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Abstract
The robust and efficient extraction of features related to the
glottal excitation source has become increasingly important for
speech technology. The glottal open quotient (OQ) is one rel-
evant measurement which is known to significantly vary with
changes in voice quality on a breathy to tense continuum. The
extraction of OQ, however, is hampered in the time-domain by
the difficulty in consistently locating the point of glottal open-
ing as well the computational load of its measurement. De-
termining OQ correlates in the frequency domain is an attrac-
tive alternative, however the lower frequencies of glottal source
spectrum are also affected by other aspects of the glottal pulse
shape thereby precluding closed-form solutions and straightfor-
ward mappings. The present study provides a comparison of
three OQ estimation methods and shows a new method based
on spectral features and artificial neural networks to outperform
existing methods in terms of discrimination of voice quality,
lower error values on a large volume of speech data and dra-
matically reduced computation time.
Index Terms: Open Quotient, Glottal source, Voice quality, Ar-
tificial Neural Networks

1. Introduction
Speech technology applications are increasingly exploiting fea-
tures relating to the glottal excitation source. This has led to
novel and promising developments in several areas. For in-
stance, recent developments in speech synthesis [1, 2] and voice
modification [3] involve parametric modelling of the glottal
source which can allow effective modification of voice qual-
ity. Other approaches to developing speech synthesis systems,
which can allow variation in voicing style, have involved the
use of a range of voice quality features for the partitioning and
clustering of corpora of expressive speech [4]. Voice quality
features related to breathiness and tenseness have found further
use in other speech processing applications, e.g., speech recog-
nition [5], speaker identification [6] and emotion classification
[7, 8].

One particularly salient measurement of the glottal pulse,
thought to be useful for discriminating breathy to tense voice [9,
10], is the glottal open quotient (OQ, [11]). OQ can be defined
as the duration of the glottal open phase normalised to the local
glottal period. Besides being useful for disambiguating voice
qualities, OQ can also be used in combination with detected
glottal closure instants (GCIs, [12]) to locate the glottal opening
instant (GOI). This in turn can be used to optimise closed-phase
glottal inverse filtering.

Despite the potential usefulness of this parameter, its mea-
surement suffers from a lack of robustness due to the diffi-

culty in consistently locating the point of glottal opening [13].
One common approach is to fit a model to the estimated glottal
source signal in order to determine OQ. However, the standard
error criterion minimised in the model fitting does not ensure
consistency in marking the point of glottal opening. This per-
haps explains why OQ derived from a Liljencrants-Fant (LF,
[14]) glottal model fit in [15] was less effective at discriminat-
ing voice quality than parameters derived from direct measures.
A further drawback of this approach is that it usually has a high
computational load. Others have attempted to find robust cor-
relates of OQ. The quasi-open quotient (QOQ, [16]) is a fre-
quently used correlate of OQ which involves derivation of the
quasi-open phase based on amplitude measures of the glottal
pulse. These time domain approaches, however, can be seri-
ously impaired if there is negative signal polarity or phase dis-
tortion in the signal which can often occur in less than ideal
recording conditions.

Another approach is to derive a correlate of OQ from fre-
quency domain measurements. An often used parameter is the
difference in amplitude between the first two harmonics (H1-
H2) measured in the narrowband spectrum of the inverse fil-
tered, or formant corrected, speech signal [17]. Although this
has been utilised as a reasonably effective correlate of OQ, the
lower frequencies of the glottal source spectrum are known to
also be significantly affected by the skewness of the glottal pulse
[18]. This has a confounding effect on the H1-H2 measurement,
in terms of it being an OQ correlate. This issue has meant that
there is as of yet no effective closed-form solution for measuring
OQ in the frequency domain, nor a method for straightforward
mapping between frequency and time domain.

