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Abstract- A wide number of problems in face and gesture 
analysis involve the labeling of temporal sequences. In this 
paper, we introduce a discriminative model for such sequence 
labeling tasks. This model involves two layers of latent dy­
namics, each with their separate roles. The first layer, the 
neural network or gating layer, aims to extract non-linear 
relationships between input data and output labels. The second 
layer, the hidden-states layer, aims to model temporal sub­
structure in the sequence by learning hidden-states and their 
transition dynamics. A new regularization term is proposed 
for the training of this model, encouraging diversity between 
hidden-states. We evaluate the performance of this model on 
an audiovisual dataset of emotion recognition and compare it 
against other popular methods for sequence labeling. 

I. INTRODUCTION 

Identifying activities in unsegmented video sequences is a 

frequently encountered problem in face and gesture analysis, 

but also in computer vision in general. Sequence labeling 

methods try to solve this problem by learning a mapping 

between the sequence of input features (e.g., audiovisual sig­

nals from video sequences) and the sequence of output labels 

(e.g., behaviors or emotions expressed in the video). When 

this mapping between input features and output labels is 

linear, sequential discriminative models such as Conditional 

Random Fields (CRFs) have shown great performance [1], 

[2], often outperforming their generative counterpart. 

Two of the main challenges for sequential labelling prob­

lem such as sequential emotion recognition are (1) how to 

deal with complex non-linear input features, and (2) how 

to model important sub-structure in label sequence. Facial 

expression recognition needs to integrate information from 

multiple cues (eye brows, eyes, mouth, cheeks) and these 

expressions often have multiple phases (onset, peak, offset). 

The same thing is true for body gestures where multiple 

part of the body are used to perform a gesture [3] and these 

gestures have phases (again: onset, peak, offset). 

In this paper, we introduce the Latent-Dynamic Condi­

tional Neural Fields (LDCNF) to solve the problem of un­

segmented sequence labeling with non-linear input features 
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Fig. 1. Overview of the LDCNF model and the problem of emotion 
recognition from audiovisual data. The grey box represents the LDCNF 
model and placed around it are the main elements of the problem. The 
index j used in the LDCNF box represents a time frame. 

and label sub-structure. This new graphical model is able to 

capture the hidden sub-structure of a class sequence and at 

the same time learn the non-linear relationships of complex 

input features and class labels. As shown in Fig. 1, the 

LDCNF model contains two layers of latent variables. Each 

layer serves a different purpose. The first layer is known 

as the neural network or gate layer and aims to learn the 

non-linear mapping from the input sequences. The second 

layer is known as the dynamic layer and models temporal 

sub-structure from the class sequence. 

A key novelty of our LDCNF model is its objective 

function which include a new regularization term specifically 

designed to reduce the potential overlap between the two 

layers of latent variables. This is an important issue that often 

arises when a probabilistic model contains more than one 

layer of latent variables. Both layers could end up learning 

the same things, if they are unconstrained in their tasks. 

The new regularization term rewards diversity between latent 

variables of different layers by penalizing cases where the 

weights for different hidden states are similar. 

We evaluate our LDCNF model using the publicly avail­

able dataset recently released as part of the Audio-Visual 

Emotion Challenge (AVEC2011) [4]. This dataset contains 

63 unsegmented sequences of natural interactions. This 

dataset involves complex relationship between the multi­

modal input modalities (e.g., audio and video) and the 

emotional labels. Finally, we compare our LDCNF model 



with other popular approaches for unsegmented activity 

recognition. 

The following section describes related work on sequence 

labeling and audio-visual emotion recognition. The Sec­

tion III gives some background information about the LD­

CRF model. Section IV presents our new Latent-Dynamic 

Conditional Neural Field model and describes our learning 

approach including the new regularization term. Sections V 

and VI gives a detailed description of our experiments and 

discusses our results. We conclude with Section VII. 

II. RELATED W ORK 

Extensions of the CRF model have been proposed to 

better model the natural sub-structure happening in many 

sequence labeling tasks such as emotion recognition. Two 

such examples are the Hidden Conditional Random Field 

(HCRF) for segmented sequences by Quattoni et al. [5] and 

the Latent-Dynamic Conditional Random Field (LDCRF) for 

unsegmented sequences by Morency et al. [6]. Both models 

incorporate hidden state variables which model the sub­

structure of a class sequence and, in the case of the LDCRF, 

learn dynamics between class labels. Although they succeed 

in learning the substructure in gestures or activities, this 

family of CRF models have a harder time to learn complex 

non-linear relationships. 

