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ABSTRACT
The goal of this paper is to acknowledge and model the vari-
ability in speaking styles in dyadic interactions and build a
predictive algorithm for listener responses that is able to
adapt to these different styles. The end result of this re-
search will be a virtual human able to automatically re-
spond to a human speaker with proper listener responses
(e.g., head nods). Our novel speaker-adaptive prediction
model is created from a corpus of dyadic interactions where
speaker variability is analyzed to identify a subset of pro-
totypical speaker styles. During a live interaction our pre-
diction model automatically identifies the closest prototyp-
ical speaker style and predicts listener responses based on
this communicative style. Central to our approach is the
idea of ”speaker profile”which uniquely identify each speaker
and enables the matching between prototypical speakers and
new speakers. The paper shows the merits of our speaker-
adaptive listener response prediction model by showing im-
provement over a state-of-the-art approach which does not
adapt to the speaker. Besides the merits of speaker-adapta-
tion, our experiments highlights the importance of using
multimodal features when comparing speakers to select the
closest prototypical speaker style.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Discourse; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Intelligent agents

General Terms
Algorithms, Human Factors, Theory

Keywords
Listener Responses, Machine Learning, Social Behavior, Mul-
timodal
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1. INTRODUCTION
During face-to-face conversation people naturally coordi-

nate through their verbal and nonverbal behaviors. This
multimodal coordination is utilized to regulate turn-taking,
emphasize important parts of the interaction, establish rap-
port with the interlocutors, among other things. It is a con-
stant back and forth where actions are chosen depending on
the behaviors of the other interlocutor(s). The coordination
between interlocutors shows in their speech through chang-
ing voice levels, utterance frequency and pauses [16], as well
as visual behaviors such as postures, facial expressions and
other gestures [6].

This collaborative coordination occurs both while speak-
ing and listening [3]. While listening interlocutors give so
called listener responses (e.g., head nods or short vocaliza-
tions like “uh-huh” and “okay”). These listener responses are
optional, but are placed at specific places in the discourse.
Oftentimes the speaker cues these places and expects a lis-
tener to respond [15]. The absence of the expected listen-
ing behavior at such places can result in restarts (and often
rephrases) from the speaker [13]. This affects the fluency of
the conversation, which in turn affects speaker clarity and
ultimately speaker comprehension [22, 3]. It has also been
proven to hurt the rapport between interlocutors [14].

Our long-term goal is to create an embodied conversa-
tional agent that is capable of having a natural conversation
with a human. Appropriate listening behavior is a key com-
ponent in such an agent. To be able to generate listening
behavior, the agent needs to be able to identify the moments
where a listener response is appropriate based on observa-
tions of the verbal and nonverbal behavior of the speaker.
In this paper we call a model performing this task a listener
responses prediction model.

Since the first listener response prediction model was pro-
posed in 1989 [31] many have followed (see Section 2). A
key observation not explicitly modeled in prior approaches
is the variability in speaker styles and personalities. Prior
work in conversation analysis focussed on finding similarities
in speaker behavior in relation to listener responses (see [3,
15, 30]). For instance, it is known that looking towards the
listener at the end of a sentence is a good cue for predict-
ing listener responses [3, 25]. However, not every person
is as comfortable with looking other people in the eye dur-
ing conversations as others and they will do this less often.
When a prediction model used by a virtual agent is heavily
dependent on this cue, this prediction model will probably
not perform as well for this speaker.



In this paper we introduce a speaker-adaptive listener re-
sponse prediction model which takes into consideration the
variability of speaking styles. Our speaker-adaptive model
is created from of a collection of dyadic speaker-listener in-
teractions. Our prediction model identifies a subset of pro-
totypical speakers and creates prediction models for each of
them. When encountering a new speaker our model analyzes
the characteristics of the speaker and selects the prediction
model that reflects similarities with our prototypical speak-
ers.

A key challenge in our approach is to find a representa-
tion of the speaker behaviors that highlights the differences
between prototypical styles while acknowledging their simi-
larities. We name this representation a ”speaker profile” and
it will be a central component used to match new speakers
with their closest prototype.

