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ABSTRACT
Human emotion is an important part of human-human com-
munication, since the emotional state of an individual often
affects the way that he/she reacts to others. In this pa-
per, we present a method based on concatenated Hidden
Markov Model (co-HMM) to infer the dimensional and con-
tinuous emotion labels from audio-visual cues. Our method
is based on the assumption that continuous emotion lev-
els can be modeled by a set of discrete values. Based on
this, we represent each emotional dimension by step-wise la-
bel classes, and learn the intrinsic and extrinsic dynamics
using our co-HMM model. We evaluate our approach on
the Audio-Visual Emotion Challenge (AVEC 2012) dataset.
Our results show considerable improvement over the base-
line regression model presented with the AVEC 2012.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Natural Language Processing

General Terms
Algorithms, Performance

Keywords
Emotion recognition

1. INTRODUCTION
Emotion is one of the fundamental elements of human-

to-human interaction [37]. The emotional state of a person
effects the way he/she communicates with others [8, 27].
Similarly, emotional state of others affect the way the per-
son reacts to them. Therefore, the area of affective com-
puting attracted a lot of attention from diverse research
fields such as computer science, psychology, and cognitive
science [38]. Affective computing aims at building systems
that can recognize, interpret and produce human emotions.
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Such emotion sensitive systems can improve the way that
the machines communicate with humans [28]. For instance,
a virtual human can adjust its behavior based on the emo-
tional state of a user. Other application areas of affect com-
puting include commercial fields such as customer services,
call centers, game and entertainment [41].

Earlier work on automated emotion recognition [41] has
often focused on analysis of the six discrete basic emotions [12]
(happiness, sadness, surprise, fear, anger and disgust), even
though in everyday interactions people exhibit non-basic and
recognizable mental/affective states such as interest, bore-
dom, and confusion [31]. These emotions are often impre-
cise. In other words, the emotional state is not always one
or the other, but has a level that indicates how strong the
expressed feeling is. Furthermore, a single label might not
describe the complexity of an affective state well. Therefore,
there has been a move to analyze audio and video record-
ings along a set of small number of emotional dimensions.
Examples of such affective dimensions are power (sense of
control), valence (pleasant vs. unpleasant), activation (re-
laxed vs. aroused), and expectancy (anticipation). Fontaine
et al. [15] argue that these four dimensions account for most
of the distinctions between everyday emotion categories, and
hence form a good set for analysis.

In this paper, we present an approach based on concate-
nated Hidden Markov Model (co-HMM) to infer the dimen-
sional and continuous emotion labels from multiple high
level audio and visual cues. This approach has the advan-
tage of explicitly learning the temporal relationships among
the audio-visual data and the emotional labels. The first
step of our approach involves generating a step-wise repre-
sentation of the continuous emotion dimensions, in which we
model the distribution of each emotion dimension by a set of
discrete labels (see Figure 2). In the second step, we build
a generative model, co-HMM, that can estimate the most
likely label at each sample. Using the co-HMM model al-
lows us to learn both the intrinsic dynamics within the same
class label and extrinsic dynamics among different classes.
The affective dimensions analyzed in our work are arousal,
expectancy, power, and valence. Our model is evaluated on
the Second International Audio/Visual Emotion Challenge
(AVEC 2012) dataset. A complete description of the chal-
lenge and the dataset can be found in Schuller et al. [3].

We evaluate our method on both set of labels: word-
level (WLSC), and fully continuous (FCSC). We see an im-
provement in performance over existing approaches (Sup-
port Vector Machine Regression, and uni-modal co-HMM)
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Figure 1: Overview of training procedure for our co-HMM model. First, continuous emotion levels are
represented by step-wise labels (see Figure 2). Then, we create sub-datasets containing only sub-sequences
with the same label, and one HMM model is learned for each step-wise class label. Finally, the hidden states
of these one-label HMMs are concatenated together to form the hidden states of the final co-HMM model.
This overview represents our training procedure for one emotional dimension only (i.e. valence) and this
same procedure is applied independently on all four dimensions in our dataset.

when evaluating our approach on the development set. Fur-
thermore, when evaluated on the test set our approach con-
siderably improves the baseline results presented from [3].

