1. INTRODUCTION 
The prevalence of psychological distress disorders, of the likes of, 
depression and post-traumatic stress in our society demands a 
serious effort to create new tools and technologies to help with 
their diagnosis and cure.  This process typically involves a face-
to-face dyadic interaction between a clinician and the patient. 
Recent works in the field have proposed new computational 
approaches to objectively analyze patient nonverbal behaviors 
over the duration of the whole session [1, 2, 3]. These techniques 
have the potential to aid clinicians with their decision for 
diagnosis or treatment, by giving them a summary of the patient 
behaviors (i.e., distress indicators) which can be compared with 
those of the previous sessions of the same person or with a 
reference population. 

Recent approaches in this direction have mostly focused on 
acoustic, visual and paralinguistic cues for automatically 
identifying distress indicators [1, 2, 3], ignoring the verbal aspect 
of the patient responses. Moreover these analyses are performed 
in a holistic fashion by summarizing the observed cues over the 
whole interaction. In other words, the responses of the patient are 
analyzed independent of the context of the questions asked by the 
interviewers. This discounts the essential information about the 
affective nature of each stimuli (i.e., questions asked by the 
clinician/interviewer), which potentially influences the patient’s 
response. 

In this paper, we go beyond nonverbal behaviors and propose a 
tri-modal approach which integrates verbal behaviors with 
acoustic and visual modalities to analyze psychological distress 
indicators during dyadic interviews. Our approach takes 
advantages of the dyadic, semi-structured nature of these 
interactions to contextualize the participant responses based on the 
affective components of the questions. In other words, we explore 
the role of prior knowledge about the affective nature of the 
stimuli, an individual is subjected to, in predicting psychological 
distress. Specifically we address this challenge by categorizing the 
questions asked based on their intimacy and polarity levels. We 
conduct experiments on a large corpus of 154 semi-structured 
dyadic interview interactions between a virtual interviewer and a 
participant.  

In the following section, we discuss prior related work in the field 
of psychology and automatic computational approaches. In 
Section 3, we present our research hypotheses. Section 4 describes 
the dataset and the multimodal features, along with our 
multimodal fusion approach and our experimental methodology. 
We present the experimental results, along with the feature 
analysis in Section 5, and conclude the paper with a discussion of 
future work in Section 6. 
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2. RELATED WORK 
Several researchers in the field of psychology have explored the 
relationship between both verbal and non-verbal behavior in 
individuals with general psychological distress and depression. 
Ellgring has examined the relationship between psychological 
states and behavior, and its consequences for clinical diagnosis 
[4]. He investigates the role of non-verbal behavior in depression 
such as latency in response, motor retardation and lack of 
emotional variability.  Kirsch compared the facial affective 
behavior of patients suffering from post-traumatic stress disorder 
with those of healthy subjects, and observed that expressions of 
joy appear less often in traumatized patients [7]. Fairbanks 
reported averted eye-gaze, more fidgeting and self-grooming in 
depressed subjects [8].  Perez and Riggio claim that depressed 
patients frequently display flattened or negative affect, including 
less emotional expressivity, heightened anger and gaze aversion 
[24]. Hall et al. reports shortened speech and lengthened duration 
of pauses amongst depressed individuals, during verbal 
interactions [6].  
 
Previous studies have also focused on the automated assessment 
of psychological disorders. Cohn et al. detected depression by 
measuring facial actions using AAM (Active Appearance 
Modeling) and manual FACS (Facial Action Coding System) 
coding, and prosody using pitch extraction [5]. Stratou et al. 
explored the role of gender in assessing psychological conditions 
from recorded video interactions, based on nonverbal behaviors 
such as affect, expression and motor variability [9]. Valstar et al. 
suggested looking at both the acoustic and the visual modalities 
simultaneously [25]. DeVault et al. used paralinguistic cues to 
investigate the correlation between conversational features and 
psychological disorders [3]. They conducted their analysis using 
aggregate dialogue-level features like onset time, filled pauses and 
speaking rate. Yu et al. proposed a multimodal HCRF (Hidden 
Conditional Random Field) model to consider commonalities 
among adjacency pairs of questions to infer psychological states 
of participants in semi-structured interviews [2].  
 
To our knowledge, this work is the first to propose a context-
based computational analysis of psychological distress which 
integrates verbal behaviors with acoustic and visual. This analysis 
and integration is performed by taking into account the context of 
the interviewer questions, obtained by considering the varying 
degrees of intimacy and polarity of the questions asked. 

 
3. RESEARCH HYPOTHESES 
In this section we present the central research hypotheses that we 
seek to verify through our experiments. 

