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Abstract—Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully

learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random

field with a countably infinite number of hidden states, which rids us not only of the necessity to specify a priori a fixed number of hidden

states available but also of the problem of overfitting. Markov chain Monte Carlo (MCMC) sampling algorithms are often employed for

inference in such models. However, convergence of such algorithms is rather difficult to verify, and as the complexity of the task at

hand increases the computational cost of such algorithms often becomes prohibitive. These limitations can be overcome by variational

techniques. In this paper, we present a generalized framework for infinite HCRF models, and a novel variational inference approach on

a model based on coupled Dirichlet Process Mixtures, the HCRF-DPM. We show that the variational HCRF-DPM is able to converge to

a correct number of represented hidden states, and performs as well as the best parametric HCRFs—chosen via cross-validation—for

the difficult tasks of recognizing instances of agreement, disagreement, and pain in audiovisual sequences.

Index Terms—Nonparametric models, discriminative models, hidden conditional random fields, dirichlet processes, variational inference

Ç

1 INTRODUCTION

HIDDEN conditional random fields (HCRFs) [1] are dis-
criminative models that learn the joint distribution of

a class label and a sequence of latent variables conditioned
on a given observation sequence, with dependencies among
latent variables expressed by an undirected graph. HCRFs
do not only learn hidden states that discriminate one class
label from all the others, but also structure that is shared
among labels. A limitation of the HCRFs is that finding the
optimal number of hidden states for a given classification
problem is not always intuitive, and learning the correct
number of states is often a trial-and-error process involving
cross-validation, that can be very computationally expen-
sive. Even then, one has to be careful to avoid the trap of
overfitting. These limitations motivated our proposal of an
infinite HCRF model that allows its number of states to
grow as necessary to fit the data.

Over the past decade, nonparametric methods have been
successfully applied to many existing graphical models,
allowing them to grow the number of latent states as neces-
sary to fit the data. A prominent and well-studied example

is the Infinite Hidden Markov Model (IHMM or HDP-
HMM) [2], [3], [4], a Hierarchical Dirichlet Process (HDP)-
driven HMM with an infinite number of potential hidden
states. Other notable examples include the first such model,
the Infinite Gaussian Mixture Model [5], but also the more
recent Infinite Factorial Hidden Markov Model [6], the Infi-
nite Latent Conditional Random Fields1 [8], the Mixture
Dirichlet Process Markov Random Field (MDP-MRF) [9]
and the Infinite Hidden Markov Random Field Model
(IHMRF) [10]. Hidden Conditional Random Fields are
related to Hidden Markov Random Fields, in that both
employ a layer of latent variables with an undirected graph
specifying dependencies between those variables. However,
there is the important difference that HMRFs model a joint
distribution over latent variables and observations, whereas
the HCRF is a discriminative sequential model with latent
variables.

Infinite HCRFs were first presented in [11] and since
exact inference for such a model with an infinite number of
parameters is intractable, inference was based on a Markov
chain Monte Carlo (MCMC) sampling algorithm. Although
MCMC algorithms have been successfully applied on
numerous applications, they have some significant draw-
backs: they are notoriously slow to converge, it is hard to
verify their convergence, and they often don’t scale well to
larger datasets and higher model complexity. Most impor-
tantly, the model presented in [11] is better suited for han-
dling solely discrete features.

In this work, we consider a deterministic alternative to
MCMC sampling algorithm for infinite HCRFs with a
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1. To avoid confusion, note that these are not Latent-Dynamic Con-
ditional Random Fields [7] with countably infinite hidden states, but an
infinite mixture of latent Conditional Random Field models.
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variational inference [12] approach. Variational inference will
allow the model to converge faster, verify convergence and
scale without a prohibitive computational cost. The model we
present in this paper allows a countably infinite number of
hidden states, shared among labels, via the use of multiple
Dirichlet Process Mixtures (DPMs). Specifically, we present a
novel mean field variational approach that uses DPM con-
structions in the model potentials to allow for the representa-
tion of a potentially infinite number of hidden states.
Furthermore, we show that our model, the HCRF-DPM, is a
generalization of the model presented in [11] and is able to
handle continuous features naturally.

HCRF models are well-suited for a number of prob-
lems, including object recognition, gesture recognition [1],
speech modeling [13] and multimodal cue modeling for
human behavior recognition [14]. The latter problem of
classifying episodes of high-level emotional states based
on nonverbal cues in audiovisual sequences of spontane-
ous human behavior is rather complex. Infinite models
are particularly attractive for modeling human behavior
as we usually cannot have a solid intuition regarding the
number of hidden states in such applications. Further-
more, it opens up the way of analyzing the hidden states
these models converge to, which might provide social sci-
entists with valuable information regarding the temporal
interaction of groups of behavioral cues that are different
or shared in these behaviors. We therefore decided to
evaluate our novel model on behavior analysis and spe-
cifically the real-world problems of recognizing instances
of agreement, disagreement and pain in recordings of
spontaneous human behavior. We expected that our
HCRF-DPM would converge to a correct number of
shared hidden states and perform at least as well as the
best cross-validated finite HCRF.

In summary, we propose in this paper:

� A novel discriminative probabilistic model that is
able to automatically determine its hidden structure
without losing the flexibility of an HCRF learning
the appropriate weights to fine-tune this structure.
The proposed model can be considered a generaliza-
tion of the model proposed in [11], in terms of
scalability and ability to handle continuous observa-
tions, and of the model proposed in [1] in terms of
automatically determining the hidden structure of
the model.

� A novel variational inference procedure to learn
such a model.

In the following section, we consicely present Dirichlet
Processes and finite HCRFs. We present in Section 3 our
variational HCRF-DPM model. Finally, we evaluate our
model performance in Section 4.2, and conclude in
Section 5.

2 THEORETICAL BACKGROUND

Our HCRF-DPM model, like many other infinite models,
relies onDirichlet ProcessMixtures.Wepresent in this section
a brief introduction to Dirichlet Processes and finite Hidden
Conditional Random Fields. Along with the introduction to
Dirichlet Processes we discuss the Chinese Restaurant Analogy,
an analogy that has proved helpful in explaining Dirichlet

Processes and their generalizations. For a concise but com-
plete discussion of Dirichlet Processes the reader is advised to
read [15], [16]. use the formulation from [16].