In the rest of this paper, we first present related works
in Section 2. Then, we describe our approach in Section 3.
Experimental setup and results are presented in Section 4
and Section 5 respectively. Finally, we conclude in Section 6.

2. RELATED WORK
Several researchers used prosody (i.e pitch, speaking rate,

etc.) for speech based emotion recognition [29, 39]. Some
studies analyzed visual cues, such as facial expressions and
body movements [4, 30, 13]. De Silva et al. [10] and Chen et
al. [6] presented one of the early works that integrate both
audio and visual information for emotion recognition. We
refer readers to following publications on emotion recogni-
tion for an extensive survey: [41, 28, 38].

Of special relevance to our work is the work done by Nico-
laou et al. [25] that presents experiments for classification
of spontaneous affect based on Audio-Visual features using
coupled Hidden Markov Models. Using coupled-HMMs al-
low them to model temporal correlations between different
cues and modalities. They also show the benefits of using the
likelihoods produced from separate coupled-HMMs as input
to another classifier, rather than picking the label with a
maximum likelihood for audio-visual classification of affec-
tive data. Interestingly, their experiments show that visual

features contribute more in spontaneous affect classification
in the valence dimension.

Wöllmer et al. [40] uses Conditional Random Fields (CRF)
for discrete emotion recognition by quantising the continu-
ous labels for valance and arousal based on a selection of
acoustic features. In addition, they use Long Short-Term
Memory Recurrent Neural Networks to perform regression
analysis on these two dimensions. Both of these approaches
demonstrate the benefits of including temporal information
when approaching emotion recognition in dimensional space.

Most of the previous work on emotion recognition (includ-
ing the studies mentioned above) have focused on classifying
human emotional states into discrete labels such as angry,
happy or surprised. However, in real life scenarios, human
often show imprecise emotions. In other words, emotional
have a level of intensity. In this paper, our goal is to not
just recognize the binary emotion labels but the strength of
the emotion, which we refer to as continuous labels.

Nicolaou et al. [26] recently presented a regression frame-
work for dimensional and continuous emotion recognition.
In [22], short term context is used that takes into account
the past speech cues. Liscombe et al. [23] showed that using
contextual features, such as the structure of spoken dialog
and track user state, along with the standard lexical and
prosodic features increases the classification accuracy.

In this paper, we present a method for emotion recogni-
tion that first builds a step-wise representation of the emo-
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tion dimension, and then uses concatenated Hidden Markov
Model to learn the dynamics among different class labels of
the stepwise representation. Concatenated models, such as
concatenated HMMs, have been extensively used in speech
recognition and handwriting recognition [19]. For instance,
Hu et al. [18] models subcharacter stroke types modeled by
HMM’s. Then, these HMM models are concatenated to-
gether to form letter models for handwriting recognition.

3. APPROACH
In this paper, we propose to use a variant of the Hid-

den Markov Model (HMM), called concatenated HMM (co-
HMM), to recognize affective dimensions in un-segmented
video and audio sequences.

We hypothesize that although emotion dimensions are
continuous, the distribution of these levels of emotion can
effectively be modeled by a set of discrete classes for each
emotional dimension independently. For example, in Fig-
ure 2, originally continuous emotion levels are represented
by 6 class labels for arousal. The correlation between orig-
inal emotion levels and the discrete labels are about 0.8983
on average. Based on that assumption, we use a step-wise
label representation of each emotional dimension, in which
each continuous emotion level is assigned to a discrete value
that can be seen as a class label. This step-wise representa-
tion, in practice, provides the most relevant subset of label
ranges and helps reducing the effect of noise.

The main idea behind co-HMM is to build a generative
model that can estimate the most likely label at each sam-
ple (i.e. recognition on unsegmented sequences). We achieve
this goal by creating a concatenated HMM model, in which
each hidden state is directly associated with a specific label.
Figure 1 shows this label-hidden state association through
different colors for one emotional dimension. Using the co-
HMM model allows us to learn both the intrinsic dynamics
within the same class label and extrinsic dynamics among
different classes. Intrinsic dynamics are learned through the
hidden states of individual HMMs trained on one single class
label. By concatenating these individual HMMs, we are able
to model the extrinsic dynamics (temporal relationships)
among different class labels.