Verbal Behavior: As shown in the previous section, researchers 
have shown a relationship between para-linguistic cues and 
psychological distress. For example, research findings report 
paralinguistic cues such as reduced speech, slow speech, delay in 
delivery [3, 6]. Inspired by these results and the work of Rude et 
al who observed, the use of more valenced words amongst people 
with psychological distress [10], we propose the following 
hypothesis:    

Hypothesis 1a (H1a): Verbal behaviors can be used to predict 
general distress in individuals. 

Integrating verbal and nonverbal information has been shown to 
improve predictive performance in many social interaction 
settings. For example, research findings suggested that integrating 

descriptors of para-verbal behavior with those of non-verbal 
behavior improve predictability of depressed individuals [2]. This 
leads us to hypothesize:  

Hypothesis 1b (H1b): Integrating markers of verbal behavior with 
their nonverbal counterparts helps improve the prediction of 
general distress. 

Nature of Stimuli: In the field of psychology, a landmark 
revelation has been that depressive disorders are manifested by 
differences in emotional reactivity, such as positive attenuation 
and negative potentiation. [11, 12]. Thus the affective nature of 
the stimuli (positive or negative) the participant is subjected to 
might constitute vital information in terms of predicting 
psychological distress in humans. We thus propose the following 
hypothesis:      

Hypothesis 2 (H2): Taking into consideration the nature of the 
affective stimuli favorably influences the task of predicting 
general distress. 

 
 

4. EXPERIMENTS 
4.1 Dataset 
The dataset used in our experiments is an extension of the Virtual 
Human Distress Assessment Corpus introduced in [26]. It consists 
of 154 semi-structured interviews between a human participant 
and a virtual human, an animated human character.  Each 
interaction lasted about 10 minutes on an average. The virtual 
interviewer, Ellie is controlled in a Wizard of Oz (WoZ) scenario 
and not only asks questions to the participant, but also provides 
responses and back-channels, sometimes prompting the 
participant to expand on a previous answer. This setting requires a 
human operator sitting behind the wall and deciding on the next 
spoken utterance of Ellie. The questions asked by Ellie are 
initially designed to create a rapport with the participant, such as 
questions about Los Angeles. Subsequent questions are more 
personal in nature, such as “Who’s someone that has been a 
positive influence in your life?” Following this, Ellie switches to 
questions whose replies may be suggestive of psychological 
disorders, such as “How easy is it for you to get a good night’s 
sleep?”    

The participants for the study were recruited via Craigslist and 
consisted of 183 participants, with 99 males and 84 females. 
However, due to the errors in logging the data pertaining to 
certain participants had to be removed. Hence our experimental 
dataset consists of 154 participants.  

Distress Measure   Questionnaires are provided to the 
participants, and the PHQ-9 [16] and PCL-C [15] severity scores 
are computed by an expert coder based on the questionnaire 
responses. The severity scores for PHQ-9 gives a measure of 
depression while that of PCL-C gives a measure of PTSD. In our 
dataset, about 30% of the participants had a high PCL-C score, 
while 21% of the participants had high PHQ-9 scores. 

It has been observed that the PHQ-9 and PCLC-C scores exhibit 
significant positive correlation, due to high comorbidity between 
PTSD and depression [17]. Since we are interested in studying 
psychological distress in general and developing a decision 
support tool for healthcare providers, we compute the 
corresponding z-normalized scores and average them to obtain a 
measure of general psychological distress, which we refer to as 
Distress Measure (DM) score. This score is used for computing 
the ground-truth labels. The ground-truth labels are obtained by 
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using the median of this DM score as a threshold. Whichever 
subjects score above the median are considered as positive 
samples while the rest as negative. 

 

4.2   Question Context   
During the course of this semi-structured virtual human interview, 
the participant is asked a series of questions. They are obtained 
from a question-bank which was used in [27]. To properly 
quantify the context around each response of the participant, we 
propose to analyze two aspects of the interviewer questions: 
intimacy and polarity. We represent the intimacy level on a scale 
from 1 (not intimate) to 3 (strongly intimate). The polarity aspect 
of each question is judged on a Likert Scale defined between -2 
(strongly negative) up to +2 (strongly positive), where 0 
represents neutral. One big advantage of analyzing interactions 
with a virtual interviewer is that all questions are asked the same 
way and the list of questions is well-defined.  

The questions were rated by two expert coders for their polarity 
and intimacy. The ratings were averaged out to determine the 
intimacy and polarity levels of each question. The inter-coder 
agreement as measured by Krippendorff’s α was 0.86 [14]. This is 
indicative of a high degree of inter-coder agreement. Each 
question is either a main question or a follow-up. For the purposes 
of our experiment all follow-up questions were merged with the 
main ones. For example, follow-up questions such as “Can you 
tell me more?” are grouped with the previous question, using the 
same intimacy and polarity label, as noted above. 