2.1 Dirichlet Processes (DP)

A Dirichlet Process is a distribution of distributions, param-
eterized by a scale parameter a and a probability measure
�, the basis around which the distributions G � DPða;�Þ
are drawn, with variability governed by the a parameter.
Sethuraman [17] presented the so-called “stick-breaking”
construction for DPs, which is based on random variables
ðb0

kÞ1k¼1 and ðhkÞ1k¼1, where b0
kja;� � Betað1;aÞ and hkja;

� � �:

bk ¼ b0
k

Yk�1

l¼1

ð1� b0
lÞ G ¼

X1
k¼1

bkdhk ; (1)

where d is the Dirac delta function. By letting bb ¼ ðbkÞ1k¼1 we
abbreviate this construction as bbja � GEMðaÞ [17].

Successive draws from G are conditionally independent
given G. By integrating G out, the conditional distribution
of a draw ci given all past draws fc1; c2; . . . ; ci�1g is:

cijc1; c2; . . . ; ci�1;a;� �
XK
k¼1

nk

i� 1þ a
dhk þ

a

i� 1þ a
�; (2)

where nk is the number of times a draw was assigned hk.
A useful analogy for understanding equation (2), and its

explicit clustering effect, is the Chinese Restaurant Process.
According to the metaphor, the DP is a chinese restaurant
with an unlimited number of tables. ci is the ith customer,
hk is a table in the restaurant. A draw from a DP can then be
described as follows: The ith customer enters the restaurant,
and sits at a table hk with a probability proportionate to the
number of existing customers nk on the kth table. The cus-
tomer will refuse to sit on one of the K already occupied
tables with probability proportional to a, in which case the
restaurant provides a new table (a new state, drawn from �)
and the number of occupied tables in the restaurant is
incremented.

A Dirichlet Process Mixture model is a hierarchical
Bayesian model that uses a DP as a nonparametric prior:

Gja;� � DPða;�Þ; ct j G � G st � pðstjctÞ; (3)

where ðstÞTt¼1 is a dataset of size T , governed by a distribu-

tion conditioned on ðctÞTt¼1, auxiliary index variables that

get assigned each to one of the clusters ðhkÞ1k¼1. As new data-
points are drawn, the number of components in this mixture
model grows. In the model we present in this paper, as we
explain later, we employ a number of DP priors coupled
together at the data generation level, i.e. st above is a
function of auxiliary index variables drawn from all
different DPs.

2.2 Finite Hidden Conditional Random Fields

Hidden Conditional Random Fields—discriminativemodels
that contain hidden states—are well-suited to a number of
problems. Quattoni et al. [1] presented and used them to cap-
ture temporal dependencies across frames and recognize dif-
ferent gesture classes. They did so successfully by learning a

1918 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 9, SEPTEMBER 2015



state distribution among the different gesture classes in a dis-
criminative manner, allowing them to not only uncover the
distinctive configurations that uniquely identify each class,
but also to learn a shared common structure among the clas-
ses. Conditional Random Fields and HCRFs can be defined
in arbitrary graph structures but in our paper, driven by our
application field, we assume data to be sequences that corre-
spond to undirected chains. Ourwork, however, can be read-
ily applied to tree-structuredmodels.

We represent T observations as X ¼ ½x1;x2; . . . ;xT �.
Each observation at time t 2 f1; . . . ; Tg is represented by a

feature vector f t 2 <d, where d is the number of features,
that can include any features of the observation sequence.
We wish to learn a mapping between observation sequence
X and class label y 2 Y, where Y is the set of available
labels. The HCRF does so by estimating the conditional joint
distribution over a sequence of latent variables s ¼ ½s1;
s2; . . . ; sT �, each of which is assigned to a hidden state
hk 2 H, and a label y, given X. One of the main representa-
tional power of HCRFs is that the latent variables can
depend on arbitrary features of the observation sequence.
This allows us to model long range contextual dependen-
cies, i.e., st, the latent variable at time t, can depend on
observations that happened earlier or later than t.

An HCRF models the conditional probability of a class
label given an observation sequence by:

pðy j X; uuÞ ¼
X
s

pðy; s j X; uuÞ ¼
P

s Fðy; s;X; uuÞP
y02Y;s Fðy0; s;X; uuÞ : (4)

The model is discriminative because it doesn’t model a joint
distribution that includes input X, but it only models the
distribution of a label y conditioned on X. The potential
function Fðy; s;X; uuÞ 2 < is parameterized by uu, which
measures the compatibility between a label y, a sequence of
observations X and a configuration of the latent variables s.
This potential function in linear-chain finite HCRFs is
defined as:

Fðy; s;X; uuÞ ¼ exp
XT
t¼1

X
l2L1

f1;lðy; st;XÞu1;l
(

þ
XT
t¼2

X
l2L2

f2;lðy; st; st�1;XÞu2;l
)
;

(5)

where L1 is the set of node features, L2 the set of edge fea-
tures, f1;l, f2;l are functions defining the features in the

model, and uu1;l , uu2;l are the components of uu, corresponding
to node and edge parameters. Each of the f1 features
depends on a single latent variable in the model; the f2 fea-
tures depend on pairs of latent variables/nodes.

The graph of a linear-chain HCRF is a chain where each
node corresponds to a latent variable st at time t. For such a
model, the potential function is usually defined as:

Fðy; s;X; uuÞ ¼ exp
XT
t¼1

Xd
i¼1

uxðst; iÞftðiÞ
(

þ uyðst; yÞ þ
XT
t¼2

ueðst; st�1; yÞ
)
:

(6)

In this case, our parameter vector uu is made up of three com-

ponents: uu ¼ uxux
T uyuy

T ueue
T

� �T
. Parameter vector uxux models the

relationship between features of the observation sequence f t
and hidden states hk 2 H and is typically of length
ðd� jHjÞ. It can be modeled as a table with each row corre-
sponding to one dimension of a single observation and
every column to one hidden state. If the HCRF model has 10
input features and three hidden states, then the uxux parame-
ter will be of size 30 (10�3). uyuy models the relationship of
the hidden states hk 2 H and labels y 2 Y and is of length
ðjYj � jHjÞ. It can be modeled as a table with each row corre-
sponding to one label and each column to a hidden state. If
the model contains three hidden states and two labels, then
the uyuy will be of size 6 (2�3). ueue represents the links between
hidden states. It is equivalent to the transition matrix in a
Hidden Markov Model, but an important difference is that
an HCRF keeps a matrix of “transition” weights for each
label and ueue is of length ðjYj � jHj � jHjÞ. If the HCRF model
contains three hidden states and two labels, then the ueue will
be of size 18 (2�3�3).

