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Julien-Charles Lévesque Louis-Philippe Morency Christian Gagné

Abstract— A wide number of problems in face and gesture
analysis involve the labeling of temporal sequences. In this
paper, we introduce a discriminative model for such sequence
labeling tasks. This model involves two layers of latent dy-
namics, each with their separate roles. The first layer, the
neural network or gating layer, aims to extract non-linear
relationships between input data and output labels. The second
layer, the hidden-states layer, aims to model temporal sub-
structure in the sequence by learning hidden-states and their
transition dynamics. A new regularization term is proposed
for the training of this model, encouraging diversity between
hidden-states. We evaluate the performance of this model on
an audiovisual dataset of emotion recognition and compare it
against other popular methods for sequence labeling.

I. INTRODUCTION

Identifying activities in unsegmented video sequences is a
frequently encountered problem in face and gesture analysis,
but also in computer vision in general. Sequence labeling
methods try to solve this problem by learning a mapping
between the sequence of input features (e.g., audiovisual sig-
nals from video sequences) and the sequence of output labels
(e.g., behaviors or emotions expressed in the video). When
this mapping between input features and output labels is
linear, sequential discriminative models such as Conditional
Random Fields (CRFs) have shown great performance [1],
[2], often outperforming their generative counterpart.

Two of the main challenges for sequential labelling prob-
lem such as sequential emotion recognition are (1) how to
deal with complex non-linear input features, and (2) how
to model important sub-structure in label sequence. Facial
expression recognition needs to integrate information from
multiple cues (eye brows, eyes, mouth, cheeks) and these
expressions often have multiple phases (onset, peak, offset).
The same thing is true for body gestures where multiple
part of the body are used to perform a gesture [3] and these
gestures have phases (again: onset, peak, offset).

In this paper, we introduce the Latent-Dynamic Condi-
tional Neural Fields (LDCNF) to solve the problem of un-
segmented sequence labeling with non-linear input features
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Fig. 1. Overview of the LDCNF model and the problem of emotion
recognition from audiovisual data. The grey box represents the LDCNF
model and placed around it are the main elements of the problem. The
index j used in the LDCNF box represents a time frame.

and label sub-structure. This new graphical model is able to
capture the hidden sub-structure of a class sequence and at
the same time learn the non-linear relationships of complex
input features and class labels. As shown in Fig. 1, the
LDCNF model contains two layers of latent variables. Each
layer serves a different purpose. The first layer is known
as the neural network or gate layer and aims to learn the
non-linear mapping from the input sequences. The second
layer is known as the dynamic layer and models temporal
sub-structure from the class sequence.

A key novelty of our LDCNF model is its objective
function which include a new regularization term specifically
designed to reduce the potential overlap between the two
layers of latent variables. This is an important issue that often
arises when a probabilistic model contains more than one
layer of latent variables. Both layers could end up learning
the same things, if they are unconstrained in their tasks.
The new regularization term rewards diversity between latent
variables of different layers by penalizing cases where the
weights for different hidden states are similar.

We evaluate our LDCNF model using the publicly avail-
able dataset recently released as part of the Audio-Visual
Emotion Challenge (AVEC2011) [4]. This dataset contains
63 unsegmented sequences of natural interactions. This
dataset involves complex relationship between the multi-
modal input modalities (e.g., audio and video) and the
emotional labels. Finally, we compare our LDCNF model



with other popular approaches for unsegmented activity
recognition.

The following section describes related work on sequence
labeling and audio-visual emotion recognition. The Sec-
tion III gives some background information about the LD-
CRF model. Section IV presents our new Latent-Dynamic
Conditional Neural Field model and describes our learning
approach including the new regularization term. Sections V
and VI gives a detailed description of our experiments and
discusses our results. We conclude with Section VII.

II. RELATED WORK

Extensions of the CRF model have been proposed to
better model the natural sub-structure happening in many
sequence labeling tasks such as emotion recognition. Two
such examples are the Hidden Conditional Random Field
(HCRF) for segmented sequences by Quattoni et al. [5] and
the Latent-Dynamic Conditional Random Field (LDCRF) for
unsegmented sequences by Morency et al. [6]. Both models
incorporate hidden state variables which model the sub-
structure of a class sequence and, in the case of the LDCRF,
learn dynamics between class labels. Although they succeed
in learning the substructure in gestures or activities, this
family of CRF models have a harder time to learn complex
non-linear relationships.

