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Abstract

Facial feature detection algorithms have seen great
progress over the recent years. However, they still struggle
in poor lighting conditions and in the presence of extreme
pose or occlusions. We present the Constrained Local Neu-
ral Field model for facial landmark detection. Our model
includes two main novelties. First, we introduce a prob-
abilistic patch expert (landmark detector) that can learn
non-linear and spatial relationships between the input pix-
els and the probability of a landmark being aligned. Sec-
ondly, our model is optimised using a novel Non-uniform
Regularised Landmark Mean-Shift optimisation technique,
which takes into account the reliabilities of each patch ex-
pert. We demonstrate the benefit of our approach on a num-
ber of publicly available datasets over other state-of-the-art
approaches when performing landmark detection in unseen
lighting conditions and in the wild.

1. Introduction
Facial expression is a rich source of information which

provides an important communication channel for human
interaction. Humans use them to reveal intent, display af-
fection, and express emotion [13]. Automated tracking and
analysis of such visual cues would greatly benefit human
computer interaction [13]. A crucial initial step in many
affect sensing, face recognition, and human behaviour un-
derstanding systems is the detection of certain facial feature
points such as eyebrows, corners of eyes, and lips. This is
an interesting and still an unsolved problem, especially for
faces in the wild — exhibiting variability in pose, lighting,
facial expression, age, gender, race, accessories, make-up,
occlusions, background, focus, and resolution.

There have been many attempts, with varying success,
at tackling the problem of accurate and person independent
facial landmark detection. One of the most promising is the
Constrained Local Model (CLM) proposed by Cristinacce
and Cootes [5], and various extensions that followed [1, 3,
15, 20]. CLM methods, however, they still struggle in poor
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Figure 1: Overview of our CLNF model. We use our
Local Neural Field patch expert to calculate more reliable
response maps. Optimisation over the patch responses is
performed using our Non-Uniform Regularised Mean-Shift
method that takes the reliability of each patch expert into
account leading to more accurate fitting. Note that only 3
patch experts are displayed for clarity.

lighting conditions, in the presence of occlusion, and when
detecting landmarks in unseen datasets.

In this paper, we present the Constrained Local Neural
Field (CLNF), a novel instance of CLM that deals with
the issues of feature detection in complex scenes. First
of all, our CLNF model incorporates a novel Local Neu-
ral Field (LNF) patch expert, which allows us to both cap-
ture more complex information and exploit spatial relation-
ships between pixels. We also propose Non-Uniform Reg-
ularised Landmark Mean-Shift (NU-RLMS), a novel CLM
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fitting method which trusts reliable patch experts more. An
overview of our model can be seen in Figure 1.

We demonstrate the benefit of our CLNF model by out-
performing state of the art approaches when detecting facial
landmarks across illumination and in the wild. We com-
pare our approach to CLM [15], tree based method [22],
DRMF [1], AOM [17], and supervised descent [21] meth-
ods. Our approach shows improvement over all of these
approaches for across database and illumination generalisa-
tion on a number of publicly available datasets.

2. Related work

Facial feature detection refers to the location of certain
facial landmarks in an image. For example, detecting the
nose tip, corners of the eyes, and outline of the lips. There
have been a number of approaches proposed to solve this
problem. This section provides a brief summary of recent
landmark detection methods followed by a detailed descrip-
tion of the CLM algorithm.

2.1. Facial landmark detection

Zhu et al. [22] have demonstrated the efficiency of tree-
structured models for face detection, head pose estimation,
and landmark localisation. They demonstrated promising
results on a number of benchmarks.

Tzimiropoulos presented the Active Orientation Model
(AOM) – a generative model of facial shape and appearance
[17]. It is a similar to Active Appearance Model (AAM)
[10], but has a different statistical model of appearance and
a robust algorithm for model fitting and parameter estima-
tion. AOM generalizes better to unseen faces and variations
than AAM.