In this paper, we use the notation uxðhk;fÞ to refer to the
weight that measures the compatibility between the feature
indexed by f and state hk 2 H. Similarly, uyðhk; yÞ stand for
weights that correspond to class y and state hk, whereas
ueðhk; h

0; yÞ measure the compatibility of the label y with a
transition from h0 to hk.

3 HIDDEN CONDITIONAL RANDOM FIELDS WITH

COUPLED DIRICHLET PROCESS MIXTURES

For an infinite HCRF we allow an unbounded number of
potential hidden states in H. This means, that for a time-
stamp t, latent variable st could get assigned to one of the
infinitely many hk 2 H. This becomes possible, by introduc-
ing random variables fpxðhkjiÞg1k¼1; fpyðhkjyÞg1k¼1; fpeðhk; yj
haÞg1;jYj

k¼1;y¼1 for an observation feature indexed by i, label y,

and an assignment st�1 ¼ ha. These new random variables
are drawn by distinct processes that are able to model such
quantities and are subsequently incorporated in the node
and edge features of our HCRF. We present in this paper a
model that uses Dirichlet Process Mixtures, an HCRF-DPM,
to define these random quantities.2 These variables, even
though drawn by distinct processes, are coupled together
by a common latent variable assignment in our graphical
model. Fig. 1 shows the graphical representations of
our model. We redefine our potential function F from (6) as
follows:

Fðy; s;X; uuÞ ¼ exp
XT
t¼1

Xd
i¼1

uxðst; iÞftðiÞ log pxðstjiÞ
(

þ uyðst; yÞ log pyðstjyÞ

þ
XT
t¼2

ueðst; st�1; yÞ log peðst; yjst�1Þ
)
:

(7)

We assume that random variables pp ¼ ffpxðhkjiÞg1k¼1,

fpyðhkjyÞg1k¼1, fpeðhk; yjhaÞg1;jYj
k¼1;y¼1g are between 0 and 1.

2. We could however use others, like the Hierarchical Dirichlet Pro-
cess and the Pitman-Yor process.
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These are in effect the quantities that will allow the model to
‘select’ an appropriate number of useful hidden states for a
given classification task. f t are positive features extracted
from the observation sequence X and, as before, they can
include arbitrary features of the input. We assume that uu are
positive parameters and, as in (6), they model the relation-
ships between hidden states and features (uux), labels (uuy)
and transitions (uue). These positivity constraints for uu and f
are essential in this model, since the p-quantities are ran-
dom variables and influence the probabilities of the hidden
states: a negative parameter or feature would make an oth-
erwise improbable state very likely to be chosen. Moreover,
these constraints ensure compliance with the positivity con-
straints of our variational parameter updates (29)-(34), as
we shall see later in this section. Finally, it is important to
note that the positivity of uu is not theoretically restrictive for

our model due to the HCRF normalization factor 1
ZðXÞ in (4)

where ZðXÞ ¼Py02Y;s Fðy0; s;X; uuÞ.
The HCRF-DPMmodel is an IHCRF where the quantities

fpxðhkjiÞg1k¼1, fpyðhkjyÞg1k¼1, fpeðhk; yjhaÞg1;jYj
k¼1;y¼1 in (7) are

driven by coupled DPMs. It is important to understand that
for the DPMs driving the pe quantities in the IHCRF edge
features, hk and y are treated as a single random variable—
their product—vm ¼ fhk; yg that effectively has a state-space
of size jYj � jHj, still an infinite number. According to the
stick-breaking properties of DPs, we construct pp ¼ fppx;
ppy;ppeg conditioned on a new set of random variables
pp0 ¼ fpp0

x;pp
0
y;pp

0
eg that follow Beta distributions:

p0
xðhkjiÞ � Betað1;axÞ;

pxðhkjiÞ ¼ p0
xðhkjiÞ

Yk�1

j¼1

ð1� p0
xðhjjiÞÞ

(8)

p0
yðhkjyÞ � Betað1;ayÞ;

pyðhkjyÞ ¼ p0
yðhkjyÞ

Yk�1

j¼1

ð1� p0
yðhjjyÞÞ

(9)

p0
eðvmjhaÞ � Betað1; aeÞ;

peðvmjhaÞ ¼ p0
eðvmjhaÞ

Ym�1

j¼1

ð1� p0
eðvmjhaÞÞ

(10)

This process can be made clearer by examining Fig. 2,
where we visualize the stick breaking construction of an

HCRF-DPM model with two observation features, three
labels, and 10 ‘important’ hidden states. The pe-sticks have
an important—for the implementation of our model—dif-
ference to the px and py-sticks in that the hidden states are
intertwined with the labels, with each stick piece represent-
ing an v-state. This means there are jYj such states
corresponding to one h-state. This becomes particularly
important later on when we calculate our variational
updates.

By using (7) the sequence of latent variables s ¼
fs1; . . . ; sTg can then be generated by the following process:

1) Draw p0
xjax � Betað1;axÞ, p0

yjay � Betað1;ayÞ,
p0
ejae � Betað1;aeÞ

2) Calculate pp from (8)-(10). Note that this will only
need to be calculated for a finite number of hidden
states, due to our variational approximation.

3) For the tth latent variable, using (7) we draw

stjfpp0
x;pp

0
y;pp

0
e; st�1; y;Xg

� Mult exp
Xd
i¼1

uxðst; iÞftðiÞ log pxðstjiÞ
( 

þ uyðst; yÞ log pyðstjyÞ

þ ueðst; st�1; yÞ log peðfst; ygjst�1Þ
)!