The following section describes the co-HMM model for
classification and sub-section 3.2 explains our step-wise label
representation process.

3.1 Concatenated HMM
Our concatenated HMM model learns a step-wise rep-

resentation of continuous emotion dimensions. In the co-
HMM, one HMM model is trained for each label class of
the step-wise representation and concatenate these one label
HMMs. In other words, we train each HMM with segmented
subsequences where the frames of each subsequence all be-
longed to the same label class. For a better understanding
of our co-HMM model, we will first briefly introduce Hidden
Markov Models and then describe our co-HMM model.

3.1.1 HMMs
Hidden Markov Models are one of the most widely used

machine learning technique for modeling sequential data,
such as in speech recognition, computational molecular bi-
ology, image sequence modeling, and other areas of artificial
intelligence and pattern recognition [17]. A Hidden Markov
Model learns a probability distribution over a sequence of
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Figure 2: An example of step-wise label represen-
tation. The original continuous emotion levels are
mapped into 6 label classes for one emotional dimen-
sion (i.e. arousal).

observations x = {x1, x2, ..., xm}, where each frame obser-
vation xj is represented by a feature vector ∈ Rd, for ex-
ample, the audio features at each sample. In a first order
HMM, these observations are associated with a set of hidden
states h = {h1, h2, ..., hm}, where the state of ht at time t
depends only on the previous state tt−1 at time t − 1 and
the observation xt at time t. Graphical representations of
HMM models are shown in Figure 1 (middle column).

Based on the above definitions, the joint distribution of
state variables and the sequence observations can be found
by the following:

p(h,x) = p(h1)p(x1|h1)
∏
t

p(ht|ht−1)p(xt|ht) (1)

The first two terms are the model priors (distribution over
the initial state). Training of an HMM involves finding the
probability distribution over the K ∗K state transition ma-
trix that defines p(ht|ht−1), and the output model that de-
fines p(xt|ht), which can be modeled in different ways. In
our experiments, we use mixtures of gaussians, since our
observations–x– are real values. Note that K is the to-
tal number hidden states used in the model. In summary,
HMMs are represented by 5 types of parameters: priors,
transition matrix, mean and variance of gaussian distribu-
tion, and mixing values.
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Table 1: Correlations between the original and step-wise labels for different number of label classes (3,4,5,and
6) on the training set.

Discretization Emotion Labels
Level arousal expectacy power valence average

3 0.79092 0.83127 0.75666 0.77554 0.7886
4 0.85866 0.88130 0.82747 0.83778 0.8513
5 0.89305 0.90759 0.85160 0.88595 0.8845
6 0.90992 0.92438 0.85192 0.90691 0.8983

3.1.2 co-HMM
As shown in Figure 1, our co-HMM model is concate-

nation of multiple HMMs trained on individual labels. In
the final co-HMM, the number of hidden states is equal to
the sum of hidden states in the one label HMMs. The first
step for creating co-HMM model is to divide the dataset
into N different sub-datset, where N is the number of label
classes (i.e. discrete labels in the step-wise representation).
Each sub-datset contains only the sub-sequences of the same
class. For example, the third sub-dataset will only contain
subsequences from class label 3. Then, for each of these N
sub-datsets, we learn a one-label HMM.

In the second step, we concatenate parameters of the one
label HMMs. The priors, mean and variance of gaussian,
mixture parameters of co-HMM are obtained by simple vec-
tor and matrix concatenation. For the transition matrix of
the concatenated HMM, we create it in 3 steps. For the first
step, we copy the transition matrices of the one label HMMs
in a large transition matrix, where the block-wise diagonal
of this matrix is the one-label HMM transition matrices.
Then, we compute the Viterbi path of each training sub-
sequence using the appropriate one-label HMM, and then
count the number of transitions between class labels. In the
final step, the counts are inserted in the co-HMM transition
matrix,and normalized so that its rows sum to one.

At testing, we apply the forward-backward algorithm on
the new sequence, and then sum at each frame the hidden
state marginal probabilities associated with each class label
yt.