We propose to categorize the questions in three major groups:  

 Intimate-Positive This group includes all questions 
with strong intimacy level (larger than or equal to 1.5) 
and a positive average polarity score (larger than or 
equal to 1.5). On an average during the course of each 
interaction, there were about 3 intimate-positive 
questions.  

 Intimate-Negative This group captures intimate 
questions (larger than or equal to 1.5) with negative 
polarity scores (less than or equal to -1.5). There were 
about 7 intimate-negative questions that were asked, 
during an interaction. 

 Non-intimate This group represents questions that are 
not polarized (polarity levels between -0.5 and 0.5) and 
have low intimacy levels (less than or equal to 0.5). 
During the course of an interaction, such questions 
numbered around 11 on an average. 

 

4.3 Multimodal Features  
We present in this sub-section the verbal, visual and acoustic 
features used in our experiments. 

Verbal features   The textual features have been extracted from 
transcripts of the participants’ conversations with the virtual 
human. The LIWC (Linguistic Inquiry and Word Count) is a text-
analysis program which takes in text as its input, and scans each 
word in it, finally calculating the normalized term-frequency of 
the words in each LIWC category [18]. The core of the program is 
the LIWC dictionary, where each LIWC category (80 in total) is 
defined based on the social and physiological meaning of words. 
Words are associated with each category, on the assumption that 
the categories themselves are linked to social, affective and 
cognitive processes. They include not only function words (such 
as pronouns, prepositions, articles, auxiliary verbs and 

conjunctions), but also emotion words, which are indicative of 
positive and negative sentiments. LIWC includes a hierarchical 
categorization of words such as: 

1. Social processes which includes concepts about social partners 
such as family, friends or, more generally, humans. 

2. Affective processes which qualify the emotional state such as 
anxiety, anger or sadness. 

3. Cognitive processes which characterize aspects related to 
thoughts such as insight, causation and inhibition. 

4. Perceptual processes pertaining to the basic senses such as 
seeing, hearing and feeling. 

5. Linguistic processes, which include pronouns like I, you, we 
and assent/negation words such as yes, OK, no. 

6. Personal concerns relating to issues such as achievements, 
activities done in leisure, domestic and financial matters. 

7. Biological processes which are described by words related to 
body, health, and sexuality. 

These LIWC features have been widely used in the cognitive 
analysis and study of affect from text and have been applied to 
different domains, such as prediction of the tie strength in social 
media [19], and detection of flirtation from speed dates [20].  

Visual Features   We use visual features obtained from the 
GAVAM Head Tracker [21], since it has been shown from 
previous studies [4] that motor variability could be a potential 
indicator of general distress. GAVAM measures the head rotation 
in three directions (the pitch, yaw and tilt), along with their means 
and standard deviations. Five GAVAM features were used in the 
experiments, corresponding to the mean and standard deviation of 
pitch and yaw, along with the standard deviation of total rotation 
in all directions. We also use the CERT (Computer Expression 
Recognition Toolbox) to measure the Action Units (AUs), which 
are suggestive of non-verbal expressions [22]. For example, AU 
12 corresponds to lip-corner stretching, which is indicative of 
smiles, and AU 4 corresponds to lowering of eyebrows, 
suggestive of frowns. CERT also measures the six basic 
prototypical emotions and expression neutrality such as Anger, 
Fear, Joy, Surprise, Sadness, Contempt, Disgust and expression 
neutrality, which indicates lack of emotions. We use a total of 15 
features from CERT, corresponding to six expression based 
features and nine AU-based features which have been shown to be 
promising for depression recognition [1].  

Acoustic Features    For the acoustic modality, we have used 14 
acoustic features which have shown promising results in previous 
studies on psychological disorder analysis. Specifically we use (1) 
features derived from the glottal source signal obtained by inverse 
amplitude filtering, such as Normalized Amplitude Quotient 
(NAQ), Quasi-open Quotient (QOQ) and OQ-NN, a parameter for 
estimating the open quotient using Mel-frequency cepstral 
features, and a neural network; (2) H1H2, which is the difference 
in amplitude (in the spectrum) between harmonics H1 and H2 
with low difference for tense voices and high difference for 
breathy voices; (3) VUV, which is an indicator of whether vocal 
fold vibration is present and is a measure of the deviation of that 
vibration (4) Peak slope based features, which identify glottal 
closure instances from glottal pulses with different closure 
properties; (5) spectral stationarity for a characterization of 
prosody range; (6) fundamental frequency for voiced regions of 
the speech signal; (7) Energy of the speech signal (8) Maxima 
Dispersion Quotient (MDQ) useful for discriminating breathy and  
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