:

(11)

Rather than expressing the model in terms of pp, we use
pp0 ¼ fpp0

x;pp
0
y;pp

0
eg resulting in the following joint distribution

that describes the HCRF-DPM:

pðy; s;pp0jX; uÞ ¼ pðy; s j pp0;X; uÞpðpp0
xÞpðpp0

yÞpðpp0
eÞ (12)

with

pðy; s j pp0;X; uÞ ¼ 1

ZðXÞ Fðy; s;pp0;X; uuÞ; (13)

where ZðXÞ ¼Py02Y;s Fðy0; s;pp0;X; uuÞ. We assume indepen-
dence of all p0 variables above, so for example pðpp0

xÞ ¼Q1
k¼1

Qd
i¼1 p

0
xðhkjiÞ. We avoid explicitly writing out such

expansions to make the paper easier to read.
Comparison with previous work. It is important at this stage

to compare our model described by (7) with the MCMC
model (IHCRF-MCMC) presented in [11]. The latter work
defined potentials for each of the relationships between

Fig. 1. Graphical representation of our Variational IHCRF driven by a number of Dirichlet processes incorporated in the model potentials.
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hidden states and features, labels and transitions and the
potential function F as their product along the model chain:

Fðy; s;XÞ ¼ F xðs;XÞF yðy; sÞF eðy; sÞ (14)

F xðs;XÞ ¼
YT
t¼1

Yd
i¼1

pxðstjiÞftðiÞ (15)

F yðy; sÞ ¼
YT
t¼1

pyðstjyÞ (16)

F eðy; sÞ ¼
YT
t¼2

peðy; stjst�1Þ: (17)

The quantities ppx;ppy;ppe above are conceptually the same as
in our model, except for the fact that in [11] they have Hier-
archical Dirichlet Process priors instead of DP priors, as we
do in this paper.3

The potential function (14) above can be rewritten as
follows:

Fig. 2. Visualization of the p-‘sticks’ used to construct the infinite states in our HCRF-DPM. The fictitious model presented here has two observation
features fð1Þ; fð2Þ, 3 labels y1; y2; y3 and fewer than 10 important hidden states h1; h2; h3 . . . Each ‘stick’ sums up to 1, and the last piece always rep-
resents the sum of the lengths that correspond to all hidden states after the 10th state. Notice that for the pe-‘sticks’ this corresponds to 30 v states.
For example peðh1; y3jh2Þ controls the probability of transitioning from h2 to h1 in a sequence with label y3. See text for more details.

3. Using HDP priors allows separate DPMs to be linked together via
an identical base probabilistic measure, which is itself a DP. It would be
interesting to use such priors for our model, but we were able to obtain
satisfactory results without introducing higher complexity and addi-
tional hyperparameters into the Variational IHCRF we experimented
with. Notice that our model allows for such flexibility: using HDP pri-
ors would simply change the updates for our variational coordinate
descent algorithm.
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Fðy; s;XÞ ¼ exp
XT
t¼1

Xd
i¼1

ftðiÞ log pxðstjiÞ
(

þ log pyðstjyÞ þ
XT
t¼2

log peðst; yjst�1Þ
)
:

(18)

A comparison between (18) and (7) makes it clear that our
model is a generalization of the IHCRF presented in [11],
which assumes, according to our framework, that
uu-parameters are set to 1. The introduction of these parame-
ters is not redundant, but allows for more powerful and
flexible models. Also, when dealing with classification prob-
lems involving continuous observation features using (7) for
the potential function of an infinite HCRF is more suitable
than (18), as we show in the experimental section. In those
cases it is known that u-parameters are of particular impor-
tance as they are able to capture the scaling of each input
feature. The former model is not guaranteed to perform
well unless some non-trivial normalization is applied on the
observation features.

3.1 Variational Inference for the HCRF-DPM

Since inference on our model (12) is intractable, we need to
approximate the marginal probabilities along the chain of
our graphical model, and the p-quantities in (7). We shall
do so with a mean-field variational inference approach. The
basic idea of such an approach is to restructure our quanti-
ties computation into an optimization problem. We can
then simplify our optimization which depends only on a
number of so-called variational parameters. Solving for
those will give us updates for a coordinate descent
algorithm which will converge to an approximation of the
quantities we wish to calculate. We use the following
approximation for the joint distribution of our model:

qðy; s;pp0jXÞ ¼ qðy; sjXÞqðpp0
xÞqðpp0

yÞqðpp0
eÞ; (19)

where,

qðy; sjXÞ ¼ qðy; s1jXÞ
YT
t¼2

qðy; stjst�1;XÞ

¼
Yd
i¼1

qðs1jiÞ
Y
y02Y

qðs1jy0Þ

YT
t¼2

Yd
i¼1

qðstjiÞ
Y
y02Y

ðqðstjy0ÞÞqðst; yjst�1Þ:

(20)

Each individual approximate qðp0
xÞ; qðp0

yÞ; qðp0
eÞ follows a

Beta distribution with variational parameters ttx; tty; tte
respectively. Explicitly, for features indexed by i, labels
indexed by y, and hidden states indexed by k, k0:

qðp0
xðhkjiÞÞ ¼ Beta tx;1ðk; iÞ; tx;2ðk; iÞ

� �
; (21)

qðp0
yðhkjyÞÞ ¼ Beta ty;1ðk; yÞ; ty;2ðk; yÞ

� �
; (22)

qðp0
eðy; hkjhk0 ÞÞ ¼ Beta te;1ðy; k; k0Þ; te;2ðy; k; k0Þ

� �
: (23)

In order to make inference tractable we approximate
all pp variables by employing a truncated stick-breaking

representation which approximates the infinite number of
hidden states with a finite number L [15]. This is the crux
of our variational approach, and it effectively means that
we set a truncation threshold L, above which the above
quantities are set to 0: 8k > L; qðp0

xðhkjiÞÞ ¼ 0; qðp0
yðhkj

yÞÞ ¼ 0, qðp0
eðy; hkjhk0 ÞÞ ¼ 0. Note that using this approxi-

mation is statistically rather different from using a finite
model: an HCRF-DPM simply approximates the infinite
number of states and will still reduce the number of use-
full hidden states to something smaller than L. It will be
easier to understand how by examining Fig. 2 in our
supplementary material, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2014.2388228,
where we show how a finite HCRF with 50 hidden states
compares to an HCRF-DPM with L ¼ 50. It is finally
important to stress that by constraining our u-parameters
and observation features to be positive, we effectively
make the number of the u-parameters that matter finite:
changing a u-parameter associated with a hidden state
k > L will not change our model, as one can see in (7).
Note that the choice of L has to be the same during
training and inference.

3.2 Model Training

A trained variational HCRF-DPM model is defined as the
set of optimal parameters uu� and optimal variational
parameters tt�. In this work we obtain these with a train-
ing algorithm (see Algorithm 1 for a summary) that can
be divided in two distinct phases: (i) the optimization of
our variational paramaters through a coordinate descent
algorithm using the updates derived below and (ii) the
optimization of parameters uu through a gradient ascent
method. Although it would be possible to have a fully
Bayesian model with uu being random variables in our
model, inference would become more difficult. Moreover,
having a single value for our uu parameters is good for
model interpretability and makes the application of a
trained model to test data much easier.