An extensive set of experiments are presented on the Mul-
tiLis corpus [8] and a comparison is made between our ap-
proach and previously published models on the same dataset.
Besides the merits of speaker-adaptation, our experiments
highlight the importance of using multimodal speaker pro-
file when comparing speakers to select the appropriate model
matching the speaking style of the current interlocutor.

The paper continues in Section 2 with a presentation of
previous work on listener response prediction models and
user-adaptive modeling. Section 3 describes our approach
to the speaker-adaptive listener response prediction model in
more detail. The experiment to evaluate the proposed model
is presented in Section 4. The results of this experiment are
presented and discussed in Section 5. The paper concludes
and presents future directions for our work in Section 6.

2. RELATED WORK
Since the first handcrafted listener response prediction

model was proposed in 1989 by Watanabe and Yuuki [31]
many have followed. In general, these models are difficult
to compare in terms of performance as they are created and
tested on different corpora and present varying evaluation
metrics [9].

The first machine learning approach was proposed by Okato
et al. [26]. They learned a Hidden Markov Model to detect
prosodic patterns that can predict listener responses. Ward
and Tsukahara [30] proposed a unimodal approach where
backchannels are associated with a region of low pitch last-
ing 110ms during speech. Models were produced manually
through an analysis of English and Japanese conversational
data.

Maatman et al. [24] presented the first multimodal ap-
proach. In their approach they combined Ward and Tsukhara’s
prosodic algorithm with a simple method of mimicking head
nods. No formal evaluation of the predictive accuracy of
the approach was provided but subsequent evaluations have
demonstrated that generated behaviors do improve subjec-
tive feelings of rapport [19] and speech fluency [14]. The first
multimodal machine learning approach was presented by
Morency et al. [25]. They used Conditional Random Fields
to learn a listener response prediction model and showed
statistical improvement when compared to the handcrafted
approach of Ward and Tsukahara [30]. Given its wide appli-
cability on other datasets, this approach was used as baseline
for this paper.

Since then, the main focus has shifted to increase perfor-
mance by collecting listener responses from more listeners

to get a wider coverage of response opportunities. De Kok
et al. [10] recorded multiple listeners in interaction with
the same speaker. Huang et al. [17] collected listener re-
sponses through parasocial sampling, where listeners watch
prerecorded videos of a speaker and give listener responses
through the keyboard as if they were listening. These ad-
ditional listener responses proved to improve performance
of the prediction models. Both researchers learned models
from the consensus between the listeners, thus ignoring in-
dividuality of the interlocutors.

Ozkan and Morency [27] used parasocial sampling to col-
lect listener responses from nine ‘parasocial’ listeners on 43
interactions. Subsequently nine expert prediction models
were learned using Conditional Random Fields, one for each
listener. The output of these expert models served as input
for a Latent Dynamic Condition Random Field that com-
bined the knowledge captured in the experts.

A closely related field to our approach is domain adapta-
tion in the natural language processing community. In this
field domain adaptation is achieved by adjusting a model
learned on a specific dataset (domain) to match the data dis-
tribution of the new domain. Recognition of which features
are important can be achieved online. This online learn-
ing/reweighting technique has been succesfully applied to
adjust to speakers in the dialogue act recognition task [28].

To the best of our knowledge the listener response pre-
diction model proposed in this paper is the first model that
explicitly adapts to the variability of speakering styles.

3. SPEAKER-ADAPTIVE PREDICTION MODEL
OF LISTENER RESPONSES

In this section we introduce our speaker-adaptive predic-
tion model of listener responses. The section starts with a
general description of our prediction model. Later we will
explain the main novelty of our model, speaker adaptation
through selection of the listener response prediction model
based on the speaker profiles, in more detail. Finally, we de-
scribe our method for selecting models for inclusion in the
model collection.

3.1 Overview
An important steop of our speaker-adaptive prediction

model is the model collection. The model collection consists
of prototypical listener response prediction models that rep-
resent the variability in speaking styles found in the corpus.
How the prediction models in the model collection repre-
sents the variability in speaking style is described in more
detail in section 3.3.