Discriminative Response Map Fitting (DRMF) pre-
sented by Asthana et al. [1] extends the canonical Con-
strained Local Model [5]. DRMF uses dimensionality re-
duction to produce a simpler response map representation.
Parameter update is computed from the simplified response
maps using regression. Furthermore, the authors demon-
strate the benefits of computing the response maps from
Histograms of Oriented Gradients [6].

Xiong and De la Torre proposed using the Supervised
Descent Method (SDM) for non-linear least squares prob-
lems and applied it to face alignment [21]. During training,
the SDM learns a sequence of optimal descent directions.
During testing, SDM minimizes the non-linear least squares
objective using the learned descent directions without the
need to compute the Jacobian and/or Hessian.

2.2. Constrained Local Model

Our approach uses the Constrained Local Model (CLM)
framework, hence it is described in detail here. There
are three main parts to a CLM: a point distribution model

(PDM), patch experts, and the fitting approach used. PDM
models the location of facial feature points in the image us-
ing non-rigid shape and rigid global transformation param-
eters. The appearance of local patches around landmarks of
interest is modelled using patch experts. The fitting strate-
gies employed in CLMs are varied, a popular example is the
Regularised Landmark Mean Shift (RLMS) [15]. Once the
model is trained on labelled examples, a fitting approach is
used to estimate the rigid and non-rigid parameters p, which
fit the underlying image best:

p∗ = arg min
p

[R(p) +

n∑
i=1

Di(xi; I)]. (1)

Here R represents the regularisation term that penalises
overly complex or unlikely shapes, and D represents the
amount of misalignment the ith landmark is experiencing at
xi location in the image I. The value of xi = [xi, yi, zi]

T

(the location of the ith feature) is controlled by the parame-
ters p through the PDM:

xi = s ·R2D · (xi + Φiq) + t, (2)

where xi = [xi, yi, zi]
T is the mean value of the ith feature,

Φi is a 3 ×m principal component matrix, and q is an m
dimensional vector of parameters controlling the non-rigid
shape. The rigid shape parameters can be parametrised us-
ing 6 scalars: a scaling term s, a translation t = [tx, ty]

T ,
and orientation w = [wx, wy, wz]T . Rotation parameters
w control the rotation matrix R2D (the first two rows of
3× 3 rotation matrix R), and are in axis-angle form, due to
ease of linearising it. The whole shape can be described by
p = [s, t,w,q]

2.2.1 Patch Experts

Patch experts (also called local detectors), are a very impor-
tant part of the Constrained Local Model. They evaluate the
probability of a landmark being aligned at a particular pixel
location. The response from the ith patch expert πxi

at the
image location xi based on the surrounding support region
is defined as:

πxi = Ci(xi; I) (3)

Here Ci is the output of a regressor for the ith feature. The
misalignment can then be modelled using a regressor that
gives values from 0 (no alignment) to 1 (perfect alignment).

There have been a number of different methods proposed
as patch experts: various SVR models and logistic regres-
sors, or even simple template matching techniques. The
most popular expert by far is the linear Support Vector Re-
gressor in combination with a logistic regressor [3, 15, 20].
Linear SVRs are used, because of their computational sim-
plicity, and potential for efficient implementation on images
using convolution [20]. Some sample response maps from
patch experts can be seen in Figure 2.
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Figure 2: Sample response maps from patch experts of four
features (redder is higher probability). The ideal response is
shown in ground truth column. SVR refers to the standard
patch expert used by CLM approaches. We show two in-
stances of our CLNF model: one with spatial features, (gk
and lk) and one without. Note how the edge features lead
to fewer peaks and a smoother response. Furthermore, note
the noisiness of the SVR response.