Although it is possible to have a fully Bayesian model
with uu being random variables in our model, inference
would become more difficult. Moreover, having a single
value for our parameters is good for interpretability of our
model, and makes the application of a trained model to test
data much easier.

3.2.1 Phase 1: Optimization of Variational

Parameters tt

Now that we have defined an approximate model distribu-
tion in (20), we can approximate the necessary quantities
qðstÞ, qðst; yÞ, qðst; st�1Þ, qðst; st�1; yÞ, log qðppxÞ, log qðppyÞ,
log qðppeÞ for our inference. These approximations, as one
can see later in this section, depend solely on our variational
parameters tt. We calculate those by minimizing the reverse
Kullback-Liebler divergence (KL) between approximate
and actual joint distributions of our model, (12) and (20),
using a coordinate descent algorithm:

KL qðy; s;pp0jX; Þ jj pðy; s;pp0jX; uuÞ½ � ¼ (24)
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Z
pp0

X
y;s

qðy; sjXÞqðpp0Þlog qðy; sjXÞqðpp0Þ
pðy; sjX; uu;pp0Þpðpp0Þ dpp

0 (25)

¼
Z
pp0

X
y;s

qðy; sjXÞqðpp0ÞlogZðXÞqðy; sjXÞqðpp0Þ
Fðy; s;pp0;XÞpðpp0Þ dpp0: (26)

Since the normalization factor ZðXÞ ¼Py;s Fðy; s;XÞ is a
constant for a given observation sequence, the reverse Kull-
back-Liebler divergence becomes:

KL½qjjp� ¼ log ZðXÞ � log Fðy; s;pp0;XÞpðpp0Þh iqðy;s;pp0 jXÞ
þ log qðy; sjXÞqðpp0Þh iqðy;s;pp0 jXÞ;

(27)

where h�iq is the expectation of � with respect to q. Thus, the
energy of the configuration of our random variables y; s;
and pp0 is log Fðy; s;pp0;XÞpðpp0Þ and the free energy of the
variational distribution:

LðqÞ ¼ � log Fðy; s;pp0;XÞpðpp0Þh iqðy;s;pp0 jXÞ
þ log qðy; sjXÞqðpp0Þh iqðy;s;pp0 jXÞ:

(28)

Since log ZðXÞ is constant for a given observation sequence,
minimizing the free energy LðqÞ minimizes the KL diver-
gence. And since KL½qjjp� is positive, the free energy LðqÞ 	
�log ZðXÞ. Therefore KL is minimized at 0 when LðqÞ ¼
log ZðXÞ.

Algorithm 1. Model Training for Variational HCRF-
DPM

Initialize sx;1; sx;2; sy;1; sy;2; se;1; se;2
Randomly initialize ax;ay; ae; uu; tt
Initialize nbItrs, nbVarItrs
itr ¼ 0
converged ¼ FALSE

while (not converged) and (itr < nbItrs) do
varItr ¼ 0
varConverged ¼ FALSE
while (not varConverged) and
(varItr < nbVarItrs) do
{Phase 1: Optimize variational parameters tt}
Calculate 8t qðstjX; y; st�1Þ by using (35)-(41)

Compute approximate marginals qðst ¼ hkjiÞ, qðst ¼
hkjyÞ, and qðst ¼ hk; y; st�1 ¼ hk0 Þ by using a forward-
backward algorithm.

Hyperparameter posterior sampling for ax;ay;ae by
using (45)

Calculate Kullback-Liebler divergence KLðvarItrÞ by
using (27)
Update tt by using (29)-(34)

varConverged ¼ KLðvarItrÞ�KLðvarItr�1Þ
KLðvarItrÞ < �

varItr ¼ varItrþ 1
end while
{Phase 2: Optimize parameters uu}
Gradient ascent to find uuðiterationÞ by using a quasi-New-
ton method with (46)-(48) and an Armijo backtracking line
search with projected gradients to keep uu non-negative
converged ¼P juuðitrÞ � uuðitr� 1Þjð Þ < �0

itr ¼ itrþ 1
end while

Wewill obtain the variational updates for the two groups
of latent variables qðy; sjXÞ and qðpp0Þ by setting the partial
derivative with respect to each group of LðqÞ to 0 and solv-
ing for the approximate distribution of each group of latent
variables. The updates for the Beta parameters of qðpp0Þ from
(21)-(23) are:

tx;1ðk; iÞ ¼ 1þ
X
t

ft½i�uxðk; iÞqðst ¼ hkÞ (29)

tx;2ðk; iÞ ¼ ax þ
X
t

ft½i�
X
b>k

uxðb; iÞqðst ¼ hbÞ (30)

ty;1ðk; yÞ ¼ 1þ
X
t

uyðk; yÞqðst ¼ hkÞ (31)

ty;2ðk; yÞ ¼ ay þ
X
t

X
b>k

uyðb; iÞqðst ¼ hbÞ (32)

te;1ðy; k; k0Þ ¼ 1þ
X
t

ueðk; k0; yÞqðst ¼ hk; st�1 ¼ hk0 ; yÞ (33)

te;2ðy; k; k0Þ ¼ ae þ
X
t

X
yl>y

ueðk; k0; ylÞqðst ¼ hk; st�1 ¼ hk0 ; ylÞ

þ
X
b>k;yl

ueðb; k0; ylÞqðst ¼ hb; st�1 ¼ hk0 ; ylÞ:

(34)

Quantities qðst ¼ hkÞ, qðst ¼ hkÞ, and qðst ¼ hk; y; st�1 ¼
hk0 Þ can be obtained by the forward-backward algorithm.
The latter requires only conditional approximate likelihoods
qðst ¼ hkji; y; hk0 Þ, which can be be calculated by setting the
derivative of LðqÞwith respect to qðy; sjXÞ to zero:

qðst ¼ hkji; y; hk0 Þ / expfftðiÞuxðk; iÞðhlog p0
xðst ¼ hkjiÞiqðpp0Þ

þ
Xk�1

j¼1

hlog�1� p0
xðst ¼ hjjiÞÞiqðpp0Þ

�
;

uyðk; yÞ
�hlog p0

xðst ¼ hkjyÞiqðpp0Þ

þ
Xk�1

j¼1

hlogð1� p0
yðst ¼ hjjyÞÞiqðpp0Þ

�
;

ueðk; k0; yÞ
�hlog p0

eðst ¼ hk; yjst�1 ¼ hk0 Þiqðpp0Þ

þ
Xk�1

j¼1

hlogð1� p0
eðst ¼ hj; yjst�1 ¼ hk0 ÞÞiqðpp0Þ

�g:
(35)