To address this, the current study looks to assess two ex-
isting methods for estimating OQ as well as a new method in-
volving the use of spectral features as input to artificial neu-
ral networks (ANNs) in order learn the mapping from spectral
measurements to the time domain OQ values. The three meth-
ods are assessed in terms of error rates on a large database of
speech, the ability to discriminate voice quality and in terms of
computational load.

2. OQ estimation techniques
2.1. LF model fitting - Strik-LF

The Strik-LF model fitting method operates on the glottal
source signal estimated, in this case, by Iterative Adaptive In-
verse Filtering (IAIF, [26]). The first step involves finding an
initial set of LF model parameters which are then refined during
an optimisation procedure. In order to avoid the negative effect
of high-frequency components on the fitting, a low-pass filter-
ing operation is first applied. This is done by convolving the



voice source signal with an 11-point Blackman window, which
has the characteristic of having a ripple-free impulse response
[22]. The model fitting starts from a given glottal closure in-
stant (GCI), as detected using the SEDREAMS algorithm, (see
[27]). The time point of the main excitation, te, is obtained by
searching nearby the GCI location for the maximum negative
amplitude. This amplitude is chosen as the EE value of the
model. Then a search is done for the first zero-crossing prior
to te. This point is assigned as tp. The point of glottal open-
ing, to, is obtained by continuing the ‘leftward’ search until the
pulse amplitude descends to below a certain threshold. We set
this threshold as 0.1 times the maximum positive amplitude of
the present estimated voice source pulse. To obtain an initial
ta value, [28] suggest using an FFT based approach. However,
our experience of using this approach is that it frequently gives
unsuitable ta values. Instead we fix the initialRa value of 0.02,
and ta is calculated from this. A similar approach is used in the
SKY voice source analysis software [29]. OQ can be derived
from a fitted LF model by normalising the duration from to to
te, to the local glottal period.

2.2. YAGA

The Yet Another GCI/GOI Algorithm (YAGA [30]) uses a va-
riety of methods including: wavelet analysis, the group delay
function and N-best dynamic programming. GCI candidates
are detected in YAGA by first estimating the glottal source with
IAIF. The multi-scale product of the stationary wavelet trans-
form (SWT) is used to highlight discontinuities in the glottal
source, by using information across the wavelet scales. These
discontinuities are detected using the group-delay function, and
GCI candidates are measured as negative-going zero-crossings.
False alarms are then removed using a similar N-best dynamic
programming approach as in DYPSA [12]. YAGA uses similar
cost elements to those used in DYPSA, with modification of the
inter-pulse similarity cost and a further cost for discriminating
GCIs and GOIs. OQ is then derived with GCI(n)−GOI(n)

GCI(n)−GCI(n-1) ,

where n is the index of the nth glottal pulse.

2.3. ANN-OQ

In the new method presented here (named ANN-OQ), rather
than focus on a limited part of the spectrum (e.g., the first
two harmonics), we obtain a rich spectral description and use
this as input to ANNs. Furthermore, we avoid estimation of
GCIs, f0 and harmonics which may negatively impact on the
robustness of the method, particularly for analysis of speech
recorded in less than ideal conditions. For this we extract 12
Mel-frequency cepstral coefficients (MFCCs) measured on 32
ms Hanning windowed with a 10 ms shift. Note that the first
MFCC related to signal energy is omitted. ∆ and ∆∆ coeffi-
cients are also included, resulting in a 36-dimensional feature
vector. It is hypothesised that this richer spectral description
may help disambiguate OQ from the confounding effect of the
skewness of the glottal pulse.

We apply an artificial neural network (ANN) approach in
order to approximate the OQ values from the MFCC features.
In general we utilise an ANN to learn a mapping f from the
input feature space I (typically Rn, i.e. the extracted MFCC
features) to the target space T (in this case R, i.e. the estimated
OQ value): f(x) : x ∈ I → y ∈ T, where x denotes the input
vector and y the output of the approximator f .