2.2.2 Regularised Landmark Mean Shift

CLM is a local approach and relies on an initial parameter
estimate (often from a face detector). If we have an initial
estimate p0, we want to find a parameter update ∆p to get
closer to a solution p∗ = p0 +∆p (where p∗ is the optimal
solution). Hence the iterative fitting objective is as follows:

arg min
∆p

[R(p0 + ∆p) +

n∑
i=1

Di(xi; I)] (4)

This can be solved using various methods, the most com-
mon of which is the Regularised Landmark Mean Shift [15]
which finds a least squares solution to the following 1:

arg min
∆p

(||p0 + ∆p||2Λ−1 + ||J∆p0 − v||2), (5)

where J is the Jacobian of the landmark locations with re-
spect to the parameter vector p evaluated at p, Λ−1 is the
matrix describing the prior on the parameter p. A Gaussian
distribution prior p(p) ∝ N (q; 0,Λ) is used for non-rigid
shape and uniform distribution for rigid shape parameters.
Lastly, v = [v1, . . . ,vn]T is the mean-shift vector over the
patch responses that approximate the response map using a
Gaussian Kernel Density Estimator:

vi =
∑

yi∈Ψi

πyiN (xc
i ; yi, ρI)∑

zi∈Ψi
πzi
N (xc

i ; zi, ρI)
− xc

i . (6)

Mean-shift vector computation depends on the current es-
timate of the feature xc

i and the empirically determined ρ
parameter.

1|| · ||W refers to a weighted l2 norm

Figure 3: Overview of our patch expert graphical model.
Solid lines represent vertex features (fk, dashed lines rep-
resent edge features gk or lk). The input vector xi is con-
nected to the relevant output scalar yi through the vertex
features that combine the neural layer (Θ) and the vertex
weights α. The outputs are further connected with edge
features gk (similarity) or lk (sparsity)

The update rule can be derived using Tikhonov regu-
larised Gauss-Newton method (with regularisation term r):

∆p = −(JTJ + rΛ−1)−1(rΛ−1p− JTv) (7)

The mean-shifts are calculated and the update is computed
iteratively until convergence is met.

3. CLNF
This section presents the Constrained Local Neural Field

(CLNF) landmark detection model. It includes a novel
Local Neural Field patch expert which learns the non-
linearities and spatial relationships between pixel values
and the probability of landmark alignment. CLNF also uses
a novel Non-uniform Regularised Landmark Mean Shift fit-
ting technique which takes into consideration patch reliabil-
ities. An overview of our technique can be seen in Figure
1.

3.1. Local Neural Field patch expert

Our Local Neural Field (LNF) patch expert, shown in
Figure 3, brings the non-linearity of Conditional Neural
Fields [11] together with the flexibility and continuous out-
put of Continuous Conditional Random Fields [12]. The
proposed patch expert can capture relationships between
pixels (neighbouring and longer distance) by learning both
similarity and long distance sparsity constraints. LNF also
includes a neural network layer that can capture complex
non-linear relationships between pixel values and the out-
put responses. It is a continuous output model, with simple
and efficient inference.

We identified two types of spatial relationships we want a
patch expert to capture. First of all, spatial similarity, that is



pixels nearby should have similar alignment probabilities.
Secondly, in the whole area the patch expert is evaluated,
only one peak should be present. We want to enforce some
sparsity in the response.

We visually show the advantages of modelling spatial de-
pendencies and input non-linearities in Figure 2, that shows
patch responses maps from SVR patch experts [20], our
LNF patch expert without spatial constraints, and our full
LNF patch expert with similarity and sparsity constraints.
Note how our patch expert response has fewer peaks and is
smoother than the one without edge features, and both of
them are more accurate than the SVR patch expert. These
spatial constraints are designed to improve the patch re-
sponse convexity, leading to more accurate fitting.

3.1.1 Model definition

LNF is an undirected graphical model that can model the
conditional probability of a continuous valued vector y (the
probability that a patch is aligned) depending on continu-
ous x (the pixel intensity values in the support region). A
graphical illustration of our model can be seen in Figure 3.

In our discussion we will use the following notation:
X = {x1,x2, . . . ,xn} is a set of observed input variables,
y = {y1, y2, . . . , yn} is a set of output variables that we
wish to predict, xi ∈ Rm represents vectorised pixel inten-
sities in patch expert support region (e.g. m = 121 for an
11 × 11 support region), yi ∈ R is a scalar prediction at
location i.