The recently introduced Conditional Neural Field (CNF)
proposed to address this issue by adding a hidden layer to
the CRF model which contains gate functions, each acting
as a local neuron or feature extractor [7]. The CNF model
can automatically learn an implicit nonlinear representation
of features and can capture more complicated relationships
between the inputs and outputs. A key advantage of the CNF
model is that it can learn these non-linear relationships while
keeping the learning and inference procedures efficient using
a dynamic programming algorithm. While good results have
been shown on protein secondary structure prediction and
handwriting recognition, the CNF does not explicitly model
the sub-structure of the class sequence which, as we show
in our experiments, is important for unsegmented activity
recognition.

Van der Maaten et al. [8] used a similar intuition and in-
troduced the Hidden-Unit Conditional Random Field, where
they added a layer of binary neurons. This layer outputs
a binary representation of the input data and also serves
to extract non-linear relationships between the input fea-
tures and output labels. It was tested on optical character
recognition, sentence labeling, part-of-speech tagging, and
protein secondary sub-structure prediction. Shyr et al. [9]
proposed a kernel method for sequence dimension reduction
which also fares well compared to the previous literature in
dimensionality reduction, but their method was only applied
on segmented sequences. None of these models contain two
layers of latent variables to model both the label sub-structure
and the non-linearity between input features.

A. Emotion recognition

Papers [10] and [11] include surveys on emotion recogni-
tion to which are refered readers new to the field. Of interest
is the work by Nicolaou et al. [12], who ran experiments
on the classification of spontaneous affect based on Audio-
Visual features using coupled Hidden-Markov Models. They
showed that using the likelihoods produced from separate
HMMs as inputs to other classifiers can be beneficial.
Wollmer et al. [13] used Conditional Random Fields (CRF)
for discrete emotion recognition based on a selection of
acoustic features. In addition, they use Long Short-Term
Memory Recurrent Neural Networks to perform regression
analysis on these two dimensions. Both of these approaches
demonstrate the benefits of including temporal information
when approaching emotion recognition in dimensional space.

Eyben et al. [14] fused different visual and audio modal-
ities in order to analyze human affect in valence and expec-
tation dimensions. They found that high level event-based
features such as smiles, head nods and laughter were better
suited for their task than low level signal-based features such
as facial feature points and spectral information.

Ramirez et al. [15] used LDCRFs to recognize presence
of emotions in audio, visual and audiovisual signals for
the AVEC 2011 challenge. By using high level features,
they were able to produce the best results for the visual
sub-challenge. Our experiments present a comparison of the
performance of our model with the LDCRF model using the
same input features.

Jain et al. [16] applied LDCRFs to model the temporal
dynamics of face shapes for emotion recognition and showed
an improvement in performance compared to using only
facial appearance. Rudovic et al. [17] also used an extension
of HCRFs, hidden conditional ordinal random fields (H-
CORF), for expression recognition in learned manifolds.

III. LATENT-DYNAMIC CONDITIONAL RANDOM FIELDS

LDCRFs [6] were designed to learn the sub-structure in
sequence labels. The goal is to learn a mapping between a se-
quence of observations x = {x1, x2, . . . , xm} (e.g., features
provided by facial trackers and audio feature extractors) and
a sequence of labels y = {y1, y2, . . . , ym} (e.g., presence
of an emotion or not). Each label yj is contained in the
set of all possible labels yj ∈ Y , and each observation is a
feature vector xj ∈ IRd. For each sequence, a series of hidden
variables serve to model the hidden or latent dynamics of
the process, h = {h1, h2, . . . , hm}, each part of a finite set
of hidden states hj ∈ H. The latent conditional model is
represented as :

P (y|x, θ) =
∑
h

P (y|h, x, θ) · P (h|x, θ), (1)

where θ is the parameter vector defining the model. To keep
training and inference tractable, the sets of hidden states are
forced to be disjoint. Each hj is a member of a set Hyj of
possible hidden states for the class label yj , thus sequences
which have any hj /∈ Hyj will have P (y|x, θ) = 0.



