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Abstract. Based on the phenomena of mutual influence between par-
ticipants of a face-to-face conversation, we propose a context-based pre-
diction approach for modeling visual backchannels. Our goal is to create
intelligent virtual listeners with the ability of providing backchannel feed-
backs, enabling natural and fluid interactions. In our proposed approach,
we first anticipate the speaker behaviors, and then use this anticipated
visual context to obtain more accurate listener backchannel moments.
We model the mutual influence between speaker and listener gestures
using a latent variable sequential model. We compared our approach
with state-of-the-art prediction models on a publicly available dataset
and showed importance of modeling the mutual influence between the
speaker and the listener.
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1 Introduction

During face-to-face communication, participants often mutually influence each
other through their verbal and nonverbal behaviors. For instance, a speaker will
decide to give more explanations or simply continue with the story based on
the feedbacks from the listener. Similarly, participants often mimic each others
gestures to convey empathy and rapport [1–3]. This phenomena, which we refer
as mutual influence in this paper, is essential for fluid human interactions; but
research is still needed to replicate this process with virtual humans.

A good example of human behaviors that involvesmutual influence is backchan-
nel feedbacks (i.e. the nods and paraverbal signals such as “uh-hu” and “mm-
hmm” that listeners produce as someone is speaking). Backchannel feedbacks have
received considerable attention due to their pervasiveness across languages and
conversational contexts. They play a significant role in determining the nature
of a social exchange by showing rapport and engagement [4]. When these signals
are positive, coordinated and reciprocated, they can lead to feelings of rapport
and promote beneficial outcomes in diverse areas such as negotiations and con-
flict resolution [5], psychotherapeutic effectiveness [6], improved test performance
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Fig. 1. An overview of our approach for predicting listener backchannels in the absence
of visual information. Our approach takes into account the context from the speaker
by first predicting the nonverbal behaviors of the speaker and uses these predictions
to improve the final listener backchannels.

in classrooms [7] and improved quality of child care [8]. By correctly predicting
backchannel feedback, we can improve the way that the machines communicate
with human. For instance, a virtual human that provides head nods at reasonable
points in the conversation can have a stronger sense of rapport.

One of the challenges in building intelligent virtual agents with such abilities
is absence of the visual information. In many real-world applications, we often
have only the speech and/or text to be spoken by the virtual human, without any
visual context. Another scenario where no visual context is available is phone-
to-phone conversations. If we want to create a virtual (i.e. customer service)
representative that is capable of providing backchannel feedbacks, the only source
of information is the interlocutor’s (customer’s) voice. As discussed above, a good
prediction model of backchannels should be able to take into account the mutual
influence between participants even in the absence of visual context. This can be
achieved by anticipating the nonverbal behaviors of the speaker, and using the
anticipated visual context to model the mutual influence between the speaker
and the listener.

In this paper, we present a context-based predictionmodel to predict backchan-
nels of a listener during dyadic conversations. An overview of our approach is given
in Figure 1. We assume an environment where the visual gestures of the speaker
are not available. Based on this assumption, we first predict the visual context (i.e.
nonverbal behaviors) of the speaker and the backchannels of the listener using only
the auditory observations (features) from the speaker.We model the mutual influ-
ence between the speaker and the listener by using a latent variablemodel based on
Latent Mixture of Discriminative Experts (LMDE) [9]. We evaluate our approach
using 45 storytelling dyadic interactions from the RAPPORT dataset [10]. In our
experiments, we compare our approach with previous approaches based on Con-
ditional Random Fields (CRF) [11], Latent-Dynamic CRFs [12], and CRF Mix-
ture of Experts (a.k.a Logarithmic Opinion Pools [13]), and a rule based random
predictor [14].

The paper is organized as follows. We first present the related works in Sec-
tion 2. Then we present our context-based prediction approach in Section 3.
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Experimental setup, and results are given in Section 4 and Section 5, respectively.
Finally, we conclude in Section 6.

2 Related Works

Although human can naturally display and interpret nonverbal signals in social
context, computers are not equipped with such abilities. Therefore, supporting
such fluid interactions has become an important topic in computer science re-
search [15]. Many different models have been proposed to recognize [16, 17], or
predict [14, 18, 10] certain nonverbal behaviors.