Since all pp0 follow a Beta distribution, the expectations
above are known:

hlog p0
xðst ¼ hkjiÞi ¼ Cðtx;1ðk; iÞÞ �Cðtx;1ðk; iÞ þ tx;2ðk; iÞÞ;

(36)

log 1� p0
xðst ¼ hkjiÞ

� �� �
¼ Cðtx;2ðk; iÞÞ �Cðtx;1ðk; iÞ þ tx;2ðk; iÞÞ;

(37)

hlog p0
yðst ¼ hkjyÞi

¼ Cðty;1ðk; yÞÞ �Cðty;1ðk; yÞ þ ty;2ðk; yÞÞ;
(38)

hlogð1� p0
yðst ¼ hkjyÞÞi

¼ Cðty;2ðk; yÞÞ �Cðty;1ðk; yÞ þ ty;2ðk; yÞÞ;
(39)
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hlog p0
eðst ¼ hk; yjhk0 Þi

¼ Cðte;1ðy; k; k0ÞÞ �Cðte;1ðy; k; k0Þ þ te;2ðy; k; k0ÞÞ;
(40)

log 1� p0
eðst ¼ hk; yjhk0 Þ

� �� �
¼ Cðte;2ðk; yÞÞ �Cðte;1ðk; yÞ þ te;2ðk; yÞÞ;

(41)

whereCð�Þ is the digamma function.
The scaling parameters ax;ay;ae can have a significant

effect on our HCRF-DPM model, as they control the growth
of the used hidden states. It is suggested in [15] that for
DPMs one should place a Gammaðs1; s2Þ prior on these
parameters and integrate over them. Since our model uses a
number of DPMs, we include posterior updates for these
scaling parameters as part of our variational coordinate
descent algorithm. In this work, we use a different scaling
parameter for each DPM, but with a common prior. The var-
iational distribution for the scaling parameter ax;i corre-
sponding to the DPM for feature i is

qðax;iÞ ¼ Gamma w1;x; w2;x;i

� �
; (42)

where

w1;x ¼ s1;x þ L� 1 (43)

w2;x;i ¼ s2;x �
XL�1

k¼1

logð1� p0
xðk; iÞÞ

� �
q
; (44)

and we replace the ax values in (30) with the respective
expectation:

hax;iiq ¼
w1;x

w2;x;i
: (45)

The posterior updates for the rest of the scaling parameters
are obtained in a similar fashion and so they are omitted for
brevity.

3.2.2 Phase 2: Optimization of Parameters uu

We find our optimal parameters uuuuuu� ¼ argmax log pðyjX; uuuuuuÞ
based on a training set by using a common HCRF quasi-
Newton gradient ascent method (LBFGS), which requires
the gradient of the log-likelihood with respect to each
parameter. These gradients for our IHCRF are:

@ log pðyjX; uuÞ
@uxðk; iÞ ¼

X
t

pðst ¼ hkjy;X; uuÞftðiÞlog pxðhkjiÞ

�
X
y02Y;t

pðst ¼ hk; y
0jX; uuÞftðiÞlog pxðhkjiÞ;

(46)

@ log pðyjX; uuÞ
@uyðk; yÞ ¼

X
t

pðst ¼ hkjy;X; uuÞlog pyðhkjyÞ

�
X
y02Y;t

pðst ¼ hk; y
0jX; uuÞlog pyðhkjyÞ;

(47)

@ log pðyjX; uuÞ
@ueðk; k0; yÞ
¼
X
t

pðst ¼ hk; st�1 ¼ hk0 jy;X; uuÞlog peðhk; yjhk0 Þ

�
X
y02Y;t

pðst ¼ hk; st�1¼ hk0 ; y
0jX; uuÞlog peðhk; yjhk0 Þ:

(48)

We make this gradient ascent tractable by using the varia-
tional approximations for the intractable quantities in the

above equations. However, there is a significant difference
with other CRF and HCRF models that use such techniques
to find optimal parameters: we are constrained to only posi-
tive u-parameters, as this is an assumption we have to make
for our truncated stick-breaking process. Since we are using
a quasi-Newton method with Armijo backtracking line
search, we can use the gradient projection method of [18],
[19] to enforce this constrain. Finally, it is important to stress
here that, although our model includes parameters that are
not treated probabilistically, we have not seen signs of over-
fitting in our experiments (see Fig. 4).

3.2.3 Computational Complexity

The computational complexity of one iteration for the
IHCRF-MCMC model that is used by [11] is in fact OðTL2Þ,
where T is the length of the sequence and L is the number
of represented states, as it is a forward filtering-backwards
sampling algorithm. In our variational method an inference

step is OðTL2Þ, where T is the length of the sequence and L
the the number of available states. In an optimal implemen-
tation this could be a lot lower in practice by choosing to
ignore the use of hidden states that have a probability of
being chosen close to 0. In fact, a big advantage of our varia-
tional method is that it is a lot faster during inference. This
is because the IHCRF-MCMC needs to aggregate a large
number of samples during inference: after training only the
hyperparameters for that model are fixed, and the parame-
ters are sampled anew every time. In contrast, the method
we present here learns fixed parameters that are used for
the forward-backward algorithm.

4 EXPERIMENTAL RESULTS

4.1 Performance on a Synthetic Dataset with
Continuous Features

In an effort to demonstrate the ability of our HCRF-DPM to
model sequences with continuous features correctly, we cre-
ated a synthetic dataset, on which we compared its perfor-
mance to that of the IHCRF-MCMC model [11]. The simple
dataset was generated by two HMMs, with four Gaussian
hidden states initialized with the transition matrices, means
and standard deviations as shown in Tables 1, 2, and 3. Two

TABLE 1
Transition Matrix of the HMM Producing Sequences

for Label 1 with States S1, S2, S3 and S4

HMM-1 S1 S2 S3 S4

S1 0.4 0.4 0.1 0.1
S2 0.1 0.4 0.4 0.1
S3 0.1 0.1 0.4 0.4
S4 0.4 0.1 0.1 0.4

TABLE 2
Transition Matrix of the HMM Producing Sequences

for Label 2 with States S1, S2, S3 and S4

HMM-2 S1 S2 S3 S4

S1 0.1 0.7 0.1 0.1
S2 0.1 0.1 0.7 0.1
S3 0.1 0.1 0.1 0.7
S4 0.7 0.1 0.1 0.1
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of the states were shared between the two HMMs, resulting
in a total of six unique hidden states, out of a total of eight
for the two labels.