The model is then expressed as:

P (y|x, θ) =
∑

h:∀hj∈Hyj

P (h|x, θ), (2)

P (h|x, θ) = 1

Z(x, θ)
exp

(∑
k

θk · Fk(h, x)

)
, (3)

where the partition function Z is defined as:

Z(x, θ) =
∑
h

exp

(∑
k

θk · Fk(h, x)

)
. (4)

Fk is defined as:

Fk(h, x) =

m∑
j=1

fk(hj−1, hj , x, j), (5)

and each feature function fk(hj−1, hj , x, j) is either
a vertex function vh,f (hj , x, j) or an edge function
eh,h′(hj−1, hj , x, j). The first depend only on neighboring
observations in the sequence while the second depends
on adjacent hidden variables in the sequence and models
transitions between hidden states. The feature functions take
the following forms :

vh,f (hj , x, j) = δ[hj = h] · xjf , (6)
eh,h′(hj , x, j) = δ[hj = h] · δ[hj−1 = h′], (7)

where δ[hj = h] is an indicator function, equal to one
only if the hidden state at position j is h.

LDCRFs were used extensively for gesture recognition
with a small number of dimensions, but fall short on tasks
requiring the use of a high number of continuous features.
More recent approaches like conditional neural fields handle
better this feature complexity, but do not explicitly model the
hidden label sub-structure. In the next section, we will study
how to take advantage of such approaches for the LDCNF
model.

IV. LATENT-DYNAMIC CONDITIONAL NEURAL FIELDS

We define our latent-dynamic conditional neural field
model by adding a single-layer neural network as a prepro-
cessing layer to the LDCRF model (see Fig. 2). This provides
a better representation of the input data and helps with the
modeling of the hidden dynamics.

For this model, Equations 3 and 5 from the previous
section remain identical, but we will modify the vertex
feature functions so that they include a single-layer neural
network. The new vertex feature functions thus take the
following form :

vh,g(hj , x, j) = gate(θGg · xj) · δ[hj = h], (8)

where θGg is a vector of weights for the gate g, gate(·) is a
gating function, in this work the logistic function, gate(x) =
1/(1+exp(−x)). The parameter vector is split in three sub-
vectors, one for each type of feature function, respectively
edge, vertex, and gate functions, giving θ = [θE , θV , θG].
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Fig. 2. The Latent-Dynamic Conditional Neural Field model.

This model has two layers of hidden dynamics, the gating
layer and the hidden states layer. As with neural networks,
it is not always clear whether an additional layer will help
generalization. Both layers could end up learning the same
things, since they are unconstrained in their tasks. In the next
section, we will discuss strategies to constrain learning in a
way that will make both layers useful.

A. Learning parameters

This model is trained by log-likelihood maximization
with gradient ascent. In this work, the LBFGS method was
used [18] because of its speed and robustness, but other
methods could be suitable. Given a training set of n labelled
sequences (Xi, Yi), the objective function is as follows:

L(θ) =

n∑
i=1

logP (Yi|Xi, θ)−
1

2σ2
||θ||2 − αRhg. (9)

The first term of the previous equation is the log-likelihood of
each individual sequence with the current model. The second
term is the log of a Gaussian prior with variance σ2, i.e.,
P (θ) ∼ exp( 1

2σ2 ‖θ‖2). The last term is a new regularization
term aiming to constrain the training of the weights between
the hidden states layer and the gates layer. This term will be
high if the weights are similar for different hidden states, and
low otherwise. More precisely, it is the sum of dot products
between weight vector associated with each hidden state :

Rhg =

m∑
j=1

m∑
k=j+1

θVhj
· θVhk

(10)

This regularization term will encourage a diversity between
hidden states. It will also reduce the probability that both
layers model the same dynamics. The α parameter allows to
control the strength of this regularization.

The log-likelihood of a single training sequence Xi, Yi is
given by:

logP (Yi|Xi, θ) = log
∑
h∈HYi

P (h|x, θ) (11)

logP (Yi|Xi, θ) =

log
∑
h∈HYi

exp

(∑
k

θk · Fk(h, x)

)
− logZ(x, θ). (12)
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Fig. 3. Comparison of CRF, CNF and LDCRF models (from left to right).