Our model for a particular set of observations is a condi-
tional probability distribution with the probability density:

P (y|X) =
exp(Ψ)∫∞

−∞ exp(Ψ)dy
(8)

Above
∫∞
−∞ exp(Ψ)dy is the normalisation (partition) func-

tion which makes the probability distribution a valid one (by
making it sum to 1). The following section describes the po-
tential function used by our LNF patch expert.

3.1.2 Potential functions

Our potential function is defined as:

Ψ =
∑

i

∑K1
k=1 αkfk(yi,X,θk)+∑

i,j

∑K2
k=1 βkgk(yi, yj)+∑

i,j

∑K3
k=1 γklk(yi, yj)

, (9)

where model parameters α = {α1, α2, . . . αK1}, Θ =
{θ1,θ2, . . .θK1}, and β = {β1, β2, . . . βK2}, γ =
{γ1, γ2, . . . γK3} are learned and used for inference during
testing. We define three types of potentials in our model,
vertex features fk, and edge features gk, and lk:

fk(yi,X,θk) = −(yi − h(θk,xi))
2, (10)

h(θ,x) =
1

1 + e−θ
Tx
, (11)

gk(yi, yj) = −1

2
S

(gk)
i,j (yi − yj)2, (12)

lk(yi, yj) = −1

2
S

(lk)
i,j (yi + yj)

2. (13)

Vertex features fk represent the mapping from the input xi

to output yi through a one layer neural network and θk is the
weight vector for a particular neuron k. Θ can be thought of
as a set of convolution kernels that are applied to an area of
interest. The corresponding αk for vertex feature fk repre-
sents the reliability of the kth neuron (convolution kernel).

Edge features gk represent the similarities between ob-
servations yi and yj . In our LNF patch expert gk enforces
smoothness on connected nodes. This is also affected by
the neighbourhood measure S(gk), which allows us to con-
trol where the smoothness is to be enforced. For our patch
expert we define S(g1) to return 1 (otherwise return 0) only
when the two nodes i and j are direct (horizontal/vertical)
neighbours in a grid. We also define S(g2) to return 1 (oth-
erwise 0) when i and j are diagonal neighbours in a grid.

Edge features lk represent the sparsity constraint be-
tween observations yi and yj . For example the model is
penalised if both yi and yj are high, but is not penalised if
both of them are zero. This has a slightly unwanted conse-
quence of penalising just yi or yj being high, but the penalty
for both of them being high is much bigger. This is con-
trolled by the neighbourhood measure S(lk) that allows us
to define regions where sparsity should be enforced. We
empirically defined the neighbourhood region S(l) to return
1 only when two nodes i and j are between 4 and 6 edges
apart (where edges are counted from the grid layout of our
LNF patch expert).

3.1.3 Learning and Inference

In this section we describe how to estimate the parameters
{α,β,γ,Θ}. It is important to note that all of the parame-
ters are optimised jointly.

We are given training data {x(q),y(q)}Mq=1 ofM patches,

where each x(q) = {x(q)
1 ,x

(q)
2 , . . . ,x

(q)
n } is a sequence of

inputs (pixel values in the area of interest) and each y(q) =

{y(q)
1 , y

(q)
2 , . . . , y

(q)
n } is a sequence of real valued outputs

(expected response maps).
In learning we want to pick the α, β, γ and Θ values

that maximise the conditional log-likelihood of LNF on the
training sequences:

L(α,β,γ,Θ) =

M∑
q=1

logP (y(q)|x(q)) (14)

(ᾱ, β̄, γ̄, Θ̄) = arg max
α,β,γ,Θ

(L(α,β,γ,Θ)) (15)



It helps with the derivation of the partial derivatives of
Equation 14 and with explanation of inference to convert the
Equation 8 into multivariate Gaussian form (see Baltrušaitis
et al. [2] for a similar derivation):

P (y|X) =
1

(2π)
n
2 |Σ| 12

exp(−1

2
(y − µ)T Σ−1(y − µ)),

(16)
Σ−1 = 2(A+B + C) (17)

The diagonal matrix A represents the contribution of α
terms (vertex features) to the covariance matrix, and the
symmetricB and C represent the contribution of the β, and
γ terms (edge features).