The recently introduced Conditional Neural Field (CNF) 

proposed to address this issue by adding a hidden layer to 

the CRF model which contains gate functions, each acting 

as a local neuron or feature extractor [7]. The CNF model 

can automatically learn an implicit nonlinear representation 

of features and can capture more complicated relationships 

between the inputs and outputs. A key advantage of the CNF 

model is that it can learn these non-linear relationships while 

keeping the learning and inference procedures efficient using 

a dynamic programming algorithm. While good results have 

been shown on protein secondary structure prediction and 

handwriting recognition, the CNF does not explicitly model 

the sub-structure of the class sequence which, as we show 

in our experiments, is important for unsegmented activity 

recognition. 

Van der Maaten et al. [8] used a similar intuition and in­

troduced the Hidden-Unit Conditional Random Field, where 

they added a layer of binary neurons. This layer outputs 

a binary representation of the input data and also serves 

to extract non-linear relationships between the input fea­

tures and output labels. It was tested on optical character 

recognition, sentence labeling, part-of-speech tagging, and 

protein secondary sub-structure prediction. Shyr et al. [9] 

proposed a kernel method for sequence dimension reduction 

which also fares well compared to the previous literature in 

dimensionality reduction, but their method was only applied 

on segmented sequences. None of these models contain two 

layers of latent variables to model both the label sub-structure 

and the non-linearity between input features. 

A. Emotion recognition 

Papers [10] and [11] include surveys on emotion recogni­

tion to which are refered readers new to the field. Of interest 

is the work by Nicolaou et al. [12], who ran experiments 

on the classification of spontaneous affect based on Audio­

Visual features using coupled Hidden-Markov Models. They 

showed that using the likelihoods produced from separate 

HMMs as inputs to other classifiers can be beneficial. 

Wollmer et al. [13] used Conditional Random Fields (CRF) 

for discrete emotion recognition based on a selection of 

acoustic features. In addition, they use Long Short-Term 

Memory Recurrent Neural Networks to perform regression 

analysis on these two dimensions. Both of these approaches 

demonstrate the benefits of including temporal information 

when approaching emotion recognition in dimensional space. 

Eyben et al. [14] fused different visual and audio modal­

ities in order to analyze human affect in valence and expec­

tation dimensions. They found that high level event-based 

features such as smiles, head nods and laughter were better 

suited for their task than low level signal-based features such 

as facial feature points and spectral information. 

Ramirez et al. [15] used LDCRFs to recognize presence 

of emotions in audio, visual and audiovisual signals for 

the AVEC 2011 challenge. By using high level features, 

they were able to produce the best results for the visual 

sub-challenge. Our experiments present a comparison of the 

performance of our model with the LDCRF model using the 

same input features. 

Jain et al. [16] applied LDCRFs to model the temporal 

dynamics of face shapes for emotion recognition and showed 

an improvement in performance compared to using only 

facial appearance. Rudovic et al. [17] also used an extension 

of HCRFs, hidden conditional ordinal random fields (H­

CORF), for expression recognition in learned manifolds. 

III. LATENT-DYNAMIC CONDITIONAL RANDOM FIELDS 

LDCRFs [6] were designed to learn the sub-structure in 

sequence labels. The goal is to learn a mapping between a se­

quence of observations x = {Xl, X2, ... ,Xm} (e.g., features 

provided by facial trackers and audio feature extractors) and 

a sequence of labels y = {Yl, Y2, ... , Ym} (e.g., presence 

of an emotion or not). Each label Yj is contained in the 

set of all possible labels Yj E Y, and each observation is a 

feature vector Xj E ]Rd. For each sequence, a series of hidden 

variables serve to model the hidden or latent dynamics of 

the process, h = {hI, h2, ... , hm}, each part of a finite set 

of hidden states hj E 1-l. The latent conditional model is 

represented as : 

P(ylx, B) = L P(ylh, X, B) . P(hlx, B), (1) 

h 

where B is the parameter vector defining the model. To keep 

training and inference tractable, the sets of hidden states are 

forced to be disjoint. Each hj is a member of a set 1-lYj of 

possible hidden states for the class label Yj, thus sequences 

which have any hj tI- 1-lYi will have P(ylx, B) = o. 