The derivative of this log-likelihood with respect to an
arbitrary parameter θd is:

∂Li
∂θd

=
∑
h

P (h|yi, xi, θ) ·
∂ (
∑
k θk · Fk(h, x))
∂θd

−
∑
y′,h

P (y′, h|yi, xi, θ) ·
∂ (
∑
k θk · Fk(h, x))
∂θd

.

(13)

According to the three types of parameters in the model,
Equation 13 will take three different forms. The gradients
for edge and vertex features are the same as for classical
LDCRFs, while the gradients for gate features take the
following form:

∂Li
∂θGg,f

=
∑
h

P (h|yi, xi, θ) · θVh,g ·
∂
(∑m

j=1 vh,g(hj , x, j)
)

∂θGg,f

−
∑
y′,h

P (y′, h|yi, xi, θ) · θVh,g ·
∂
(∑m

j=1 vh,g(hj , x, j)
)

∂θGg,f
,

(14)

where
∂vh,g(hj , x, j)

∂θGg,f
= gate(θGg · xj) ·

(1− gate(θGg · xj)) · δ[hj = h].

(15)

Using the forward-backward algorithm [19], the gradient
can be computed efficiently. Similarly to CNFs and LDCRFs,
the training of an LDCNF model is a non convex optimiza-
tion problem.

V. EXPERIMENTS

We analyse the performance of the LDCNF model on
a multimodal dataset for the recognition of emotions, the
Audio/Visual Emotion Challenge 2011 (AVEC2011) [4],
[20]. Twenty participants were recorded while holding con-
versations with an operator who adopted in sequence roles
designed to evoke emotions in the participants, producing a
total of 63 sequences. The presence of emotion was first
labelled on a continuous scale or zero to one, then the
final labels were produced by thresholding these degrees
of emotion. In this experiment, we aim at recognizing the
emotion of arousal.

The video data consists of a 780 x 580 pixel resolution
video recorded at 49.979 frames per second, with one label

Fig. 4. Sample frames from the AVEC 2011 dataset (the avatar’s video
was not part of our experiments).

per frame (a screenshot is provided in Fig. 4). The audio
data was recorded at 48 kHz with 24 bits per sample, with
one label per word provided.

The audio and video data were preprocessed as in [15].
For the video data, each video sequence was pre-processed
using the Omron OKAO Vision software library [21] to
extract the following facial features: horizontal eye gaze
direction (degrees), vertical eye gaze direction (degrees),
smile intensity (from 0-100), and head tilt (degrees). We
believe that our model will better extract the non-linear
relationship between these often geometrical features than
the previously existing models.

Similarly, the audio data were also preprocessed using
correlation-based feature selection (CFS) [22] to obtain a
smaller subset of features more relevant to the task. Since
sampling frequencies were not the same for the audio and
video signals, the video features extracted were averaged
over the course of each word to produce sequences of the
same length. Other alternatives to combining these signals
could have been evaluated, but this is not the topic of this
work. Furthermore, every model evaluated used the same
input features and thus the same fusion technique, assuring
a fair comparison.

A. Models

The LDCNF model is compared against four other models:
Conditional Random Field (CRF), Support Vector Machine
(SVM [23]), Latent-Dynamic Conditional Random Field
(LDCRF), and Conditional Neural Field (CNF). Comparison
of the different models used for evaluation is done in Fig. 3.



Conditional Random Field: As a baseline, the per-
formance of a linear-chain CRF is compared against the
other methods. Long-range dependencies were used for the
input features – the model was tested for window sizes
in {0, 1, 2}. A window of size 1 implies that each label
is predicted by looking at, in addition to the current data
sample, both the one before and after (for a window of size
2, two before and two after, etc.). Different regularization
parameter values were considered, in the range 10k, with
k = {−2,−1, . . . , 2}.

Support Vector Machine: The second baseline is a
the multi-class SVM trained on independent frames with
a Radial Basis Function (RBF) kernel. During training and
validation, two parameters were validated: C, the penalty for
classification errors, and γ, a parameter of the RBF function,
both with values 10k, k = {−2,−1, . . . , 2}.

