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Abstract

Humans perform iconic gestures to refer to entities through embodying their shapes.
For instance, people often gesture the outline of an object (e.g. a circle for a ball) when
referring to it during communication. In this paper, we present a gesture-based object
recognition algorithm that enables natural human-computer interaction involving iconic
gestures. Based on our analysis of multiple gesture performances, we propose a new
3D motion description of iconic gestures, called Histograms of Guiding Strokes (HoGS),
which successfully summarizes hand dynamic during gestures. Our gesture-based object
recognition algorithm compares favorably to human judgment performance and outper-
forms most conventional gesture recognition approaches.

1 Introduction
Gestures are widely used during human interaction. As a frequent communicative behavior,
hand gestures can be used to express semantic content similar to speech. McNeill [7, 8]
proposed a categorization of hand gestures, which consists of four types (or dimensions):
iconic, metaphoric, deictic and beat gestures. Iconic gestures are pictorial gestures, which
depict entities, objects or actions. In this study, we focus on iconic gestures that refer to
physical objects. Such iconic gestures carry visual characteristics of the referred object in
hand dynamic. Comparing to other gesture types, this makes iconic gestures less conven-
tional and more flexible and adaptable to different frames of references. Their flexibility
hinders generalization over different performances, since there are different ways to perform
an iconic gesture for a specific object. For instance, in order to refer to a ball, one can draw
a circle with the right hand, or two semi-circles with both hands simultaneously. Moreover,
hand movement direction or velocity may differ from one another without affecting the refer-
ential intention behind the gesture. However, in spite of all variations among iconic gestures
performances, one looks for the common shape-related features, which indicate the referred
object (e.g. recognizing the shape of a circle). In this context, distinguishing between the rel-
evant similarities and differences among gesture performances represents the main challenge
in iconic gesture recognition.
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In this paper, we present a new gesture descriptor, called Histograms of Guiding Strokes
(HoGS), well-suited for automatic recognition of iconic gesture depicting 3D objects. We
created a dataset, called 3D Iconic Gesture dataset (in short, 3DIG), which contains 29 sub-
jects performing more than 1700 iconic gestures. Analyzing the recorded gesture perfor-
mances, we show that people use very different techniques when performing gestures. Thus,
the main challenge addressed by our HoGS descriptor is to tolerate the variations among the
gesture performances, while enabling robust discriminative classification. In other words,
our HoGS descriptor generalizes over intra-class variations while maintaining the inter-class
variabilities. We performed extensive experiments to evaluate our approach with respect
to: alternative classification features, human judgment performance, and other conventional
approaches of gesture recognition (such as HMM using instantaneous features).

In the next Section, we review some related work investigating iconic gestures. Section 3
first describes how the 3DIG dataset has been recorded. Then, based on the data analysis, we
explain how the computation of HoGS descriptor fulfills the raised requirements. In Section
4 the results of evaluation experiments are reported and discussed.

2 Related work

Aiming at designing an efficient and natural human-computer interface, gesture recognition
has gained in importance. Specifically, recent technological advances in motion tracking
systems have opened new perspectives in recognition of non-verbal behavior. Marker-free
motion tracking devices such as MS Kinect

TM
provide low-priced and convenient solutions

compared to older tracking systems. Generally, the work done on gesture recognition fo-
cuses mostly on sign languages or on predefined hand movements as controlling means for
navigation or manipulation, as it was reported by Karam and Schraefel [4]. Accordingly,
they suggested a taxonomy of gestures in human computer interactions, based on a litera-
ture review of gesture recognition. Mitra [9] provided a survey on the approaches of ges-
ture recognition, ranging from statistical modeling, computer vision, pattern recognition and
connectionist systems. Given the limited space in this paper, we focus our review on iconic
gesture analysis and recognition.

Marsh and Watt [6] performed a study to test whether iconic gestures could be employed
as an intuitive technique in human-computer interaction. They asked the subjects to express
or describe different complex 2D and 3D objects through non-verbal communication. Data
analysis showed that the subjects referred to the primitive objects by drawing the outline of
their shapes. The complex objects were additionally described through mimicking actions
performed on the referred objects. Sowa [10] undertook a study to investigate co-verbal
iconic gestures and proposed a model for their shape-related semantic representation. He
analyzed 383 recorded iconic gestures [11] which were performed for five relatively com-
plex objects. He reported some gesture techniques such as: decomposing a complex object
into its components and referring to them sequentially; or the so called “dimensional un-
derspecification”, when only the dominant object extents are expressed. The wide range
of techniques that people can use to perform gestures raises the main challenge of gesture
recognition, namely supporting the big variation among performances. For instance, Vatavu
et al. [13] referred to this problem and proposed an approach based on elastic deforma-
tion of motion trajectories. Thereby, it supports variations in gesture performances such as
translation, scale and rotation.
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Figure 1: The experiment setup. In (a) a participant is watching a cube rotating in the middle
of the screen. In (b) the participant is performing a gesture to refer to the previously seen
cube for an imaginary interlocutor. (c) shows all the primitive and complex virtual objects.