Ai,j =


K1∑
k=1

αk, i = j

0, i 6= j

(18)

Bi,j =


(

K2∑
k=1

βk

n∑
r=1

S
(gk)
i,r )− (

K2∑
k=1

βkS
(gk)
i,j ), i = j

−
K2∑
k=1

βkS
(gk)
i,j , i 6= j

(19)

Ci,j =


(

K2∑
k=1

γk

n∑
r=1

S
(lk)
i,r ) + (

K2∑
k=1

γkS
(lk)
i,j ), i = j

K2∑
k=1

γkS
(lk)
i,j , i 6= j

(20)
It is useful to define a vector d, that describes the linear
terms in the distribution, and µ which is the mean value of
the Gaussian form of the CCNF distribution:

d = 2αTh(ΘX). (21)

µ = Σd. (22)

Above X is a matrix where the ith column is xi, Θ is
the concatenated neural network weights and h(M), is an
element-wise application of sigmoid (activation function)
on each element of M , and thus h(ΘX) represents the re-
sponse of each of the gates (neural layers) at each xi.

Intuitively d is the contribution from the the vertex fea-
tures. These are the terms that contribute directly from input
features x towards y. Σ on the other hand, controls the in-
fluence of the edge features on the output. Finally, µ is the
expected value of the distribution, hence it is the value of y
that maximises P (y|x).

In order to guarantee that our partition function is inte-
grable, we constrain αk > 0 and βk > 0, γk > 0 [12],
while Θ is unconstrained.

The log-likelihood can be maximised using constrained
BFGS. We use the standard Matlab implementation of the

algorithm. In order to make the optimisation more accurate
and faster we used the partial derivatives of the logP (y|X).

To train our LNF patch expert, we need to define the
output variables yi. Given an image with a true landmark
at z = (u, v)T we can model the probability of it being
aligned at zi as yi = N (zi; z, σ) (we experimentally found
that best results are achieved with σ = 1). We can then
sample the image at various locations to get training sam-
ples. An example of such synthetic response maps can be
seen in Figure 2, in the ground truth column.

3.2. Non-uniform RLMS

A problem facing CLM fitting is that each of the patch
experts is equally trusted, but this should clearly not be the
case. This can be seen in Figures 1 and 2, where the re-
sponse maps of certain features are noisier. RLMS does not
take this into consideration. To tackle this issue, we propose
minimising the following objective function:

arg min
∆p

(||p + ∆p||2Λ−1 + ||J∆p− v||2W . (23)

The diagonal weight matrix W allows for weighting of
mean-shift vectors. Non-linear least squares with Tikhonov
Regularisation leads to the following update rule:

∆p = −(JTWJ + rΛ−1)(rΛ−1p− JTWv). (24)

Note that, if we use a non-informative identity W = I , the
above collapses to the regular RLMS update rule.

To construct W , we compute the correlation scores of
each patch expert on the holdout fold of training data. This
leads toW = w·diag(c1; . . . ; cn; c1; . . . cn), where ci is the
correlation coefficient of the ith patch expert on the holdout
test fold and w is determined experimentally. The ith and
i + nth elements on the diagonal represent the confidence
of the ith patch expert. Patch expert reliability matrix W
is computed separately for each scale and view. This is a
simple but effective way to estimate the error expected from
a particular patch. Example reliabilities are displayed in
Figure 4a.

4. Experiments
We conducted a number of experiments to validate the

benefits of the proposed CLNF model. First, an experi-
ment was performed to confirm the benefit of both the LNF
patch experts and the NU-RLMS approach to model fitting.
The second experiment explored how well the CLNF model
generalises to unseen illumination. The final set of exper-
iments evaluated how well our approach generalises out of
database and in the wild.

4.1. Baselines

As the first baseline we used the CLM model proposed
by Saragih et al. [15]. It uses SVR patch experts and RLMS



fitting for landmark detection. We extended it to a multi-
scale formulation for a fairer comparison, hence in the ex-
periments it is called CLM+. The exact same training data
and initialisation was used for CLM+ and CLNF.