Latent-Dynamic Conditional Random Field: Naturally,
the LDCRF’s performance is evaluated on the given problem.
Similarly to the CRF, long-range dependencies are consid-
ered (window size ∈ {0, 1, 2}) and different regularization
parameter values are tested σ = 10k, k = {−2,−1, . . . , 2}.
Various number of hidden states are also considered, hs ∈
{2, 3, 4}.

Conditional Neural Field: We compare against the sim-
pler CNF method, to assert whether or not LDCNF offers a
better performance for its two hidden layers. In this case, the
parameters to test for are window sizes (in {0, 1, 2}), regu-
larization parameter values (σ = 10k, k = {−2,−1, . . . , 2}),
and the number of gates to use (in {3, 4, 5, 10}).

Latent-dynamic Conditional Neural Fields: Perfor-
mance was computed was computed for the LDCNF model
for different values of window size (∈ {0, 1, 2}), regular-
ization parameter (10k, k = {−2,−1, . . . , 2}), number of
hidden states (in {2, 3, 4}), number of gates (in {3, 4, 5, 10}),
and the additional regularization parameter (σ = 10k, k =
{−3,−2, . . . , 0, 1}).

B. Methodology

For all methods, hold-out testing and validation sets were
used. Training was performed on a set of 31 sequences, with
validation and testing on separate datasets of 16 sequences
each. In the terminology used by the AVEC dataset maintain-
ers, the training dataset was kept intact and used solely for
training, while the development dataset was split in half, one
half becoming the validation dataset, the other half becoming
the testing dataset.

For each method, on each dataset, the optimal parameters
were selected based on F1 performance (or F-measure) on
the validation dataset. The F1 score is given by :

F1 = 2 · precision · recall
precision + recall

. (16)

For models where optimization is non convex (LDCRF, CNF,
LDCNF) three random starts were issued for each parameter
set, and the best one (based on the performance on the
validation set) was used for selection of the best parameters.

TABLE I
ERROR MEASURES FOR THE MODELS OF INTEREST.

AUC EER F1

CRF 60.01 58.79 56.68
SVM 70.71 65.84 65.21
LDCRF 75.81 69.48 67.95
CNF 88.71 80.54 79.90
LDCNF 91.63 83.99 82.78
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Fig. 5. ROC curves for the best models found during parameter search.

VI. RESULTS AND DISCUSSION

In this section, we present the area under the ROC
curve, equal error rate and F1 accuracy for each method
combined in Table I. These results show that modeling the
label sub-structure using hidden states always improves the
performance. This is shown both by comparing the LDCRF
with the CRF model and by comparing the LDCNF model
with the CNF model. The results also confirm that modeling
the non-linearity between input features and labels using
neural network improves performance. This is shown by both
the CNF vs. CRF comparison and the LDCNF and LDCRF
comparison. By integrating both latent layers, our LDCNF
model outperforms all previous approaches. Fig. 5 also shows
the ROC curves for the different trained models.

To better understand the possible impact of the regulariza-
tion factor added in Equation 9, we study the performance
of the different LDCNF models trained during our parameter
search with regards to the α parameter value. Performances
are drawn in Fig. 6. From this graph, the best α value would
seem to be located around 0.1, and it was observed in our
tests that this value provided the better performance. This
alpha parameter forced distinct hidden-states to be modeled
and seemed benefical up to a point, where the regularization
became too strong and started hindering the optimization
process.

The fact that our regularization seems to improve perfor-
mance is an interesting result, and further research should in-
vestigate the impact of this regularization on more problems -
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as well as investigating the use of different regularization
terms.

VII. CONCLUSION

In this paper, we presented a model for the labeling of
unsegmented data sequences, applied to audiovisual emotion
recognition. This model uses two hidden layers, the first
to extract a better representation of the input data, and a
second to model temporal sub-structures in the sequences at
hand. A new regularization term is proposed to constrain the
training of the hidden states, encouraging them to be differ-
ent. Our experiments have shown that this model improves
performance over previous methods, and that the introduced
regularization term is beneficial for training.

Further work should study what other techniques can
be used to make the training of this type of model more
straightforward, including different regularization terms and
layer-wise training. We also plan to evaluate our model
on other video activity recognition that require both the
modeling of temporal sub-structure and the extraction of non-
linear relationships between the input data and output labels.
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