We chose the well known multi-layer perceptron (MLP) as
the network type of choice, as it fulfills the universal approx-

imator theorem [19] and is computationally inexpensive once
the network parameters are trained. The theorem states that the
MLP is capable of approximating any continuous function on a
compact interval of Rn (which is provided as OQ ∈ [0, 1]) with
a small error.

Specifically, the network was set-up as a two layer MLP
with one hidden layer containing 100 neurons, all fully con-
nected to the input and the output layer. The hidden layer neu-
rons use tanh as a transfer-function and the output neuron a lin-
ear transfer-function, as this is optimal for function approxima-
tion. The training was conducted using a standard error back-
propagation algorithm [20].

3. Experimental setup
3.1. Speech data

Three speech databases were used as part of the present study.
The selection of speech data was restricted to databases where
there were simultaneous electro-glottographic (EGG) record-
ings, as this was required for deriving objective reference val-
ues.

The first was a set of Finnish vowels, including recordings
of 6 female and 5 male speakers (used in a previous study: [15]).
The speakers were originally asked to produce eight Finnish
vowels /A e i o u y æ ø/ using breathy, neutral and pressed
phonation types. Participants were trained with producing the
voice qualities before recording. While conducting the record-
ing, speakers were asked to repeat the utterance with stronger
emphasis on the voice quality when it was necessary. Audio
was recorded using high quality recording equipment (a uni-
directional Sennheiser electret microphone with a preamp, LD
MPA10e Dual Channel Microphone Preamplifier). Each utter-
ance was repeated three times resulting in 792 speech segments.
However, for 4 of the speakers the EGG signals were deemed
unsuitable for obtaining reliable reference values. This reduced
the database to 7 speakers (3 male, 4 female), with 504 utter-
ances in total. We call this the Voice Quality database.

Also included in the study were all speech data from the
ARCTIC database [21] which had EGG signals available. This
totalled 5 speakers: two American male (BDL; 1132 utterances,
KED; 450 utterances), an American female (SLT; 1131 utter-
ances), a Canadian male (JMK; 1114 utterances) and a UK male
(RAB; 1946 utterances).

The last database used in the present study was the
APLAWD dataset (see [12]). This contains speech data from 5
males and 5 females producing 10 repetitions of 5 phonetically
balanced sentences. Note that this database was solely used
for training the ANN-OQ method. Although the APLAWD
database has less volume of data than ARCTIC, the fact that
is balanced for gender, that the speakers display a fairly wide
variety of inherent voice quality (and, hence, of OQ) and that
it has reasonable phonetic coverage makes it a more suitable
training set for the ANN-OQ method.

3.2. Reference values

Obtaining objective reference values for quantitatively evaluat-
ing glottal source analysis is extremely difficult, and indeed the
absence of objective references has hampered developments in
this field. Various evaluation methods have been used in pre-
vious studies each with their own shortcomings. Analysis can
be carried out on synthetic speech signals with known reference
parameter values (see e.g., [22, 23]). However these signals
may lack the details that often cause trouble for voice source



parameterisation (e.g., the presence of aspiration noise). An-
other approach is to evaluate parameterisation on the basis of
the ability of extracted parameters to differentiate voice quality
(e.g., [15, 23, 24]), however this does not directly evaluate the
parameterisation.
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Figure 1: Differentiated glottal source signal (top) estimated by
IAIF and the derivative EGG signal (bottom) both shown with
GCIs (red) and GOIs (green) as estimated by SIGMA.