The application described in this paper uses audio cues from the speaker to pre-
dict the social behavior of the participant. This type of predictive models has been
mostly studied in the context of embodied conversational agents [19, 20]. Several
researchers have developed models to predict when backchannel should happen.
In general, these results are difficult to compare as they utilize different corpora
and present varying evaluation metrics. Ward and Tsukahara [14] propose a uni-
modal approach where backchannels are associated with a region of low pitch last-
ing 110ms during speech. Models were produced manually through an analysis of
English and Japanese conversational data. Later in 2003, Ward [21] studied both
the forms and functions of sounds like h-nmm, hh-aaaah, hn-hn, unkay, nyeah,
ummum, uuh and um-hmuh -hm in American English conversation.

Fujie et al. [22] use Hidden Markov Models to perform head nod recognition.
In their proposal, they combined head gesture detection with prosodic low-level
features from the same person to determine strongly positive, weak positive and
negative responses to yes/no type utterances. Maatman et al. [18] present a mul-
timodal approach where Ward and Tsukhara’s prosodic algorithm is combined
with a simple method of mimicking head nods. No formal evaluation of the pre-
dictive accuracy of the approach was provided but subsequent evaluations have
demonstrated that generated behaviors do improve subjective feelings of rap-
port [23] and speech fluency [4]. Morency et al. [10] showed that Conditional
Random Field models can be used to learn predictive features of backchannel
feedback. In their approach, multimodal features are simply concatenated in one
large feature vector for the CRF model. They show statistical improvement when
compared to the rule-based approach of Ward and Tsukahara [14].

The Semaine Project of EU-FP7 [24] focuses on building Sensitive Artificial
Listeners. Towards this effort, Gravano [25] focuses on backchannel-inviting cues
as part of as part of their study of turn-taking phenomena. They first analyze
individual acoustic, prosodic and textual backchannel-inviting cues; then, they
investigate how such cues combine together to form complex signals. In [26],
Neiber focuses on the communicative functions of vocal feedback like ”mhm”,
”okay” and ”yeah, thats right”. They categorize feedback as non-lexical, lexical
and phrase based feedback.

In this paper, we present an approach to predict the backchannels of a listener
using the anticipated visual context of the speaker. More specifically, we focus
on the visual feedbacks of the listener: head nods. We assume an environment,
in which the visual information for both the listener and the speaker is absent.
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3 Context-based Backchannel Prediction with Mutual
Influence

The goal of our approach is to predict listener backchannels in dyadic conver-
sations by using the mutual influence between the speaker and the listener.
We assume a situation where no visual context from neither the speaker nor
the listener is available. In other words, we have no access to speaker’s visual
information, but only the speech/text information from the speaker. In our ap-
proach, we explicitly model multiple dimensions of the speech information such
as prosody, lexicons, syntactic structure and part-of-speech tags. These different
dimensions contain complementary information, and our approach will model
the hidden dynamic between them.

In our context-based prediction approach, we first infer the speaker gestures,
and then exploit this visual context to improve the final listener backchannel pre-
dictions (see Figure 1). In order to model the mutual influence between the speaker
and the listener, we use a variant of the Latent Mixture of Discriminative Experts
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Fig. 2. Our approach for predicting speaker gestures in dyadic conversations. Using the
speaker audio features as input, we first learn a CRF model (expert) per each audio
channel and for both speaker gestures and listener backchannels. Then, we merge these
CRF experts using a latent variable model that is capable of learning the hidden
dynamic among the experts. This second step allows us to incorporate the mutual
influence between the speaker and the listener.
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(LMDE) [9] called mutual-LMDE. LMDE was originally proposed to integrate
data frommultiple modalities. One of the main advantages of this model is that it
can automatically discover the hidden structure among modalities and learn the
dynamic between them. We extend the LMDE model to also take into considera-
tion the mutual influence between speaker and listener.

Our mutual-LMDE model is based on a two step process (an overview is
shown in Figure 2): in the first step, we learn discriminative experts for speaker
gestures and listener backchannels. Speaker expert models are trained using
a Conditional Random Field (CRF) [11] on one of the four speech dimensions
(prosody, lexicons, syntactic structure and part-of-speech tags). These individual
experts make up for the visual context from the speaker. We learn experts for
listener backchannels similar to speaker gestures, but using the actual listener
backchannel feedback as our labels. In the second step, we merge the speaker
experts (visual context) with listener experts by using a latent variable model.
This process involves using the outputs of these expert models as an input to
a Latent Dynamic Conditional Random Field (LDCRF) [12] that is capable of
modeling the mutual influence between listener and speaker gestures.