3 Gesture-based object recognition
The existing studies on iconic gestures neither provide a public dataset nor sufficient kine-
matic specification of iconic gestures. Hence, we created an extensive dataset, called 3D
Iconic Gestures dataset, in which we tracked subjects’ body motion while performing ges-
tures illustrating 3D objects. Based on the analysis of intra-class and inter-class variations
in this dataset, we propose HoGS motion descriptor. HoGS are invariant to the intra-class
variabilities among different performances referring to the same object, while keeping dis-
tinctive features with respect to inter-class variations. The following section describes our
3DIG dataset while Section 3.2 describes the design principles behind HoGS.

3.1 Three-dimensional Iconic Gesture (3DIG) dataset
We captured gesture performances of 29 subjects (20 males and 9 females), while performing
iconic gestures to refer to 20 different 3D objects. For this study, subjects stand in front of
a big display, mounted at about the height of their heads (see Figure 1). They were asked to
refer to the virtual objects by gestures. The subjects were structured to perform the gesture
so that people watching the video could recognize the object.

During the study, the subjects could see all 20 different 3D virtual objects which were
located at the buttom of the display. At each turn, one of the virtual objects was zoomed in at
the center of the screen, and kept rotating so the subject could see the different perspectives.
Subjects performed the gesture while a photo of an attending person was shown. As soon
as the subjects retracted their hands back to the rest position, or gave a verbal signal, the
next object was shown. The virtual objects were shown in a random order and each of them
three times, for a total 60 gestures per subject. Body motions were recorded only while
showing the photo of the attending person. Using MS Kinect

TM
, we captured 1739 gesture

performances (∼87 gestures per object), each in three formats: color video, depth video and
motion of the tracked skeleton (as 3D positions of 20 joints in 30 fps). The recorded dataset
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Intra-class
variations

Description Example(s)

Direction The wrists’ movement direction. Drawing the outline by moving the hand
either upward or downward, clockwise or
counter-clockwise.

Velocity The wrists’ movement velocity.
Size The size of the used spatial space for a ges-

ture performance.
Drawing a small circle for a sphere, or using
the entire feasible space.

Degree of
simplifica-
tion

Ignoring the objects’ details or spatial di-
mensions (abstraction and dimensional un-
derspecification [11]).

Whether referring to the twig of the apple or
not. Depicting a square for the cube, or the
whole 3D shape.

Repetition Repeating some parts of a gestural wrist
movement places emphasis on them.

Repeated curved hand movements to refer to
the significant upper part of the umbrella.

Position The location of the used spatial space for a
gesture (relative to the performer).

Drawing a small triangle in front of the head
or slightly on the side; or a big triangle start-
ing from much lower spatial position.

Ordering Objects may be decomposed into simpler
components, which are referred to sequen-
tially.

First drawing the triangular roof of the
house, then the cubical part or vise versa.
First drawing the bottom circular surface of a
cone, then a triangle on the top or vise versa.

Handedness The contributed hand(s). Performing with the left or the right hand
alone, or both together.

Table 1: The mostly observed intra-class variations while analyzing the color videos of the
3DIG dataset. The intra-class variations illustrate the feature dimensions whose values vary
among gestures that refer to the same object.

is called 3D Iconic Gesture dataset (3DIG) and is available online 1.
As frames of reference for recorded gestures, we chose 10 primitive and 10 complex

objects (see Figure 1). As primitive objects, we took common geometrical shapes such as
sphere, cone or cube. Gestures referring to such primitive shapes can generally refer to many
real, more complex objects iconically (e.g. a computer is shaped like a rectangular box). The
reason is that simplifying objects and referring to their abstract shapes is a commonly used
strategy while performing iconic gestures [11]. Additionally, we asked subjects to perform
gestures for more complex objects such as house, umbrella or chair. In this way, through
investigating differently complex objects, we look for a general approach to recognize a
wide range of iconic gestures.