We derive OQ reference values from the simultaneous EGG
signals available with the data. This approach also has its draw-
backs, in particular the uncertainty when mapping from the
physiological to the acoustic domain as well as the fact that
the discontinuities relating to glottal opening can be often less
clearly identified than those corresponding to the GCI. Never-
theless, this approach was deemed necessary in order to have
objective target values from large amounts of data. Glottal clo-
sure instants (GCIs) and glottal opening instants (GOIs) were
derived from the EGG signal using the SIGMA method [25], see
Figure 1. This method involves applying a stationary wavelet
transform and subsequent use of the group delay function with
post-processing using Gaussian mixture modelling. OQ is then
calculated in the same manner as for YAGA (see Section 2.2).
Although there can occasionally be inaccuracies in the GOI es-
timation using SIGMA, this was deemed to be the most suitable
approach for deriving reference OQ values. Note that the deci-
sion on the presence of voicing was also determined from EGG
and this was used to avoid unvoiced OQ values in all analysis
methods.

3.3. Experiments

Three experiments are carried in order to assess the perfor-
mance of the OQ estimation techniques. The first experiment
is carried out on the Voice Quality database where the data dis-
plays wide variation in OQ. The experiment examines the size
of the error on OQ for the three methods as well as the ability to
discriminate breathy, modal and tense voice. Note that for this
experiment the ANN-OQ method is trained using a leave-one-
speaker-out approach, where OQ estimates for given speaker
are obtained using the method trained on all other speakers
in the Voice Quality database, as well as the entire APLAWD
database. For the second experiment, OQ values are derived us-
ing all the methods for the ARCTIC database. This experiment
examines the performance of the three OQ estimation methods
on a large phonetically balanced set of speech data. The ANN-

OQ method for this testing is trained on all of the Voice Quality
and APLAWD data. For the final experiment, the computation
speed of the three methods is compared as for certain applica-
tions extremely fast glottal parameterisation may be required.
For Strik-LF, we compute the runtime just for the algorithm it-
self and not the GCI detection and inverse filtering which are
required prerequisites. We reduce the maximum number of it-
erations for the optimisation algorithms to 5. Although the anal-
ysis is carried out within the Matlab environment, we use com-
piled C-code for the LF model function which is known to have
a high computational complexity.

4. Results
4.1. Experiment 1: Voice quality database

The results for the first experiment are illustrated in Figure 2,
where the absolute error between the estimated OQ values and
the reference values are plotted as a function of voice quality
for the three approaches. Note that for ANN-OQ, values are
derived on a speaker independent basis (i.e. OQ values for the
held out speaker). It can be observed that the error values are
comparatively low for the ANN-OQ method across the three
voice qualities. For the YAGA method the error scores increase
from breathy to modal and from modal to tense. We examined
this and found that the YAGA method tends to consistently un-
derestimate the duration of the glottal closed phase. As a result
the error is observed to be highest for the voice quality with the
longest glottal closed phase, i.e. tense voice.
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Figure 2: Absolute error on OQ values for the three approaches,
plotted as a function of voice quality label.

These findings are supported by the evidence shown in Fig-
ure 3. Unsurprisingly, the OQ values derived from the EGG
signal, using the SIGMA method, provide the best discrimina-
tion of the voice qualities. The ANN-OQ closely approximates
this, though with less effective discrimination of breathy and
modal voice. Although OQ values from the Strik-LF method
do indeed vary with voice quality, they display wide distribu-
tions and considerably higher OQ values than the reference for
breathy and modal voice. This is due to inconsistency of mark-
ing the point of glottal opening combined with, again, a frequent
underestimation of the duration of the glottal closed phase, par-
ticularly for modal voice. The level of discrimination seen here
corroborates previous analysis using the same data and param-
eterisation method [15]. The YAGA method is not observed to
vary with changes in voice quality.