3.2 Step-Wise Label Representation

In this section, we describe our procedure to create the
step-wise label representation and show that these discrete
labels correlate with the original continuous emotion levels.
As exemplified in Figure 2, we perform label discretization
using a percentile approach. For each emotion dimension, we
use the labels from the training set to determine the range
of continuous emotion levels falling into each discrete label
class. This decision depends on the percentage of the contin-
uous levels that have similar (or close) values. For instance,
if we want to represent the data with n discrete step-wise
labels, then we automatically find 5 thresholds such that
each label class contain 1/n samples from the training set
that have similar continuous levels. These thresholds can
then be used to determine the class label for new data (i.e.
development set).

The discrete step-wise labels are used to train our co-
HMM model. Figure 2 shows an example where the contin-
uous labels are mapped into 6 label classes. To study the
effect of the discretization on the accuracy of emotion levels,
we computed the correlation between the original continu-

ous emotion levels and the new step-wise labels. Table 1
shows the correlation for different number of discrete class
labels. We can see that even with only 3 labels, the cor-
relation is still higher than 0.756 for all dimensions. Note
that the baseline models in [3] achieve around 0.112 correla-
tion on average. Therefore, this correlation of 0.756 between
step-wise class labels and continuous emotion levels can be
considered as high.

In the original data, 66060 unique labels are required to
represent the continuous levels. Therefore, this correlation
of 0.756 is quiet high considering the amount of labels used
in step-wise representation.

4. EXPERIMENTAL SETUP
In this section, we first present our dataset and the audio-

visual features used in our experiments. We then describe
the training and validation methodology. Finally, we explain
how we obtain the word level labels from fully-continuous
emotion data.

4.1 Dataset
For all our experiments we used the dataset provided by

Schuller et al. [3]. The dataset consist of 95 video and audio
recorded dyadic interaction sessions between human partici-
pants and a virtual agent operated by a human. The dataset
consists of upper body video segments with per frame and
audio and audio-visual segments with per word binary labels
along the four affective dimensions (activation, expectation,
power and valence).

The dataset contains two sets of labels: the fully-continuous
levels which are sampled at 50Hz and the word-level labels
which are only defined during spoken words (see [3] for de-
tails).

4.2 Audio-Visual Features
When approaching the challenging problem of recogniz-

ing affective dimensions in un-segmented video and audio
sequences, one valid approach is to experiment with an ex-
tensive set of visual or audio features, where each feature is
a low-level representation of the instantaneous appearance
of the face or a low level descriptor of the audio signal. The
problem with this approach is that the feature space will
end up extremely large (5908 dimensions of visual and 1841
of audio features in the case of Schuller et al. [3]). This high
dimensionality issue can be partially solved by performing
dimensionality reduction or feature selection.

In this paper, we approach the problem by using a smaller
set of features inspired from previous literature on emotion
and human communication. The following three subsections
describe the audio, video and time features used in our ex-
periments.
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Table 2: Experimental results on the test and devel sets for fully-continuous and word-level datasets.
Sampling Dataset Model Arousal Expectancy Power Valence Mean

fully-continuous
devel

co-HMM 0.3964 0.2464 0.4755 0.2348 0.3383
SVR [3] 0.181 0.148 0.084 0.215 0.157

test
co-HMM 0.3248 0.3107 0.4506 0.1825 0.3171
SVR [3] 0.141 0.101 0.072 0.072 0.112

word-level
devel

co-HMM 0.2092 0.2397 0.2893 0.2079 0.2365
SVR [3] 0.018 0.009 0.001 0.002 0.007

test
co-HMM 0.1431 0.2874 0.2874 0.1699 0.2003
SVR [3] 0.021 0.028 0.009 0.004 0.015

4.2.1 Audio Features
Our audio features include the following measures:

• Energy (in dB) is a measure of the intensity of the
speech signal. Higher values indicate louder speech.

• Articulation rate is calculated by identifying the
number of syllables per second. The syllables are de-
tected by identifying vowels in the speech. Articulation
rate is extracted following the algorithm in [9].

• Fundamental frequency (f0) is the base frequency
of the speech signal. It is the frequency the vocal folds
are vibrating at during voiced speech segments. f0 was
extracted following the algorithm in [11].