3.2 Histograms of Guiding Strokes

For the aim of gesture based object recognition, we are looking for optimal descriptor of
iconic gesture performances. To this end, the main challenge is the wide variability between
subjects when illustrating the same object. This means that the optimal descriptor needs to
be invariant to the intra-class variabilities, while it should still represent the features which
best discriminate between different classes. In the following subsections, first we analyze
the recorded dataset and discuss the inter-class and intra-class variations among gesture per-
formances. Based on this analysis, we propose the Histograms of Guiding Strokes (HoGS)
as motion descriptor, which takes both these variations into account.

1Available at http://projects.ict.usc.edu/3dig
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Figure 2: The data processing pipeline to extract segmented guiding strokes. As an example,
a projection of a relatively clear gesture performance is illustrated (with ID = 100 in 3DIG,
referring to “bottle”).

3.2.1 Inter-class vs. intra-class variations

We analyzed intra-class and inter-class variabilities in the 3DIG dataset based on the recorded
color videos. The analysis shows that people use different techniques to perform iconic
gestures: for instance, either performing an action on an imaginary object (e.g. biting an
apple), or to refer to the shape (e.g. by drawing the contours). We call the technique, in
which the hand or the index finger illustrates the 3D or 2D contours of an object, drawing
technique. As the most common technique, this was used for 83% of the primitive objects
and 77% of the complex ones. Hence, the wrists’ movements have the most contribution to
the gesture content.

The aforementioned diversity of gesture techniques leads to a wide variation among ges-
ture performances. However, in spite of all these performance variations, many aspects of the
performed gestures correlate with the characteristics of the referred object. That means, on
the one hand we have the intra-class variations which do not change the referential intention
behind a gesture. Table 1 lists the mostly observed intra-class variations in our data analy-
sis. Many of these variations are to different degrees subject-dependent (such as direction,
velocity or handedness), and some of them are to some extent object-dependent (e.g. degree
of simplification or repetition). On the other hand, the shape-related inter-class variations
play a distinctive role in iconic gesture recognition. These are mostly features that represent
the geometrical characteristics such as curvature, skewness and movement orientation (table
2 lists the corresponding features as inter-class variations).

3.2.2 Extracting Guiding Strokes

To cope with the intra-class and inter-class variations, we employ the idea of decomposing
the movement trajectories into strokes. Such compositional representation is known from
processing motion data in different fields of studies. For instance, stroke-wise representation
is applied in the field of sketch recognition of pen gestures or handwritten characters and
letters (e.g. [15]). Interestingly, studies at behavioral and neural level of motor control
showed that motor systems use a similar principle of decomposing complex movements into
simpler elements, called motor primitives, and combine them when performing a movement
[3]. For a similar segmentation, we apply the concept of guiding strokes, proposed by Kopp
and Wachsmuth [5], which splits gestural wrists’ trajectories with respect to their spatial and
kinematic features.

We define a gesture as a set of guiding strokes. Figure 2 illustrates how the guiding
strokes are extracted from 3D movement trajectories of both wrists. First, these trajecto-
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Sample GS. Attribue Domain of values

l
d

α

d'

width

height

c=(cx,cy,cz)=d ⊗ d'

Length (normalized) (0,1]
Width (normalized) (0,1]
Height (normalized) (0,1]
Curvature = |d|/|l| [0,1]
Curvature side ≡ sign(cz) {L,R}
Skewness ∝ |d′|/|l| [−0.5,0.5]
Orientation = α [0,π)

Table 2: The attributes of a guiding stroke. These attributes represent the shape-related
inter-class variations which distinct between gestures referring to different objects.

ries are normalized with respect to the player position at each frame. Second, we smooth
each trajectory through Gaussian convolution to remove the spatial capturing noise. In the
third step, the trajectories are split based on their velocity profiles and the local minima
are considered as split points. Finally, we segment the guiding strokes, by extracting the
ones which contain the semantic content of a gesture and not the preparing and retraction
movement parts (cf. stroke phase in [7]). This is done automatically, through thresholding
with respect to the spatiotemporal features of each guiding stroke (i.e. velocity, position and
ordering). The thresholds were set empirically. In the end, we have parametrized guiding
strokes, each represented as a set of attributes. Table 2 lists the attributes of a guiding stroke,
which are shape-related and represent the distinctive inter-class variations. The parameter-
ized representation of gestures as guiding strokes makes it possible to extract gesture features
that reduces the intra-class variation. For instance, since we do not consider the duration or
the temporal ordering of each guiding stroke, the performance velocity is repressed. Addi-
tionally, we normalize the width, height and the length of each guiding stroke with respect
to the diagonal of the bounding box which contains all the guiding strokes of a gesture.
The normalization step of these spatial attributes makes the representation scale invariant.
Furthermore, we defined orientation of a movement with the domain of values [0,π) as an
inter-class variable feature. This is a transformed version of the direction feature (from the
domain of values [−π,π)), which was considered as an intra-class variable feature. In this
way, it is still possible to distinguish between horizontal and vertical movement orientations,
while the left-right or up-down direction variabilities are ignored.