The model is then expressed as: 

P(ylx, B) = L P(hlx,B), (2) 

h:VhjEHYj 

P(hlx, B) = Z(�, B) exp ( � Bk . Fk(h, X)) , (3) 

where the partition function Z is defined as: 

(4) 

Fk is defined as: 

m 

Fk(h,x) = L fk(hj-1,hj,x,j), (5) 

j=1 
and each feature function fk(hj-1,hj,x,j) is either 

a vertex function Vh,J (hj, x, j) or an edge function 

eh,h' (hj-1, hj, x, j). The first depend only on neighboring 

observations in the sequence while the second depends 

on adjacent hidden variables in the sequence and models 

transitions between hidden states. The feature functions take 

the following forms : 

vh,J(hj,x,j) = b[hj = hl· Xjf, (6) 

eh,h,(hj,x,j) = b[hj = hl· b[hj-1 = hi] ,  (7) 

where b[hj = hl is an indicator function, equal to one 

only if the hidden state at position j is h. 
LDCRFs were used extensively for gesture recognition 

with a small number of dimensions, but fall short on tasks 

requiring the use of a high number of continuous features. 

More recent approaches like conditional neural fields handle 

better this feature complexity, but do not explicitly model the 

hidden label sub-structure. In the next section, we will study 

how to take advantage of such approaches for the LDCNF 

model. 

I V. LATENT-DYNAMIC CONDITIONAL NEURAL FIELDS 

We define our latent-dynamic conditional neural field 

model by adding a single-layer neural network as a prepro­

cessing layer to the LDCRF model (see Fig. 2). This provides 

a better representation of the input data and helps with the 

modeling of the hidden dynamics. 

For this model, Equations 3 and 5 from the previous 

section remain identical, but we will modify the vertex 

feature functions so that they include a single-layer neural 

network. The new vertex feature functions thus take the 

following form : 

(8) 

where B; is a vector of weights for the gate g, gate(-) is a 

gating function, in this work the logistic function, gate(x) = 
1/(1 +exp( -x)). The parameter vector is split in three sub­

vectors, one for each type of feature function, respectively 

edge, vertex, and gate functions, giving B = [BE, BV, BGl. 

Fig. 2. The Latent-Dynamic Conditional Neural Field model. 

This model has two layers of hidden dynamics, the gating 

layer and the hidden states layer. As with neural networks, 

it is not always clear whether an additional layer will help 

generalization. Both layers could end up learning the same 

things, since they are unconstrained in their tasks. In the next 

section, we will discuss strategies to constrain learning in a 

way that will make both layers useful. 

A. Learning parameters 

This model is trained by log-likelihood maxImIzation 

with gradient ascent. In this work, the LBFGS method was 

used [18] because of its speed and robustness, but other 

methods could be suitable. Given a training set of n labelled 

sequences (Xi, Yi), the objective function is as follows: 

n 1 L(B) = L log P(YiIXi, B) - 2a2 11BI12 - aRhg· (9) 
i=1 

The first term of the previous equation is the log-likelihood of 

each individual sequence with the current model. The second 

term is the log of a Gaussian prior with variance a2, i.e., 

P(B) rv exp(�IIBI12). The last term is a new regularization 

term aiming to constrain the training of the weights between 

the hidden states layer and the gates layer. This term will be 

high if the weights are similar for different hidden states, and 

low otherwise. More precisely, it is the sum of dot products 

between weight vector associated with each hidden state : 

m m 

Rhg = L L Bi:j• Bi:k (10) 

j=1 k=j+l 
This regularization term will encourage a diversity between 

hidden states. It will also reduce the probability that both 

layers model the same dynamics. The a parameter allows to 

control the strength of this regularization. 

The log-likelihood of a single training sequence Xi, Yi is 

given by: 

log P(YiIXi, B) = log L P(hlx, B) (11) 

hEHYi 
log P(YiIXi, B) = 

log L exp (L Bk . Fk(h, X)) -log Z(x, B). (12) 

hEHYi k 



Fig. 3. Comparison of CRF, CNF and LDCRF models (from left to right). 