The task of our LMDE model is to learn a mapping between a sequence
of multimodal observations x = {x1, x2, ..., xm} and a sequence of labels y =
{y1, y2, ..., ym}. Each yj is a class label for the jth frame of a video sequence and
is a member of a set Y of possible class labels, for example, Y = {backchannel,
no feedback}. Each frame observation xj is represented by a feature vector
∈ Rd, for example, the prosodic features at each sample. For each sequence,
we also assume a vector of “sub-structure” variables h = {h1, h2, ..., hm}. These
variables are not observed in the training examples and will therefore form a set
of hidden variables in the model.

Following Morency et al. [12], we define mutual-LMDE model as follows:

P (y | x, θ) =
∑

h:∀hj∈Hyj

P (h | x, θ). (1)

where θ are model parameters learned during training and P (h| x, θ) is defined
as follows:

P (h| x, θ) =
exp

(∑
p θp ·Tp(h)+∑
l θl · Sl(h,x) +

∑
s θs · Ss(h,x)

)

Z(x’, θ)
, (2)

Different from Ozkan et al. [9] and Morency et al. [12], we learn three sets
of θ parameters: (1) θp related to the transition between hidden states, (2) θl
related to listener expert outputs, and (3) θs related to speaker expert outputs.
θs and θl model the relationships between expert outputs and the hidden states
hj . Z is the partition function. Tp(h,x’) is the transition function between the
hidden states. Sl(h,x) is the listener state function and is defined as follows:

Sl(h,x) =
∑

j

ss(hj , [qj1qj2 ..qjα ..qj|e| ]) (3)
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Each qjα is the marginal probability of expert α at frame j, and equals to
Pα(yj = a|x, λα). Each expert conditional distribution is defined by Pα(y|x, λα)
using the usual conditional random field formulation:

Pα(y| x, λα) =
exp (

∑
k λα,k · Fα,k(y,x))

Zα(x, λα)
, (4)

where λα represent the model parameters of each expert α. Fα,k is either a
state function sk(yj ,x, j) or a transition function tk(yj−1, yj ,x, j). Each expert
α contains a different subset of state functions sk(y,x, j), defined in Section 4.3.

Speaker state function Ss(h,x) is defined similar to Sl(h,x). The main differ-
ence is that, we use listener backchannels as sequence labels, y, when learning
Pα(y| x, λα) for listener experts Sl(h,x), and use speaker gestures as sequence
labels y for speaker experts Ss(h,x).

In our framework, each speaker expert learns a different aspect of speech for
speaker gestures. Similarly, the listener experts allows us to obtain discriminative
characters of speech for listener backchannel feedbacks. By using a latent variable
model to combine these individual experts, our mutual-LMDE model is able to
learn both the mutual influence between the speaker and the listener, and the
hidden structure among the experts. More details about training and inference
of LMDE can be found in Ozkan et al. [9].

4 Experimental Setup

As mentioned in the previous section, we evaluate our mutual-LMDE on the
multimodal task of predicting listener nonverbal backchannel. In this section,
we first describe the dataset, the gesture and backchannel annotation technique
and multimodal speaker features. Then, we explain the baseline models used for
comparison in our tests, and the experimental setup.

4.1 Dataset

We are using the RAPPORT dataset from [4], which contains 45 dyadic interac-
tions between a speaker and a listener. Data is drawn from a study of face-to-face
narrative discourse (“quasi-monologic” storytelling). In this dataset, participants
in groups of two were told they were participating in a study to evaluate a com-
municative technology. Subjects were randomly assigned the role of speaker and
listener. The speaker viewed a short segment of a video clip taken from the Edge
Training Systems, Inc. Sexual Harassment Awareness video. After the speaker
finished viewing the video, the listener was led back into the computer room,
where the speaker was instructed to retell the stories portrayed in the clips to
the listener. The listener was asked to not talk during the story retelling. Elicited
stories were approximately two minutes in length on average. Participants sat
approximately 8 feet apart. All video sequences were manually transcribed and
manually annotated to determine the ground truth backchannels. The next sec-
tion describes our annotation procedure.
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4.2 Gesture and Backchannel Annotations