The models in the model collection are learned on indi-
vidual speaker-listener pairs from a corpus of dyadic inter-
actions during the offline learning phase. Each individual
model learns the mapping between the features that are ex-
tracted from the audio and video signal of the speaker and
the ground truth labels that represent the times at which
the listener has given a listener response in the corpus. With
each model the speaker profiles are included in the model col-
lection. These speaker profiles describe the speaking style
the model represents. More details on the speaker profile
follows in Section 3.2.

The online prediction cycle is depicted in Figure 1. When
a new speaker is encountered, the speaker profile describing
the behavior of this speaker are calculated. This speaker
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Figure 1: The figure illustrates the online prediction cycle for our speaker-adaptive prediction model. The
model collection includes prediction models learned on individual speaker-listener pairs and a speaker profile
describing the speaking style. When encountering a new speaker the speaking style of this speaker is compared
to the speaking styles of all speaker in the model collection through the speaker profiles. The model associated
with closests matching speaker profile is selected to predict the listener responses for the virtual listener.

profile is compared to all speaker profiles in the model col-
lection, depicted in the center of the figure. The model as-
sociated with the nearest-neighbor match measured on the
speaker profiles is selected. Thus, the selected model is the
model that is learned on an interaction that is the most
similar to the interaction the model is engaged in currently.

The model is applied to the extracted features of the new
speaker which results in a prediction value curve with the
probability of a listener response at each time frame. Us-
ing this prediction value curve the listening behavior of the
virtual human is generated.

3.2 Speaker Profiles
One of the novel challenges the speaker-adaptive listener

response prediction model introduces is the challenge to find
a similar speaker based on multimodal features. A closely
related challenge is speaker diarization, where a group of
speakers need to be discriminized into individual speakers [29].
However, our challenge is not finding the exact same speaker
among others, but finding a speaker with a similar speaker
style that cues the moments where he/she expects a listener
response in a similar way. Little is known about how speak-
ers differ in cueing listener response opportunities. Similar
to the development of listener prediction models, conversa-
tion analysis literature has also focussed on findings by pool-
ing all speaker and listener pairs from the corpus together
and finding similarities.

Features that are often found in conversation analysis lit-
erature to be associated with listener response opportuni-
ties include the pitch [21, 30, 15] and energy [21, 15] of the
speech signal, pauses in speech [11, 5] and the eye gaze of
the speaker [20, 2, 4]. Therefore, it is to be expected that
differences lies in these same features. Thus, our focus for
the speaker profiles was directed towards these features.

Each speaker profile consists of several speaker descrip-
tors. A speaker descriptor summarizes the behavior of the
speaker during the whole interaction for a certain feature
in a single value. For features that are a continuous signal
(e.g. pitch and energy) the speaker descriptors are the mean
and standard deviation of the signal. For binary features
(e.g. speech segments and eye gaze) the speaker descriptors
are percentage of true values and number of segments per
minute.

To select a prediction model the speaker profile are com-
pared to all speaker profiles in the model collection. There
are many ways to compare two vectors and find the clos-
est match. For our model nearest-neighbor measured by
Euclidean distance was chosen. The results presented in
Section 5 will show that speaker adaptation on these basic
speaker profiles and straight forward nearest neighbor selec-
tion will improve prediction performances compared to the
a state-of-the-art CRF model without speaker adaptation.



3.3 Model Collection Composition
As stated before the speaker profiles are used to select

a model from the model collection. Each prediction model
in the model collection represents a different speaking style.
However, not every model trained on a speaker is suited for
inclusion into the model collection. The composition of the
model collection is a balance act between 1) the quality of
the individual prediction model and 2) the contribution to
the representation of variability in speaking style. In other
words, the goal of the model collection is to have a repre-
sentative model for as many different speakers as possible.

This does not necessarily mean that adding as many indi-
vidual models as possible to the model collection improves
the performance of the speaker-adaptive prediction model.
If the model collection already includes a good prediction
model for a similar speaker, it is better to use that model
as a representative for the speaker, than an inferior model.
Therefore, models included in the model collection are se-
lected based on their individual performance, while control-
ling for representation of the variability in speaking style.