The derivative of this log-likelihood with respect to an 

arbitrary parameter Bd is: 

According to the three types of parameters in the model, 

Equation 13 will take three different forms. The gradients 

for edge and vertex features are the same as for classical 

LDCRFs, while the gradients for gate features take the 

following form: 

aLi v a (2::T=lVh,9(hj,x,j)) 
aBC = L P(hIYi, Xi, B) . Bh,g . 

aBc g,f h g,f 

I v a (2::';lVh,9(hj,x,j)) 
- L P(y , hlYi, Xi, B) . Bh,g . 

aBc 

where 

y' ,h g,f 
(14) 

aVh,g(hj,x,j) _ (Bc.). 
aBc - gate 9 xJ 

(15) g,f 
(1 - gate(B; . Xj)) . o[hj = h]. 

Using the forward-backward algorithm [19], the gradient 

can be computed efficiently. Similarly to CNFs and LDCRFs, 

the training of an LDCNF model is a non convex optimiza­

tion problem. 

V. EXPERIMENTS 

We analyse the performance of the LDCNF model on 

a multimodal dataset for the recognition of emotions, the 

AudioNisual Emotion Challenge 2011 (AVEC2011) [4], 

[20], Twenty participants were recorded while holding con­

versations with an operator who adopted in sequence roles 

designed to evoke emotions in the participants, producing a 

total of 63 sequences. The presence of emotion was first 

labelled on a continuous scale or zero to one, then the 

final labels were produced by thresholding these degrees 

of emotion. In this experiment, we aim at recognizing the 

emotion of arousal. 

The video data consists of a 780 x 580 pixel resolution 

video recorded at 49.979 frames per second, with one label 

Fig. 4. Sample frames from the AVEC 2011 dataset (the avatar's video 
was not part of our experiments). 

per frame (a screenshot is provided in Fig. 4). The audio 

data was recorded at 48 kHz with 24 bits per sample, with 

one label per word provided. 

The audio and video data were preprocessed as in [15]. 

For the video data, each video sequence was pre-processed 

using the Omron OKAO Vision software library [21] to 

extract the following facial features: horizontal eye gaze 

direction (degrees), vertical eye gaze direction (degrees), 

smile intensity (from 0-100), and head tilt (degrees). We 

believe that our model will better extract the non-linear 

relationship between these often geometrical features than 

the previously existing models. 

Similarly, the audio data were also preprocessed using 

correlation-based feature selection (CFS) [22] to obtain a 

smaller subset of features more relevant to the task. Since 

sampling frequencies were not the same for the audio and 

video signals, the video features extracted were averaged 

over the course of each word to produce sequences of the 

same length. Other alternatives to combining these signals 

could have been evaluated, but this is not the topic of this 

work. Furthermore, every model evaluated used the same 

input features and thus the same fusion technique, assuring 

a fair comparison. 

A. Models 

The LDCNF model is compared against four other models: 

Conditional Random Field (CRF), Support Vector Machine 

(SVM [23]), Latent-Dynamic Conditional Random Field 

(LDCRF), and Conditional Neural Field (CNF). Comparison 

of the different models used for evaluation is done in Fig. 3. 



Conditional Random Field: As a baseline, the per­

formance of a linear-chain CRF is compared against the 

other methods. Long-range dependencies were used for the 

input features - the model was tested for window sizes 

in {O, 1, 2}. A window of size 1 implies that each label 

is predicted by looking at, in addition to the current data 

sample, both the one before and after (for a window of size 

2, two before and two after, etc.). Different regularization 

parameter values were considered, in the range 10k, with 

k = {-2, -1, ... , 2}. 
Support Vector Machine: The second baseline is a 

the multi-class SVM trained on independent frames with 

a Radial Basis Function (RBF) kernel. During training and 

validation, two parameters were validated: 0, the penalty for 

classification errors, and "(, a parameter of the RBF function, 

both with values 10k, k = {-2, -1, ... , 2}. 
Latent-Dynamic Conditional Random Field: Naturally, 

the LDCRF's performance is evaluated on the given problem. 

Similarly to the CRF, long-range dependencies are consid­

ered (window size E {O, I, 2}) and different regularization 

parameter values are tested cr = 10k, k = {-2, -1, ... , 2}. 
Various number of hidden states are also considered, hs E 
{2, 3, 4}. 