4.2. Experiment 2: Large phonetically balanced database

For the second experiment we investigate the performance of
the three methods on a different corpus recorded under differ-
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Figure 3: Observed OQ values for different voice qualities for
the reference method (EGG), the novel approach (ANN-OQ),
and the standard approaches Strik-LF and YAGA.

ent conditions, and containing several speakers and a wide pho-
netic coverage. Again we derive OQ values using the ANN-OQ,
Strik-LF, and YAGA methods, and compare the absolute error
to the reference OQ values for the ARCTIC dataset. The results
for this test are summarised in Table 1 and Figure 4. We ob-
serve, that the new method ANN-OQ outperforms YAGA and
Strik-LF for all the five speakers. The mean improvement of
the distance to the reference OQ values over the YAGA method
lies between -0.22 (σ = 0.13) for speaker RAB and -0.06
(σ = 0.11) for speaker SLT. The mean improvement of the
distance to the reference values over the Strik-LF model lies be-
tween -0.19 (σ = 0.16) for speaker JMK and -0.02 (σ = 0.16)
for speaker RAB. As there are a vast amount of OQ observations
we only report the η2 effect sizes for the conducted ANOVA
tests in Table 1. According to [31], we approach the threshold
for strong effects (η2 > 0.4) for several speakers in the ARC-
TIC dataset (note, that all results were statistically significant).
It is interesting to note that the ANN-OQ approach strongly
outperforms one of the approaches for all speakers except for
speaker BDL, where no strong improvement could be observed.
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Figure 4: Distributions of absolute error on OQ for the three
approaches and separated by speaker in the ARCTIC database.

Table 1: Mean absolute differences between errors for the three
methods as computed against the reference OQ values. Neg-
ative µ values indicate that the ANN-OQ method outperforms
the comparison method. The effect sizes η2 are computed as
the sum of squares within the compared groups divided by the
sum of squares of the total set.

ANN-OQ vs. YAGA ANN-OQ vs. Strik-LF
Speaker µ(σ) η2 µ(σ) η2

BDL -0.13 (0.18) 0.04 -0.07 (0.21) 0.01
JMK -0.07 (0.11) 0.10 -0.19 (0.16) 0.38
KED -0.16 (0.14) 0.38 -0.05 (0.17) 0.03
RAB -0.22 (0.13) 0.31 -0.02 (0.16) 0.00
SLT -0.06 (0.11) 0.06 -0.15 (0.15) 0.23

4.3. Experiment 3: Computational load

For the final experiment, we compare the runtime performance
of the three OQ estimation methods. We compute the OQ val-
ues for all three approaches on the speakers BDL (male) and
SLT (female) on an Intel Core i7 (3.30 GHz) machine with 12
cores and 16 GB memory running a 64bit version of Windows
7 and Matlab R2011b. We compare the relative runtime in %
of realtime. As expected, ANN-OQ clearly outperforms YAGA
and Strik-LF with an average of 0.41 % for BDL and 0.42 % for
SLT. The runtime of YAGA is about 30 times higher with 15.17
% for BDL and 15.30 % for SLT. Strik-LF is computationally,
the most intensive approach with a runtime of about 2 times re-
altime, i.e. 178.64 % for BDL and 226.45 % for SLT. It is seen
that the performance of ANN-OQ and YAGA remain constant
over different speakers, whereas the performance of Strik-LF
is dependent on the speaker’s f0 (mean f0: around 115 Hz for
BDL; around 170 Hz for SLT).

5. Discussion and conclusion
In the present study, we assess the performance of three meth-
ods for estimating glottal open quotient (OQ), including a
new method based on MFCCs and artificial neural networks
(ANNs). Results show that for the new method (ANN-OQ), OQ
estimates are closest to the reference OQ calculated from the
electro-glottographic (EGG) signal on a vowel database with
wide voice quality variation as well as on a large database of
phonetically balanced speech. Additionally, the ANN-OQ ap-
proach is computationally inexpensive and clearly outperforms
the standard approaches in terms of computational load. One
further benefit is that the ANN-OQ method does not rely on
GCI, f0 or harmonic measurement, or glottal inverse filter-
ing. This may contribute significantly to its robustness. For
future work we intend to assess effect on performance of dif-
ferent spectral representations as well as the robustness of the
new method to degraded conditions (e.g., additive noise). We
also intend to exploit this measurement for discriminating voice
quality in corpora of expressive speech.
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