4. EXPERIMENT
In this section the experiment that has been conducted

will be reported. The goals of our experiments are to (1)
compare our speaker-adaptive approach with priori state-
of-the-art approaches, and (2) study the effect of the each
of the different modalities in our speaker profiles.

The section will start with a description of the MultiLis
corpus that is used for learning and evaluating the models.
This will be followed by the details of learning the models.
After this, the details of the model selection in the user-
adaptive learning approach will be described. Finally, the
details of the evaluation will be presented.

4.1 Corpus
The publicly available MultiLis corpus [8] was used for the

learning and evaluation of our listener response prediction
models. The corpus consists of 32 Dutch-spoken mediated
human-human interactions between pairs of subjects. In
the first interaction, one subject assumed the role of speaker
and one subject was assigned the role of listener. In a second
interaction, the roles were switched. In total, 32 subjects (29
male, 3 female, mean age 25) participated in 32 recordings,
with a total duration of 131 minutes for an average of little
over 4 minutes per interaction.

The speakers were instructed to either summarize a short
video or to provide the instructions of a recipe they had
just studied. Listeners had to remember as many details as
possible. Subjects interacted through a remote videocon-
ferencing system. The camera was placed behind an inter-
rogation mirror on which the other subject was projected.
This allowed subjects to look directly at the camera and this
created the feeling of eye contact. In addition, this setting
allowed us to analyze gaze.

The onsets of the 886 listener responses found in the cor-
pus are manually annotated. The listener responses consist
of 90% head nods and the remaining 10% are short vocal-
izations such as “uh-huh” and “okay”.

4.2 Model Learning
The machine learning models trained in our experiments

are Conditional Random Fields (CRF) [23] and are trained

using the hCRF library [1]. CRF is a probabilistic discrim-
inative model for sequential data labeling. A CRF learns a
mapping between a sequence of observations, in this case the
learning features describing the behavior of the speaker, and
a sequence of ground truth labels, in this case the onsets of
listener responses from the MultiLis corpus as positive sam-
ples and the same amount of randomly selected moments
where no listener response occured as negative samples. The
learned model returns a prediction value curve with a value
at each frame indicating the probability of a listener re-
sponse. After smoothing the prediction value curve can be
used to predict listener responses by detecting peaks in the
curve. By comparing the heights of these peaks to a thresh-
old the most probable moments are selected as predicted
response opportunities.

In this experiment two models are compared, the base-
line model and a model using the technique explained in
Section 3. For this comparison the following models were
learned:

• State-of-the-art CRF Model - Thirty-two state-of-
the-art CRF models are learned. Each of these models
is learned using 31 interactions from the MultiLis cor-
pus as learning data and the remaining interaction as
test data.

• Individual Models - Thirty-two individual models
are learned. Each of these models is learned using
one interaction from the MultiLis corpus as learning
data and the remaining 31 interactions as test data. A
subset of these individual models are selected for the
model collection of our speaker-adaptive multimodal
prediction model (see Section 4.4).

The comparison was made using a 32-fold or leave-one-out
cross validation at the interaction level. For each validation
fold one interaction was left out of the training set for the
baseline model. For the proposed speaker-adaptive model,
the individual model that was learned on this interaction
was unavailable to be included in the model collection.

All models are learned on the learning features. These
features describe the behavior of the speaker on a frame by
frame basis at a frequency of 25 Hz. There are six features, of
which four are acoustic features, one is a turn-taking feature
and one a visual feature. These features are:

• Pitch - The raw pitch values were extracted using the
algorithm of Drugman and Alwan [12] at a sampling
rate of 100 Hz. Gaps in detected pitch smaller than 80
ms (8 frames) are linearly interpolated, following [30].
Then all pitch values are converted to their z-score
equivalent. Afterwards the feature is downsampled to
25Hz.