Further intra-class variations (i.e., ordering, handedness, repetition and degree of sim-
plification) are addressed through computing the histogram of the relevant guiding strokes’
attributes, as described in the next subsection.

3.2.3 Computing Histograms of Guiding Strokes

The idea of using histograms as a descriptor has been quite successful in past research (e.g.
see Histogram of Oriented Gradients in [2]). In this paper, we propose Histograms of Guid-
ing Strokes (HoGS) for iconic gesture recognition. HoGS represent a gesture as the nor-
malized histograms of the guiding strokes’ attributes. The following steps are performed in
order to compute HoGS as a descriptor of a gesture performance. First, we extract all the
segmented guiding strokes. Then, for each projection plane (xy, xz or yz), we compute the
histograms of the attributes of the guiding strokes that lay on the corresponding planes. The
reason for extracting features from each plane is that many 3D objects differ only with re-
spect to specific projections, such as cone and pyramid or cylinder and rectangular box. The
number of bins in the histogram of each attribute is a parameter which was determined by
maximizing the Fisher score of the training data, resulting in 2 to 5 bins per attribute.
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Color video Skeleton video Wrists video

Figure 3: The captured color, skeleton and wrists videos of a gesture performance for “pyra-
mid” (ID = 1047 in 3DIG). The images show three overlapped frames of the videos.

HoGS intrinsically ignores the ordering in which the guiding strokes’ attributes are given.
This way, the ordering of the performed gesture parts (as an intra-class variation) is repressed.
By combining the gesture trajectories performed by both left and right hands, we can address
the handedness variability. The degree of simplification and repetition are other intra-class
variations that affect the ratio of the meaningful parts to the whole. This ratio affects the cor-
responding intervals (bins) of the histograms. In this way, these intra-class variable features
are not repressed completely, but they affect the representation of the gestures by affecting
its significance with respect to specific features. This is the same way, how repetition and
simplification of a gesture affect the recognition of a human interlocutor; namely, making
the performance more or less significant.

4 Experiments

For the classification of iconic gestures in 3DIG dataset, we applied Support Vector Machine
(SVM) using HoGS as descriptor. In order to validate our approach, we designed different
experiments to test and compare it with respect to three aspects: first, the performance of the
proposed HoGS descriptor; second, the performance of the SVM-based classifier together
with HoGS features; and third, with respect to the human judgment performance.

4.1 Our approach: SVM with HoGS

For all experiments, we performed 3-Fold testing and holdout a validation subset of the data.
In other words, one third of the subjects was used for testing, one third for validation and
one third for training. We repeated this process three times, once for each fold. In order to
classify 20 classes, we learned one-to-one SVMs and combined them through majority vot-
ing. We achieved better classification results when selecting features for each combination
of objects. By doing this, we overcome the difficulty caused by shape similarity between
classes (e.g. between apple, bottle, egg and sphere, or pyramid and cone). Based on the
training data, we selected the best features for each combination. We used LIBSVM [1],
where hyper-parameters are selected using the validation set. As classification performance
metrics we use F1 score which considers both the precision and the recall.
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4.2 Baselines

Sketch recognition illustrates a very similar classification problem to the gesture research
question in this study. Willems and Niels [14] collected and proposed a set of features for
pen gesture recognition. Similar to our approach, the trajectories of pen gestures consist
of strokes (pen down/up) to draw sketches (including iconic shapes). The proposed space-
based features consider the following characteristics of a trajectory: length, the sketched area
(convex hull), direction, curvature, perpendicularity, and prototypical elements such as cups
or straight lines. We extracted these features out of the trajectories of the guiding strokes.
The SVM classification results using these features form a baseline for our HoGS feature
set.

Furthermore, to evaluate our classification method, we compare our SVM-based classi-
fier using HoGS features against three alternative approaches. The applied pair-wise feature
selection suggests applying Decision Trees that classify on the same principle. Therefore as
a baseline classifier, we applied Bag of Trees using HoGS features. We used TreeBagger
from Statistics toolbox in Mathworks Matlab R⃝ 2011a, initialized with 500 trees.