In our experiments, we focus on visual backchannels of a listener: head nods.
Similarly, we use speaker head nods as speaker nonverbal behaviors. A head
nod gesture starts when the person starts moving his/her head vertically. The
head nod gesture ends when the person stops moving or when a new head nod is
started. A new head nod starts if the amplitude of the current head cycle is higher
than the previous head cycle. Some listeners’ responses may be longer than others
although they all correspond to one single respond. In our data, annotators found
a total of 666 head nods. The duration of these nods varied from 0.16 seconds
to 7.73 seconds. Mean and standard deviation of backchannel durations are 1.6
and 1.2 respectively. The minimum number of head nods given by one listener
during one interaction is 1, the maximum is 47, mean and standard deviations
are 14.8 and 10.9 respectively.

Following Ward and Tsukahara’s [14] original work on backchannel prediction,
we train our models to predict only the start time of the backchannel start
cue (i.e. head nod). Following again Ward and Tsukahara [14], we define the
backchannel duration as a window of 1.0 seconds centered around the start time
of the backchannel. A backchannel cue will be correctly predicted if at least one
prediction of our LMDE model happens during this 1.0 seconds duration. All
models tested in this paper use this same testing backchannel duration of 1.0
seconds.

4.3 Multimodal Features and Experts

This section describes the different multimodal audio features used to create our
four experts.

Prosody. Prosody refers to the rhythm, pitch and intonation of speech. Several
studies have demonstrated that listener feedback is correlated with a speaker’s
prosody [27, 14, 28]. For example, Ward and Tsukahara [14] show that short
listener backchannels (listener utterances like “ok” or “uh-huh” given during a
speaker’s utterance) are associated with a lowering of pitch over some interval.
Listener feedback often follows speaker pauses or filled pauses such as “um”
(see [28]). Using openSMILE [29] toolbox, we extract the following prosodic fea-
tures, including standard linguistic annotations and the prosodic features sug-
gested by Ward and Tsukhara:

– downslopes in pitch continuing for at least 40ms
– regions of pitch lower than the 26th percentile continuing for at least 110ms

(i.e., lowness)
– drop or rise in energy of speech (i.e., energy edge)
– fast drop or rise in energy of speech (i.e., energy fast edge)
– vowel volume (i.e., vowels are usually spoken softer)
– pause in speech (i.e., no speech)
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Lexical. Some studies have suggested an association between lexical features
and listener feedback [28]. Using the transcriptions, we included all individual
words (i.e., unigrams) spoken by the speaker during the interactions.

Part-of-Speech Tags. In [28], combination of pause duration and a statistical
part-of-speech language model is shown to achieve the best performance for
placing backchannels. Following this work, we use a CRF part-of-speech (POS)
tagger to automatically assign a part of speech label to each word. We also
include these part-of-speech tags (e.g. noun, verb, etc.) in our experiments.

Syntactic Structure. Finally, we attempt to capture syntactic information
that may provide relevant cues by extracting three types of features from a
syntactic dependency structure corresponding to the utterance. The syntactic
structure is produced automatically using a data-driven left-to-right shift-reduce
dependency parser [30], trained POS on dependency trees extracted from the
Switchboard section of the Penn Treebank [31], converted to dependency trees
using the Penn2Malt tool1. The three syntactic features are:

– Grammatical function for each word (e.g. subject, object, etc.), taken directly
from the dependency labels produced by the parser

– Part-of-speech of the syntactic head of each word, taken from the dependency
links produced by the parser

– Distance and direction from each word to its syntactic head, computed from
the dependency links produced by the parser

Although our current method for extracting these features requires that the
entire utterance be available for processing, this provides us with a first step
towards integrating information about syntactic structure in multimodal predic-
tion models. Many of these features could in principle be computed incrementally
with only a slight degradation in accuracy, with the exception of features that
require dependency links where a word’s syntactic head is to the right of the
word itself. We leave an investigation that examines only syntactic features that
can be produced incrementally in real time as future work.

4.4 Baseline Models

Individual Experts. Our first baseline model consists of a set of CRF chain
models, each trained with different set of multimodal features (as described in
the previous section). In other words, only visual, prosodic, lexical or syntactic
features are used to train a single CRF expert. (See Figure 3a).