Another baseline used, was the tree based face and land-
mark detector, proposed by Zhu and Ramanan [22]. It has
shown good performance at locating the face and the land-
mark features on a number of datasets. Two differently
trained models were used: trained on Multi-PIE [7] data
by the authors (called p99) [22], trained on in the wild data
by Asthana et al. (called p204) [1].

Active Orientation Model (AOM) is a generative model
of facial shape and appearance [17]. We used the trained
model (on close to frontal Multi-PIE) and the landmark de-
tection code provided by the authors. In the experiments it
was initialised using same face detection as CLNF.

As an additional baseline, we used the Discriminative
Response Map Fitting (DRMF) model of CLM [1]. We
used the code and the model provided by the authors. It was
trained using LFPW [4] and Multi-PIE datasets. The model
was initialised using a tree based face detector (p204), as
that lead to the best results.

As a final baseline, the Supervised Descent Method
(SDM) was used [21]. This approach is trained on the
Multi-PIE and LFW [8] datasets. It relies on face detection
from a Viola-Jones face detector, therefore the image was
cropped around the desired face for a fairer comparison.

The above baselines were trained to detect 49, 66, or 68
feature points, making exact comparisons difficult. How-
ever, they all share 49 feature points that they detect – the
feature points in Figure 4a without the face outline. The
accuracy on these points was reported in our experiments.

4.2. CLNF

We performed an experiment to see how our novel patch
expert and fitting approach affect landmark detection accu-
racy on the same dataset. This experiment evaluated the
effect of using an LNF patch expert instead of an SVR one,
and NU-RLMS fitting instead of RLMS.

The experiment was performed on the CMU Multi-PIE
dataset [7]. For this experiment we used 3557 frontal and
close to frontal images (at poses 051, 050, 140 correspond-
ing to −15, 0, 15 degrees yaw) with all six expressions and
at frontal illumination. A quarter of subjects were used for
training (890 images) and the rest for testing (2667).

Each of the images was sampled in 21 locations (20 away
from the landmark and 1 near to it) in window sizes of
19 × 19 pixels - this led to 21 × 81 samples per image.
It was made sure that the same person never appeared in
both training and testing. Nine sets of patch experts were
trained in total: at three orientations — −20, 0, 20 degrees
yaw; and three scales – 17px, 23px and 30px of interocular
distance. The PDM trained by Saragih et al. [15] was used.

For fitting we used a multi-scale approach where we first
fit on the smallest scale moving to largest. We use {15 ×
15, 21 × 21, 21 × 21} areas of interest for each scale, and
11×11 patch expert support regions. Other parameters used
are: ρ = 1.5, r = 25, w = 7.

For fitting on images, the rigid shape parameters were es-
timated from an off-the-shelf Viola-Jones [19] face detector
and non-rigid parameters were set to 0. If a face was not
detected in an image the rigid parameters were initialised
away from the perfect value by the amount expected from
the face detector.

Cumulative error curves of using LNF and NU-RLMS
can be seen in Figure 4b. The benefit of both our patch
expert (LNF) and the fitting technique (NU-RLMS) can be
clearly seen, their combination (CLNF) leads to best results.
Interestingly, the effect of NU-RLMS is greater when using
LNF, this is possibly due to the weights associated with each
patch expert being more accurate for LNF.

4.3. Unseen illumination

We conducted an experiment to validate the CLNF abil-
ity to generalise to unseen illuminations, which is a very
difficult task for facial landmark detectors. The experi-
ment was performed on the left, right and poorly illumi-
nated faces from the Multi-PIE dataset (8001 images).

We used the same models as in the previous experiment
– trained on frontal illumination Multi-PIE. The fitting ap-
proach was identical to the one in the previous section. We
did not want the landmark detection to be affected by face
detection accuracy so the detection was initialised using pa-
rameters from frontally illuminated images.