We trained 10 randomly initialized models of the finite
HCRF, IHCRF-MCMC and HCRF-DPM on 100 training
sequences and chose in each case the best one based on
their performance on an evaluation set of 100 different
sequences. The performance of the models was finally
evaluated by comparing the F1 measure achieved on a test
set of 100 other sequences. All sets had an equal number of
samples from each label. The IHCRF-MCMC model was
unable to solve this simple two-label sequence classifica-
tion problem with continuous-only input features: it con-
sistently selected Label 1. On the other hand, the finite
HCRF and the new HCRF-DPM model were successful in
achieving a perfect F1 score of 100 percent on the test set
(see Table 4).

4.2 Application to the Audiovisual Analysis
of Human Behavior

The problem of automatically classifying episodes of high-
level emotional states, such as pain, agreement and dis-
agreement, based on nonverbal cues in audiovisual sequen-
ces of spontaneous human behavior is rather complex [20].
Although humans are particularly good at interpreting such
states, automated systems perform rather poorly. Infinite
models are particularly attractive for modeling human
behavior as we usually cannot have a solid intuition regard-
ing the number of hidden states in such applications. Fur-
thermore, it opens up the way of analyzing the hidden
states these models converge to, which might provide social
scientists with valuable information regarding the temporal
interaction of groups of behavioral cues that are different or
shared in these behaviors. We therefore decided to evaluate
our novel approach on behavior analysis and specifically
the recognition of agreement, disagreement and pain in
recordings of spontaneous human behavior. We expected
that our HCRF-DPM models would find a good number of
shared hidden states and perform at least as well as the best
cross-validated finite HCRF.

In this work we used an audiovisual dataset of sponta-
neous agreement and disagreement and a visual dataset
of pain to evaluate the performance of the proposed
model on four classification problems: (1) ADA2, agree-
ment and disagreement recognition with two labels
(agreement versus disagreement); (2) ADA3, agreement
and disagreement recognition with three labels (agree-
ment versus disagreement versus neutral); (3) PAIN2,
pain recognition with two labels (strong pain versus no
pain); and (4) PAIN3, pain recognition with three labels
(strong pain versus moderate pain versus no pain). We

show that (1) our model is capable of finding a good
number of useful states; and (2) HCRF-DPMs perform
better than the best performing finite HCRF and HCRF-
MCMC models in all of these problems with the excep-
tion of ADA3, where the performance of the HCRF-DPM
is similar to that of the finite model.

The audiovisual dataset of spontaneous agreement and
disagreement comprises of 53 episodes of agreement, 94
episodes of disagreement, and 130 neutral episodes of nei-
ther agreement or disagreement. These episodes feature 28
participants and they occur over a total of 11 real political
debates from The Canal9 Database of Political Debates4 [21].
As the debates were filmed with multiple cameras, and
edited live to one feed, the episodes selected for the dataset
were only the ones that were contained within one personal,
close-up shot of the speaker. We used automatically
extracted prosodic features (continuous), based on previous
work on agreement and disagreement classification, and
manually annotated visual features, the hand and head ges-
tures hypothesized relevant according to literature [22]
(binary). The 2 prosodic features used were F0 and Energy,
and the nine gestures used in our experiments are the ‘Head
Nod’, ‘Head Shake’, ‘Forefinger Raise’, ‘Forefinger Raise-
Like’, ‘Forefinger Wag’, ‘Hand Wag’, ‘Hand Chop’, ‘Hands
Scissor’, and ‘Shoulder Shrug’ (see [22] for details). We
encoded each gesture in a binary manner, based on its pres-
ence at each of the 5,700 total number of video frames, with
each sequence ranging from 30 to 120 frames. The prosodic
features were extracted with the publicly available software
package OpenEar [23]. We compared the finite HCRFs and
the IHCRF-MCMC to our HCRF-DPM based on the F1 mea-
sure they achieved. In each case, we evaluated their perfor-
mance on a test set consisting of sequences from three
debates. We ran all models with 60 random initializations,
selecting the best trained model each time by examining the
F1 achieved on a validation set consisting of sequences from
three debates. It is important to stress that each sequence
belonged uniquely to either the training, the validation, or
the testing set.

The database of pain we used was the UNBC-McMaster
Shoulder Pain Expression Database5 [24], which features

TABLE 3
Mean and Variance for the Gaussian

States of Each HMM

S1 S2 S3 S4

HMM-1m 0.1 2 5 15
HMM-1s 0.4 0.8 0.12 0.56
HMM-2m 0.1 2 �10 �13
HMM-2s 0.4 0.8 0.8 0.8

TABLE 4
F1 Measure Achieved by Our HCRF-DPM versus the Best, in
Each Fold of Each Problem, Finite HCRF and IHCRF-MCMC

Dataset Finite HCRF IHCRF-MCMC Our HCRF-DPMs

Synthetic 100.0% 33.3% 100.0%

ADA2 58.4% 61.2% 76.1%
ADA3 50.7% 60.3% 49.8%

PAIN2 83.9% 88.4% 89.2%
PAIN3 53.9% 57.7% 59.0%

Synthetic: Two-label classification for an HMM-generated dataset with con-
tinuous-only features ADA2: Two-label classification for the Canal9 Dataset
of agreement and disagreement; ADA3: Three-label classification for the
Canal9 Dataset; PAIN2: Two-label classification for the UNBC dataset of
shoulder pain; PAIN3: Three-label classification for the UNBC dataset.