• Pitch Slope - As a measurement of the change of the
pitch the slope of the pitch value feature is calculated
by taking the first derivative of the pitch signal.

• Energy - The energy of each speech frame is calcu-
lated on 32 ms Hanning windows with a shift of 10 ms
and expressed in dB.

• Energy Slope - As a measurement of the change in
speech intensity the slope of the energy value feature is
calculated by taking the first derivative of the energy
signal.



• Speech Segment - The speech segment feature cap-
tures whether the speaker is speaking at the moment
or not. It is represented as a binary feature. The
feature is extracted using the segmentation from the
Dutch automatic speech recognizer SHoUT [18]. The
minimum pause between speech segments is 100ms (4
frames).

• Gaze - The gaze feature is represented as a binary fea-
ture that is true when the speaker looks directly at the
listener. The feature is extracted from the annotations
provided in the MultiLis corpus.

4.3 Speaker Profiles
Our speaker-adaptive model has a model collection. This

model collection includes the models that are learned from
single speaker-listener pairs. With each model a descrip-
tion of the behavior of the speaker of the pair the model
is inferred from is associated. The behavior is captured
in a speaker profile containing 10 speaker descriptors. The
speaker descriptors summarize the behavior of the speaker
over the course of the interaction. Our speaker descriptors
include six acoustic features, two turn-taking features and
two gaze features. These are:

• Mean Pitch - The mean of all Pitch values of the
interaction. The pitch values are the values from be-
fore converting to the z-score equivalent (otherwise the
mean would always be 0).

• Standard Deviation of Pitch - The standard devia-
tion of all Pitch values of the interaction. Again using
the raw pitch values before converting to the z-score
equivalent (otherwise the mean would always be 1).

• Mean Energy - Mean of all Energy values of the
interaction expressed in dB.

• Standard Deviation of Energy - Standard devia-
tion of all Energy values of the interaction.

• Mean Energy Slope - Mean of all Energy Slope val-
ues of the interaction.

• Standard Deviation of Energy Slope - Standard
deviation of all Energy Slope values of the interaction.

• Percentage of Speech - The percentage of time the
speaker is speaking.

• Speech Segments per Minute - The number of
speech segments per minute.

• Percentage of Gaze - The percentage of time the
speaker is looking at the listener.

• Gaze Shifts per Minute - The number of gaze shifts
per minute.

When encountered with a new speaker our speaker-adaptive
model calculates the speaker profile for the new speaker and
compares it to the speaker profiles found in the model collec-
tion. It selects the model whose speaker profile is the nearest
neighbor match as measured by the euclidean distance.
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Figure 2: The figure illustrates the performance of
the models included in the experiment. The model
proposed in this paper is presented in red and the
models it is compared to in black. The figure il-
lustrates that our speaker-adaptive model performs
best with a performance of 0,364. The difference
between our speaker-adaptive model and the state-
of-the-art CRF model is significant (t(31) = 3, 25, p =
0, 001).

4.4 Model Collection Composition
As previously stated the composition of the model collec-

tion is a balance act between 1) the quality of the individual
prediction model and 2) the contribution to the represen-
tation of variability in speaking style. The composition of
the model collection is based on the performance of the in-
dividual models. To find the optimal model collection the
number of models included in the model collection was var-
ied from N=1 to N=31. With each collection size the top N
models were selected based on individual performance.

Afterwards the representation of variability was controlled
for by placing each speaker in the 2D space drawn up by the
first two principal components of the speaker profiles.

4.5 Evaluation
The models are evaluated by comparing the predictions

made by the model to the listener responses found in the
MultiLis corpus.

Predictions are made by selecting the peaks from the pre-
diction value curve that exceed a certain threshold. Usually,
e.g. [25, 10, 27], this threshold is determined on the learning
set during a validation phase. However, this method for de-
termining the threshold is unreliable. For some models the
threshold is set too low, resulting in too many predictions,
while for others the threshold is set too high, resulting in no
predictions. Especially, for the individual models our learn-
ing set is very limited which makes the validated threshold
unreliable. To not be dependent on this, the threshold is
optimized such that it gives us the optimal performance on
each interaction during testing. This is done for all models.