Multimodal Classifiers. Our second baseline consists of two models: CRF
and LDCRF [12]. To train these models, we concatenate all multimodal features
(lexical, syntactic and prosodic) in one input vector. Graphical representation
of these baseline models are given in Figure 3-(a) and Figure 3-(b).
1 http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html

http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html
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Fig. 3. Baseline Models: a) Conditional Random Fields (CRF), b) Latent Dynamic
Conditional Random Fields(LDCRF), c) CRF Mixture of Experts (no latent variable)

LMDE. To show the importance of visual context from the speaker, we train
an LMDE model without using any of the speaker experts. In other words, our
baseline LMDE model is trained to directly predict listener backchannels from
the speaker audio features.

Pause-random Classifier. Random backchannel generator randomly gener-
ates backchannels whenever some pre-defined conditions in the speech is pur-
veyed. These conditions include pauses that come after at least 700 milliseconds
of speech and absence of backchannel feedback within the preceeding 800 mil-
liseconds. This random classifier has also been used by Ward and Tsukahara [14]
for comparison.

CRF Mixture of Experts. To show the importance of latent variable in our
context-based prediction model, we trained a CRF-based mixture of discrimina-
tive experts. A graphical representation of a CRF Mixture of experts is given
in Figure 3. This model is similar to the Logarithmic Opinion Pool (LOP) CRF
suggested by Smith et al. [13], in the sense that they both factor the CRF distri-
bution into a weighted product of individual expert CRF distributions. The main
difference between LOP and CRF Mixture of Experts model is in the definition
of optimization functions. Training of CRF Mixture of Experts is performed in
two steps: Expert models are learned in the first step, and the second level CRF
model parameters are learned in the second step.

LMDE with Speaker Nods. Our final set of baseline models include an
LMDE model that directly uses the visual context from the speaker (speaker
nods). In this baseline model, we first train only the listener expert models as
in the first step of our proposed approach. Then, in the second step, we use
the annotated (actual) speaker gestures together with the listener experts as
input to the latent variable model. So, the main difference of this baseline model
with our approach is that our approach first anticipates the speaker nonverbal
behaviors through CRF experts instead of directly using them.

4.5 Methodology

We performed held-out testing by randomly selecting a subset of 11 interactions
(out of 45) for the test set. The training set contains the remaining 34 dyadic
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interactions. All models in this paper were evaluated with the same training and
test sets. Validation of all model parameters (regularization term and number
of hidden states) was performed using a 3-fold cross-validation strategy on the
training set. The regularization term was validated with values 10k, k = −1..3.
Two different number of hidden states were tested for the LDCRF models: 3,
and 4 (note that LDCRF with 1 hidden state is equivalent to Mixture of CRF
Experts model).

The performance is measured by using the conventional metrics: precision,
recall, and F-measure. Precision is the probability that predicted backchannels
correspond to actual listener behavior. Recall is the probability that a backchan-
nel produced by a listener in our test set was predicted by the model. We use
the same weight for both precision and recall, so-called F1, which is the weighted
harmonic mean of precision and recall. F1 scores for each sequence is calculated
first, then the final F1 result is computed by averaging these sequence scores.

Before reviewing the prediction results, is it important to remember that
backchannel feedback is an optional phenomena, where the actual listener may
or may not decide on giving feedback [14]. Therefore, results from prediction
tasks are expected to have lower accuracies as opposed to recognition tasks
where labels are directly observed (e.g., part-of-speech tagging).

During testing, we find all the ”peaks” (i.e., local maxima) from marginal
probabilities P (yj = a| x, θ). For the f1-score, the prediction model needs to
decide on a specific threshold (i.e., amount of backchannel) for the marginal
probabilities for all users. The value of this threshold is automatically set during
validation. Since we are predicting the start time of a backchannel, an actual
listener backchannel is correctly predicted if at least one model prediction hap-
pen within the 1 second interval window around the start time of the listener
backchannel.

The training of all CRFs and LDCRFs were done using the hCRF library2.
The LMDE model was implemented in Matlab based on the hCRF library. The
input observations were computed at 30 frames per second. Given the continuous
labeling nature of our model, prediction outputs were also computed at 30Hz.