• Peak slope is a measure suitable for the identification
of breathy to tense voice qualities. Values closer to zero
are considered as more breathy. Peak slope parameters
were extracted as explained in [20].

• Spectral stationarity is a value that captures the
fluctuations and changes in the voice signal. High val-
ues indicate a stable vocal tract and little change in the
speech (e.g. during a hesitation or sustained elongated
vowels). It is a measure of the speech monotonicity and
is extracted as explained in [14].

The selection and choice of features is motivated mainly by
related work and previous research [32, 7, 33, 34]. Further,
they have proven to be robust representatives of the targeted
prosodic phenomena. In particular, variations in speech en-
ergy have been associated with varying emotional states (e.g.
higher energy is related to high activation emotional states
and lower energy is associated with low activation and low
power emotional states), as mentioned in [32]. Similarly
to speech energy, articulation rate, syllable durations and
pause variations are related to emotional states [32]. Fur-
ther, a multitude of emotion recognition and affective com-
puting studies successfully used fundamental frequency (f0)
and its variations in their approaches and evaluations [32, 7].
In [24] and [7] the importance of voice qualities for emotion
recognition are investigated and reported. We chose the
peak slope parameter for the representation of breathy to
tense voice qualities as it has proven to be very robust and
successful in voice quality classification tasks [34]. Lastly,
the spectral stationarity measure is used as an indicator for
monotonicity in speech which is associated with low activity
and negative valence [32].

4.2.2 Video Features
We selected a subset of visual communicative signals which

were shown to be useful when analyzing dyadic interac-
tions [2, 21, 1] and could be estimated robustly by an off-
the-shelf sensing software. In our experiments, we processed
each video sequence with the Omron OKAO Vision soft-
ware library [36] to automatically extract the following four
facial features: horizontal eye gaze direction (degrees), ver-
tical eye gaze direction (degrees), smile intensity (from 0-
100) and head tilt (degrees). We reason that eye gaze and
head movements can help to better recognize emotion [41,
35]. In addition, by using low dimensional visual features,
we can better learn the temporal relationships among these
features.

4.2.3 Time Feature
It is often observed that the emotional state of a partici-

pant is ambiguous at the beginning of a conversation. As the
participants perceive the context of the conversation, they
start expressing their emotions. The more the participants
get engaged to the conversation, the more intense their emo-
tions might get. To take this observation into account, we
use the time information as a feature in our models. This
feature is in the form of a scalar value that represents the
frame number for each single frame observation (i.e. number
of frames since the beginning of the video).

4.3 Baseline Models
We compare our co-HMM approach to two baseline ap-

proaches as follows:
SVR: The baseline proposed by Shuller et al. [3] uses

Support Vector Machine for regression (SVR). Different than
the SVR model used there, we trained our baseline SVRs
with the 3 sets of features described above (audio, video and
time). In our experiments, we use the libSVM library [5].

Uni-modal co-HMMs: We train one co-HMM using
uni-modal feature sets. In other words, we learn 3 co-HMM
models, where each model is trained using either only the
audio, video or the time features. The main purpose of
selecting these baseline models is to analyze the effect of
combining multimodal information for emotion recognition.

4.4 Methodology
For all our experiments we use the data provided by Schuller

et al. [3]. The data is divided into 3 subsets: training, devel-
opment and testing. The training set consists of 31 sessions,
while the development set consists of 32 sessions that were
used for validation of the model parameters. The test set
consists of 32 audio-visual sequences. The test sequences
did not have any publicly available labels. The training was
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Table 3: Comparison with different models on the development set for fully-continuous data.
Model Features Correlations

arousal expectancy power valence average

SVR audio-visual-time 0.017299 0.0021259 0.0057934 0.020038 0.0113
co-HMM audio only 0.25846 0.081497 0.34215 0.16722 0.2123
co-HMM video only 0.11698 076478 0.06298 0.20049 0.1142
co-HMM time only 0.18634 0 0.048736 0.084662 0.0799
co-HMM audio-visual-time 0.39640 0.24641 0.47551 0.23482 0.3383