4. Publicly available at http://canal9-db.sspnet.eu/
5. Publicly available at http://www.pitt.edu/�jeffcohn/

PainArchive/
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25 subjects—patients spontaneously expressing various lev-
els of elicited pain in a total of 200 video sequences. The
database was coded for, among others, pain level per
sequence by expert observers on a six-point scale from 0 (no
pain) to 5 (extreme pain). Furthermore, each of the 48,398

video frames in the database was coded for each of the
observable facial muscle movements—action units (AUs)
according to the facial action coding system (FACS) [25] by
expert FACS coders. In our experiments we encoded each
of the possible 45 AUs in a binary manner, based on their

Fig. 3. Hinton Diagrams of p-quantities in node and edge features of variational HCRF-DPM models with L ¼ 10 on the first row (a-c), L ¼ 20 on the
second (d-f), L ¼ 30 on the third (g-i), L ¼ 40 on the fourth (j-l) for ADA2. The first column presents the p-quantities for node features: px for observa-
tion features in green, py for labels in black. The second and third columns present the pe-quantities for labels 1 and 2 respectively. See text for addi-
tional details.
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presence. We labeled sequences coded with 0 as ‘no pain’,
sequences coded with 1-2 as ‘moderate pain’, and those
coded as 3-5 as ‘strong pain’. For our experiments, we com-
pared the finite HCRFs and the IHCRF-MCMC to our
HCRF-DPM based on the F1 measure they achieved. We
evaluated the performance of the models on 25 different
folds (leave—7—subjects—out for testing). In each case we
concatenated the predictions for every test sequence of each
fold and calculated the F1 measure for each label. The mea-
sure we used was the average F1 over all labels. We ran
both HCRF and HCRF-DPM experiments with 10 random
initializations, selecting the best model each time by exam-
ining the F1 achieved on a validation set consisting of the
sequences from seven subjects. In every fold our training,
validation and testing sets comprised not only of unique
sequences but also of unique subjects.

For all four tasks, in addition to the random initializa-
tions the best HCRF model was also selected by experiment-
ing with different number of hidden states and different
values for the HCRF L2 regularization coefficient. Specifi-
cally, for each random initialization we considered models
with two, three, four, and five hidden states and an L2 coef-
ficient of 1, 10, and 100. This set of values for the hidden
states was selected after preliminary results deemed a larger
number of hidden states only resulted in severe overfitting
for all problems. We did not use regularization for our
HCRF-DPM models and all of them had their truncation
level set to L ¼ 10 and their hyperparameters to s1 ¼ 1;000
and s2 ¼ 10. Finally, our finite HCRF models were trained
with a maximum of 300 iterations for the gradient ascent
method used [1], whereas our HCRF-DPM models were

trained with a maximum of 1,200 variational coordinate
descent iterations and a maximum of 600 iterations of gradi-
ent ascent. All IHCRF-MCMC models were trained accord-
ing to the experimental protocol of [11]. They had their
initial number of represented hidden states set to K ¼ 10,
they were trained with 100 sampling iterations, and were
tested by considering 100 samples.

In an attempt to clearly show how a variational HCRF-
DPM functions differently from a finite HCRF, we com-
pared the learned potentials of an HCRF with 50 hidden
states for the two-label (dis)agreement recognition problem
to the learned equivalent potentials of an HCRF-DPM with
an upper bound of hidden states set to L ¼ 50. An HCRF
uses all 50 states roughly equally, whereas the learned
potentials for HCRF-DPM are a lot more sparse with only a
few number of hidden states used, due to the nonparamet-
ric prior on the pp-quantities (see relevant figure in the
supplementary material provided with this paper, available
online).

In Fig. 3 we show the learned nonparametric p parts of
the features of the best HCRF-DPM ADA2 model, based on
F1 achieved on our validation set, for L ¼ 10; 20; 30 and 40.
Each row is a separate DPM, with the DPMs for the edge
potentials spanning across labels. Recall from Fig. 2 that
these quantities have to sum to 1 across each row. As one
can see in these figures, paying particular attention to the
first column (node features), the number of hidden states
essentially utilized seems to be less than 10 in all cases.
Fig. 5 visualizes the learned nonparametric quantities of our
HCRF-DPM features for PAIN2 with L ¼ 10. As one can
clearly see, the model uses only a small number of shared
hidden states. An increase to L increases the number of
quantities we need to estimate, and we also need to increase
our number of random initializations to find a suitable one
for our model. L ¼ 10 therefore seems to be a reasonable
value that allows the proper balance between computation
time and accuracy.

Since we have introduced parameters uu it is sensible to
test our methodology for signs of overfitting. The only
value linked with the number of our parameters is our
truncation level L: their number increases as we increase
L. In Fig. 4 we show the F1 measure achieved on the vali-
dation set of ADA2 for HCRF-DPMs with L ¼ 10, 20, 30,
40. This graph is a strong indication that HCRF-DPMs do
not show signs of overfitting. We would see such signs if
by increasing L the performance (F1 measure) for our

Fig. 4. HCRF-DPM F1 measure (higher F1 means higher perfomance)
achieved on the validation set of ADA2. Our model does not show signs
of overfitting: the F1 achieved on the validation set does not decrease as
the truncation level L, and thus the number of u-parameters, increases.

Fig. 5. Hinton Diagrams of p-quantities in node and edge features of variational HCRF-DPMmodels with L ¼ 10 for PAIN2. The first column presents
the p-quantities for node features: px for observation features in green, py for labels in black. The second and third columns present the pe-quantities
for labels 1 and 2 respectively. See text for additional details.
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validation set would decrease. However, as we see here,
performance on the validation set remains roughly the
same as we increase L.

Table 4 shows the average over all labels of the F1 mea-
sure on the test sets for all four of our problems. Since the
nonparametric model structure is not specified a priori but
is instead determined from our data, the HCRF-DPMmodel
is more flexible than the finite HCRF and is able to achieve
better performance in all cases with the exception of the
three-label classification problem of agreement/disagree-
ment (ADA3), where the HCRF-DPM seems to perform
almost equally well with the finite model. The HCRF-DPM
performed better than the IHCRF-MCMC in all problems
with the exception of ADA3. An analysis of an IHCRF-
MCMC model trained for ADA3 shows that the model
ignored the two continuous dimensions and used only the
binary features to model the dataset, which evidently
resulted in slightly better performance.

5 CONCLUSION

In this paper we have presented a variational approach to
learning an infinite Hidden Conditional Random Field, the
HCRF-DPM, a discriminative sequential model with a
countably infinite number of hidden states. This determin-
istic approach overcomes the limitations of sampling techni-
ques, like the one presented in [11]. We have also shown
that our model is in fact a generalization of the one pre-
sented in [11] and is able to handle sequence classification
problems with continuous features naturally. In support of
the latter claim, we conducted an experiment with a Gauss-
ian HMM-generated synthetic dataset of continuous-only
features which showed that HCRF-DPMs are able to per-
form well on classification problems where the IHCRF-
MCMC fails. Furthermore, we conducted experiments with
four challenging tasks of classification of naturalistic human
behavior. HCRF-DPMs were able to find a good number of
shared hidden states, and to perform well in all problems,
without showing signs of overfitting.
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