On the other hand, methods of temporal pattern recognition (such as HMM), which work
with spatiotemporal features, are commonly used classifiers for gesture recognition (see e.g.
[9, 12]). For a comparison, we applied such classifiers with instantaneous features, extracted
from the wrists’ trajectories of the segmented guiding strokes. The resulted feature space
was 15 dimensions consisting of spatial positions (3D) and directions (as 2D angles), as well
as their delta and delta of delta. Using these features, we applied two baseline classifiers
on the same subsets: HMM2 with hyper-parameters (number of hidden states and number
of Gaussian mixtures) selected using the validation set; and Nearest Neighbor (NN) with
Dynamic Time Warping (DTW) as distance function.

4.2.1 Human judgment study

Human judgment represents a scoring ground-truth for this task. form the ground-truth of
this dataset. For this purpose, we designed an online study, in which videos of gesture
performances were shown and the subjects were asked to guess the illustrated objects. The
subjects could see the images of all 20 available objects. At each turn, the video of a gesture
performance was played in a loop. The subjects were instructed to either click on the image
of the object best representing the gesture, or they could click on one of the alternative
options “I don’t know” or “It’s ambiguous”. These were chosen in 18% and 3% of all turns,
respectively. The study was composed of three sessions, a different video modality shown
during each session (see Figure 3). First, subjects guessed while watching all the color
videos, then all the skeleton videos and finally all the videos of only the wrists’ movements
(as two moving dots). The skeleton and wrists videos were rendered in 3D, so that moving a
body part towards the camera makes it larger. The bottom half of Table 3 shows the average
of the judgment performance of 35 participants.

4.3 Results and discussion

The classification results of the experiments are summarized in Table 3 (using F1 as evalua-
tion metrics). In combination with SVM, HoGS as features outperform pen gesture features

2Using the Bayes Net Toolbox for Matlab, available at http://code.google.com/p/bnt/



SADEGHIPOUR, MORENCY, KOPP: GESTURE-BASED OBJECT RECOGNITION 9

Classifier Descriptor all gestures in 3DIG dataset drawing gestures
Recall Precision F1 F1

SVM HoGS 0.61 0.64 0.61 0.77
SVM pen gesture features [14] 0.54 0.56 0.53 0.57
Bag of Trees HoGS 0.60 0.47 0.48 0.53
NN+DTW Instantaneous 0.51 0.45 0.44 0.40
HMM Instantaneous 0.35 0.36 0.33 0.44
Humans Color video 0.80 0.70 0.74 0.76
Humans Skeleton video 0.51 0.33 0.38 0.44
Humans Wrists video 0.46 0.29 0.34 0.43

Table 3: The classification results of 20 objects (i.e. chance level is 0.05). Our approach
(SVM with HoGS features) outperforms the other alternatives and compares favorably to
human judgment performance.

from [14] (based on the same subsets of 3DIG dataset). Applying SVM without individ-
ual feature selection results in poor classification (F1 = 0.36 for “all gestures” condition),
which shows the requirement of individual features for pairs. However, this could not be
achieved by a method of Decision Trees (Bag of Trees), which similarly handles pairs of
classes individually with respect to specific features.

Instantaneous features, which are used in common gesture recognition approaches, do
not achieve any accurate result in this dataset. This can be caused by many intra-class varia-
tions at the instantaneous level of the trajectories. Different movement directions and variate
ordering together with arbitrary numbers of repetitions make the generalization at this level
difficult.

The gestures performed through drawing technique are better classified in all conditions.
This difference can be observed even in humans’ judgment, yet very slightly when watching
color videos. Our approach (SVM classifier with HoGS features) achieved the best classi-
fication scores for both sets of drawing technique and all techniques. Comparing to human
performance, these results show that wrists’ positions carry semantic content in large part.
Although humans may rely on other information sources that they can only gain in the color
videos, our approach (based on wrists’ movements) can best compete with human judgment
performance, specially when considering only the drawing gestures. However, the mistaken
gesture performances are different. We compared the F1 scores of each object resulted by
our approach and the human judgments. The results of our approach correlate mostly with
the judgment based on the skeleton videos, with the correlation coefficient of 0.55, while the
color videos and wrists videos achieved correlation coefficients of 0.23 and 0.15 respectively.

5 Conclusion
To address the challenging problem of gesture-based object recognition, we captured the 3D
Iconic Gesture (3DIG) dataset. Based on the wrists’ trajectories, we proposed the Histograms
of Guiding Strokes as optimal descriptor of iconic gestures. The evaluation experiments
showed that HoGS features together with SVM classifiers outperform other approaches and
best approximate the human judgment performance. Our approach shows reliable results
for automatic gesture-based object recognition, especially when the gesture performance is
constrained to drawing technique. As our data analysis shows, considering additional non-
verbal information in future work, for instance extracting hand postures from color and depth
videos, can lead to more accurate recognition.
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