The approaches compared were all trained on frontal il-
lumination Multi-PIE. We do not include other baselines as
they were exposed to more difficult illuminations, making
the comparison unfair. The results of this experiment can
be seen in Figure 4c. The lower error rates of CLNF when
compared to other models can be seen. This highlights the
benefit of our new patch expert and fitting approach.

4.4. In the wild

The final set of experiments conducted, evaluated how
our approach generalises on unseen and completely uncon-
strained in the wild datasets.

For training we used the subsets of two in the wild
datasets: Labelled Face Parts in the Wild (LFPW) [4] and
Helen [9] datasets. Both of them contain unconstrained im-
ages of faces in indoor and outdoor environments. In total
1176 training images were used for training the LNF patch
experts. As before, nine patch expert sets were trained. La-
bels from the Helen and LFPW datasets were used to learn
the PDM, using non-rigid structure from motion [16].

For fitting we used a multi-scale approach, with (15 ×
15, 21 × 21, 21 × 21) areas of interest for each scale, and
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Figure 4: a) The reliabilities of CLNF patch experts, smaller circles represent more reliability (less variance). b) Fitting on
the Multi-PIE dataset, observe the performance boost from both the LNF patch expert and the NU-RLMS fitting method.
Their combination (CLNF) leads to the lowest error, since NU-RLMS performs even better on more reliable response maps.
c) Fitting on the unseen illumination Multi-PIE subset. Note the good generalisability of CLNF.

11×11 patch expert support regions. Other parameters used
are: ρ = 2.0, r = 25, w = 5.

In order to evaluate the ability of CLNF to generalise on
unseen datasets we evaluated our approach on the datasets
labelled for the 300 Faces in-the-Wild Challenge [14]. For
testing we used three datasets: Annotated Faces in the Wild
[22], IBUG [18] and 300 Faces in-the-Wild Challenge (300-
W) [18] datasets. The IBUG, AFW, and 300-W datasets
contains 135, 337, and 600 images respectively.

To initialise model fitting, we used the bounding boxes
provided by the 300 Faces in-the-Wild Challenge [18] that
were initialised using the tree based face detector [22]. In
order to deal with pose variation the model was initialised at
5 orientations – (0, 0, 0), (0,±30, 0), (0, 0,±30) degrees of
roll, pitch and yaw. The final model with the lowest align-
ment error (Equation 4) was chosen as the correct one. This
makes the approach five times slower, but more robust.

Note that we were unable to use bounding box initialisa-
tions for the SDM method, and they were unnecessary for
tree based methods.

The results of this experiment can be seen in Figure 5.
Our approach can be seen outperforming all of the other
baselines tested. This confirms the benefits of CLNF and
its ability to generalise well to unseen data. Some exam-
ples of landmark detections can be seen in Figure 6. CLNF
gap between CLNF and CLM+ is much greater on in the
wild images than on the constrained ones. Furthermore,
note the huge discrepancy between CLNF and the AAM
baseline provided by the authors [10]. This illustrates the
greater generalisability of our proposed model over other
approaches.

5. Conclusions
We have presented a Constrained Local Neural Field

model for facial landmark detection and tracking. The two
main novelties of our approach show an improvement in

landmark detection accuracy over state-of-art approaches.
Our LNF patch expert exploits spatial relationships be-
tween patch response values, and learns non-linear rela-
tionships between pixel values and patch responses. Our
Non-uniform Regularised Landmark Mean-Shift optimisa-
tion technique, allows us to take into account the reliabil-
ities of each patch expert leading to better accuracy. We
have demonstrated the benefit of our approach on a number
of publicly available datasets.

CLNF is also a fast approach: a Matlab implementation
can process 2 images per second on in the wild data, and
10 images per second on Multi-PIE data, on a 3.5GHz dual
core Intel i7 machine. Lastly, all of the code and testing
scripts to recreate the results will be made publicly avail-
able.
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[2] T. Baltrušaitis, N. Banda, and P. Robinson. Dimensional af-
fect recognition using continuous conditional random fields.
In FG, 2013.
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