Conditional Neural Field: We compare against the sim­

pler CNF method, to assert whether or not LDCNF offers a 

better performance for its two hidden layers. In this case, the 

parameters to test for are window sizes (in {O, I, 2}), regu­

larization parameter values (cr = 10k, k = {-2, -1, ... , 2}), 
and the number of gates to use (in {3, 4, 5, 1O}). 

Latent-dynamic Conditional Neural Fields: Perfor­

mance was computed was computed for the LDCNF model 

for different values of window size (E {O, I, 2}), regular­

ization parameter (10k, k = {-2, -1, ... , 2}), number of 

hidden states (in {2, 3, 4}), number of gates (in {3, 4, 5, 1O} ), 

and the additional regularization parameter (cr = 10k, k = 

{-3, -2, . . .  , 0, I}). 

B. Methodology 

For all methods, hold-out testing and validation sets were 

used. Training was performed on a set of 31 sequences, with 

validation and testing on separate datasets of 16 sequences 

each. In the terminology used by the AVEC dataset maintain­

ers, the training dataset was kept intact and used solely for 

training, while the development dataset was split in half, one 

half becoming the validation dataset, the other half becoming 

the testing dataset. 

For each method, on each dataset, the optimal parameters 

were selected based on Fl performance (or F-measure) on 

the validation dataset. The Fl score is given by : 

precision · recall 
F 1 = 2 . -"--....,.....,..-----,-:­

precision + recall 
(16) 

For models where optimization is non convex (LDCRF, CNF, 

LDCNF) three random starts were issued for each parameter 

set, and the best one (based on the performance on the 

validation set) was used for selection of the best parameters. 

TABLE I 

ERROR MEASURES FOR THE MODELS OF INTEREST. 

AUC EER Fl 

CRF 60.01 58.79 56.68 
SYM 70.71 65.84 65.21 
LDCRF 75.81 69.48 67.95 
CNF 88.71 80.54 79.90 
LDCNF 91.63 83.99 82.78 
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Fig. 5. ROC curves for the best models found during parameter search. 

V I. RESULTS AND DISCUSSION 

In this section, we present the area under the ROC 

curve, equal error rate and Fl accuracy for each method 

combined in Table I. These results show that modeling the 

label sub-structure using hidden states always improves the 

performance. This is shown both by comparing the LDCRF 

with the CRF model and by comparing the LDCNF model 

with the CNF model. The results also confirm that modeling 

the non-linearity between input features and labels using 

neural network improves performance. This is shown by both 

the CNF vs. CRF comparison and the LDCNF and LDCRF 

comparison. By integrating both latent layers, our LDCNF 

model outperforms all previous approaches. Fig. 5 also shows 

the ROC curves for the different trained models. 

To better understand the possible impact of the regulariza­

tion factor added in Equation 9, we study the performance 

of the different LDCNF models trained during our parameter 

search with regards to the 0: parameter value. Performances 

are drawn in Fig. 6. From this graph, the best 0: value would 

seem to be located around 0.1, and it was observed in our 

tests that this value provided the better performance. This 

alpha parameter forced distinct hidden-states to be modeled 

and seemed benefical up to a point, where the regularization 

became too strong and started hindering the optimization 

process. 

The fact that our regularization seems to improve perfor­

mance is an interesting result, and further research should in­

vestigate the impact of this regularization on more problems -
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Fig. 6. Testing performance for the LDCNF model on AVEC dataset with 
varying values of a parameter. 

as well as investigating the use of different regularization 

terms. 

V II. CONCLUSION 

In this paper, we presented a model for the labeling of 

unsegmented data sequences, applied to audiovisual emotion 

recognition. This model uses two hidden layers, the first 

to extract a better representation of the input data, and a 

second to model temporal sub-structures in the sequences at 

hand. A new regularization term is proposed to constrain the 

training of the hidden states, encouraging them to be differ­

ent. Our experiments have shown that this model improves 

performance over previous methods, and that the introduced 

regularization term is beneficial for training. 

Further work should study what other techniques can 

be used to make the training of this type of model more 

straightforward, including different regularization terms and 

layer-wise training. We also plan to evaluate our model 

on other video activity recognition that require both the 

modeling of temporal sub-structure and the extraction of non­

linear relationships between the input data and output labels. 
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