Performance is measured using the F1 measure. This mea-
sure is the weighted harmonic mean of precision and recall.
A prediction is considered a true positive if it is made within
500 ms from the onset of a listener response found in the
MultiLis corpus. The performances of the models in the
same conditions are averaged.
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Figure 3: The figure illustrates two points. First,
the maximum performance is achieved by includ-
ing the top 4 performing models in the model col-
lection with a performance of 0,364. Second, the
figure illustrates the importance of the multimodal-
ity in comparing speakers. The multimodal nearest
neighbor selection (solid red line) almost always out-
performs the unimodal nearest neighbor selection.

5. RESULTS

In this section the results of the experiments are presented.
The section will be started with presentation of the increase
in performance our speaker-adaptive multimodal listener re-
sponse prediction model achieves over the state-of-the-art
CRF model in Section 5.1. This will be followed by an
analysis of the importance of the model collection compo-
sition 5.2. Finally, the importance of multimodality of the
speaker profiles will be analyzed in Section 5.3.

5.1 Speaker-Adaptation

The performances of the models in question are presented
in Figure 2. In this figure the performances presented in red
are for the models proposed in this paper, while the black
models are the performances of the models these proposed
models are compared to.

The performance of our speaker-adaptive listener responses
prediction model is a F1 score of 0,364 (fourth bar in Fig-
ure 2). This is better that average performance of the state-
of-the-art CRF model, which has a performance of a F1 score
of 0,333 (first bar in Figure 2). This difference is significant,
t(31) = 3, 25, p = 0, 001.

Our speaker-adaptive model has a model collection of indi-
vidual models. The average performance of these individual
models is a F1 score of 0,280 (second bar in Figure 2). The
best individual model performs at a F1 score of 0,348. The
model collection of our best speaker-adaptive model includes
four the top 4 individual models (see for more details on the
selection process Section 5.2). The average performance of
these four top 4 individual models is 0,342. A state-of-the
art CRF model that is learned using the top 4 four inter-
actions that are used as learning data for these individual
models performs at a F1 score of 0,341 (third bar in Fig-
ure 2). The fact that our speaker-adaptive model performs
better than this model proves that the speaker adaptation
accounts for most of the performance boost and not only the
characteristics of the learning data.
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Figure 4: The figure places each speaker in the 2D
space created by the first two principal components
of the speaker profiles. The figure illustrates that
the four models that are selected for the model col-
lection (red) are good representatives of the diver-
sity found in the speakers, since they are spread out
over the 2D space.

5.2 Model Collection Composition

As previously stated the composition of the model collec-
tion is a balance act between 1) the quality of the individual
prediction model and 2) the contribution to the represen-
tation of variability in speaking style. In this section the
importance of the composition of the model is analyzed in
more detail.

To find the optimal model collection the number of mod-
els included in the model collection was varied from N=1 to
N=31. The composition of the model collection was deter-
mined by selecting the top N individual models based on the
mean performance as measured by the F1 score. In Figure 3
the results of varying the number of models in the model
collection is presented by the solid red line. The other lines
are discussed in Section 5.3.

The figure illustrates the maximum performance is achieved
when the top 4 models are included in the model collection.
At this number of the models the performance peaks at 0,364
(right bar in Figure 2). The speaker-adaptive model that in-
cludes all individual models in the model collection gives a
performance of a F1 score 0,323. This is worse than both the
state-of-the-art CRF model and the best individual model.
The inclusion of some of the individual models hurts our
performance. These results highlight the importance of the
composition of the model collection.

Limiting the model collection to only the top 4 models
might have caused the model collection to be less represen-
tative of the variability in speaking styles than desired. The
idea behind the model collection is to have a close match for
any new speaker the model may encounter. However, since
the models included in the model collection are purely se-
lected on their performance, the top 4 models might actually
be close neighbors to each other in the speaker profile space.



To analyze this a principal component analysis was made
on the speaker profiles. The first two principal components,
which account for 96,2% of the variability, are selected and
each speaker is placed in the 2D space that these components
create. The results of this analysis is presented in Figure 4.