5 Results

In this section we present the results of our empirical evaluation. We designed
our experiments to test different characteristics of our mutual-LMDE approach:
(1) integration of multiple sources of information, and (2) mutual influence.

Performances of individual CRF experts for predicting listener backchannels
and speaker gestures are presented in Table 1. Our approach combines all these
experts to model the mutual influence between the speaker and the listener. This
integration of multiple resources improve the prediction accuracy for listener
backchannels. Therefore, we get an f-1 score of 0.32 with our mutual-LMDE
model.

2 http://sourceforge.net/projects/hrcf/

http://sourceforge.net/projects/hrcf/
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Table 1. Test performances of the individual expert models for listener backchannel
and speaker gesture (head nod) predictions

Listener Speaker
Expert f1 Precision Recall f1 Precision Recall
Prosodic 0.1913 0.1060 0.9803 0.2789 0.1669 0.8478
Lexical 0.2073 0.1377 0.4198 0.2959 0.2068 0.5203
POS 0.2346 0.1446 0.6220 0.3274 0.2182 0.6556
Syntactic 0.2045 0.1287 0.4956 0.3175 0.2330 0.4983
mutual-LMDE 0.3212 0.2633 0.4117 0.3313 0.2456 0.5087

Table 2. Comparison of different models with our approach

Model f1 Precision Recall
Early CRF 0.2173 0.1423 0.4591
Early LDCRF 0.2115 0.1231 0.7495
LMDE 0.2764 0.2055 0.4219
Pause-Random 0.1456 0.1322 0.2031
CRF Mixture 0.1963 0.1718 0.2288
LMDE+Speaker Nods 0.2614 0.2071 0.3541
mutual-LMDE 0.3212 0.2633 0.4117

In our second set of experiments, we evaluate the importance of modeling
mutual influence. Table 2 summarizes our results. The prediction models in the
top three rows of the table do not take into account the mutual influence between
the speaker and the listener. These models are trained on the speaker audio
features to directly infer the listener backchannels. Among these models, LMDE
gives the best f-1 score, which proves the importance of late fusion of multiple
sources of information (different speech channels). However, our mutual-LMDE
model outperform all these three models, which indicates the importance of using
mutual influence between the interlocutors.

The models listed in the last three rows of Table 2, model the mutual influence.
CRF Mixture model does not perform as good as other LMDE models. The main
reason for this decrease in performance is that the LMDE model uses a latent
variable to capture the dynamic among different sources of information, whereas
the CRF Mixture approach directly models these information. Although the last
LMDE approach use the speaker nonverbal behavior information directly in the
second step of LMDE, it does not perform as good as our mutual-LMDE model,
in which we first infer these speaker behaviors instead of directly using them.
We hypothese that, by inferring the speaker backchannels, we are able to model
a better average speaker feedback behavior and remove the variations in the
actual speaker backchannels.

Our framework addresses the problem of listener backchannel prediction by
modeling the mutual influence. A related issue is modeling the recursive in-
fluence between the listener and the speaker. For instance, backchannels of a
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listener might trigger more visual gestures from the speaker. Although we do
not explicitly model this recursive influence in our current study, the proposed
framework can be extended to address this issue as well. For instance, we can use
the listener observations (features) in the learning process for speaker experts
to model how listener behaviors affect speaker behaviors. The study of these
recursive models is part of our future work.

6 Conclusions

In this paper, we proposed a context-based approach for predicting the backchan-
nels of a listener in a dyadic conversation. To model the mutual influence between
the speaker and the listener, we used a variant of Latent Mixture of Discrimina-
tive Experts model. Our mutual-LMDE approach consists of two steps: we first
learn expert models to predict speaker gestures (head nods), and the listener
backchannel feedbacks. Then, we use visual context (predicted speaker gestures)
from the speaker to improve the final listener backchannels.

We evaluated our approach on 45 dyadic interactions from the RAPPORT
dataset. Our experiments have shown improvement over all previous approaches.
The results suggest two main conclusion: (1) By modeling the mutual influ-
ence between the participants of a dyadic interaction, we can better model the
backchannel feedbacks of the listener. (2) In case of no available visual speaker in-
formation, predicted speaker visual context helps us to learn an average speaker
behavior that is more effectual and less noisy than actual speaker behaviors.
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