In this figure the four speakers that are selected for the
model collection are plotted in red and the remaining 28
speakers in black. The figure illustrates that the four speak-
ers are well spread out over the 2D space. Thus, the models
are a good representative of the variability in speaking styles
found in the MultiLis corpus.

5.3 Multimodal Speaker Profile

Finally, the importance of multimodality of our speaker
profiles was analyzed. A comparison was made between
speaker profiles with multimodal speaker descriptors and
unimodal speaker descriptors of the three modalities (acous-
tic, visual and turntaking). The comparisons were made
on the speaker-adaptive models with varying model collec-
tion compositions developed for the previous analysis in Sec-
tion 5.2. The results are presented in Figure 3.

Our speaker-adaptive listener response prediction model
with multimodal speaker profiles is represented by the solid
red line. For almost all model collection compositions the
multimodal speaker descriptors outperform the unimodal
speaker profiles. For the best models the acoustic speaker
profiles (solid back line) contribute the most to the perfor-
mance. However, it are actually the turn-taking speaker
profiles that outperform the multimodal speaker profiles for
some model collection compositions (N=18,19 and 21).

6. CONCLUSION AND FUTURE WORK
In this paper a speaker-adaptive model for predicting lis-

tener responses is presented. This speaker-adaptive model
consists of a collection of listener response prediction mod-
els that are trained on single interlocutor pairs. The com-
position of this model collection represents the variability
in speaker styles found in the corpus as measured by the
speaker profiles. When encountering a new speaker the
model compares the speaker profile of this speaker to all
the speaker profiles in the model collection. The model that
is learned on the closest matching speaker is used to predict
listener response opportunities for the new speaker.

As reported in Section 5 the performance of this model
was compared to a state-of-the-art CRF model. Our ap-
proach proved to outperform the state-of-the-art approach
as measured by the F1 measure (0,333 for the baseline model
versus 0,364 for our speaker-adaptive model). The perfor-
mance is also comparable to the F1 scores achieved when
comparing humans interacting with the same speaker to each
other (between 0.18 and 0.52 [7]). Experiments showed that
the speaker-adaptation, the composition of the model col-
lection and the multimodality of the speaker profiles are all
important factors contributing to the performance of our
approach.

The presented model opens exciting new avenues for fu-
ture research. Matching speakers whose speaking styles are
similar is a new challenge. Now that the potential of the
speaker descriptors is proven, many other speaker descrip-
tors can be considered. For instance, it is known in literature
that listener responses are usually placed around the end of
a grammatical clause or sentence. Speaker descriptors de-

scribing the behavior around these moments may be helpful
finding the right match.

Another interesting avenue for future research is in im-
proving the development of the individual models included
in the model collection. In the present study all individ-
ual models use the same features as input. However, since
not every speaker uses the same cues to elicit listener re-
sponse opportunities, not every feature will be helpful for
each model. Feature selection for each individual model
could potentially make the individual models stronger and
in turn the speaker-adaptive model as a whole.

The presented speaker-adaptive model is a first step into
the direction of modeling the mutual adaptation that takes
place in interactions between interlocutors. In the current
model only the variation and adaptation in speakers is con-
sidered, but listeners adapt their behavior as well. An inter-
esting future direction we can take this approach is incorpo-
rating a listener profile as well. The MultiLis corpus offers
two additional listeners in interaction with the same speaker.
By learning individual models on these interactions as well
and selecting a model from the model collection based on
both a speaker profile and a listener profile could be the
next step into modeling the mutual adaptation between in-
terlocutors.

Another aspect we have not considered in the current
study is that the speakers behavior is also dependent on
other factors, such as his emotional situation and type of
interaction. The model collection with speaker profiles pre-
sented in this paper could potentially be extended by in-
cluding context, role and or emotional profiles. The main
challenge for such models is to find an effective way to train
good individual models for each combination of profiles for
the model collection. To succeed either a lot of data or a suc-
cesful way to train individual models based on very limited
training data is needed.
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