Table 4: Comparison with different models on the development set for word-level.
Model Features Correlations

arousal expectancy power valence average

SVR audio-visual-time 0.020329 0.022021 0.0081474 -0.02148 0.0073
co-HMM audio only 0.14304 0.077095 0.093099 0.13166 0.1112
co-HMM video only 0.080739 0.087916 0.023905 0.18289 0.0939
co-HMM time only 0.13474 0 0 0.087367 0.0555
co-HMM audio-visual-time 0.2092 0.2397 0.2893 0.2079 0.2365

performed on the training dataset and validated on develop-
ment set. We automatically validated the following model
parameters: number of hidden states for the co-HMM mod-
els was validated with values (2-7), and the number of gaus-
sian mixtures was validated with values (1-4). We also vali-
date the number of label classes (3-6) in the step-wise label
representation using the development set.

The co-HMM model is implemented using MATLAB and
the uni-modal HMMs were trained using Kevin Murphy
Toolbox [16]. The input audio-visual features were com-
puted at 50 frames per second. We first down sample all
these input observations to 25 frames per second before
training our models to reduce training time and memory
requirements. Given the continuous labeling nature of our
concatenated-HMM model, prediction outputs are also com-
puted at 25Hz. Once we get these output labels, we up
sample them back to the original frame rate of 50fps.

4.5 Word-level Labels
Labels for word-level can be obtained in two ways. In the

first approach, we all co-HMM models are trained on the
fully-continuous emotion levels. This provides us labels at 50
frames per second. To get the word-level labels, we use the
word timings to locate the start and end frames of each word
in the output co-HMM labels. Then, the average of these
frames are used to assign the corresponding world label. In
the second approach, we use word-level co-HMM to directly
to learn the word-level labels through word level features
and compare it to the first approach in the experiments.

5. RESULTS
In this section, we present an discuss our experimental

results on both word-level and fully-continuous dataset in
the following two subsections.

5.1 Fully-continuous Data
In our first set of experiments, we compare the co-HMM

model with the regression model (SVR) presented in [3].
The correlation values for both test and devel sets are given
in Table 2. Remark that the SVR model in [3] uses 1188
video and 1841 audio features that are different than the 11
features that we use in our co-HMM approach. We achieve

0.3171 correlation on average for the test set, whereas the
baseline SVR model gives 0.112.

Our second set of experiments on the fully-continuous
dataset consist of comparison with our baseline models (see
Section 4.3). The main goal of these experiments is to study
the influence of different modalities on our results. In these
experiments, we learn one regression model (SVR) using the
same set of multi-modal features (audio, video and time) as
in our co-HMM model. We also train separate co-HMMs us-
ing only one of the three modalities. Correlation result for
each of these models along with the co-HMM model using
all the multi-modal features are given in Table 3. Labels for
AVEC 2012 test set are not provided with the dataset; and
participants of the challenge had a limited number of 5 sub-
missions to evaluate their model on the test set. Therefore,
all these models are tested on the development set.

The co-HMM model outperforms the regression model
(SVR) in all emotion dimension even if only the features
from one modality is used. This implies that our co-HMM
model is able to learn the temporal relationships among in-
put features. Furthermore, our step-wise feature represen-
tation allows us to model the most relevant subset of label
ranges by removing noise.

Another interesting result is that the performance of our
co-HMM approach is the best when all three modalities
are used together. This indicates that these features con-
tain complementary information relevant to human emotion
recognition.

5.2 Word-level Data
For word-level data, we first compare our co-HMM model

with the SVR and uni-modal co-HMM models similar to
fully-continuous data. The results are shown in Table 4.
These results also implies the importance of modeling tem-
poral relationships among features and combining all 3 dif-
ferent multi-modal information for emotion recognition.

Performance of our co-HMM model and the baseline SVR
model in [3] is listed in Table 2. We get 0.2003 correlation by
using the co-HMM approach, whereas the baseline is 0.015
on the test set.

Note that all these word-level labels are computed from
the fully-continuous output labels as described in Section 4.5.
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Another option for word-level label computation would be to
use one feature per word and model the word-level labels us-
ing the same co-HMM model for fully-continuous data. For
this approach, we average all the audio-visual features that
fall into the time period where a word is spoken. Then, we
use these average audio-visual features to train a co-HMM.

Using this later approach for word-level labels, we get the
following correlations for arousal, expectancy, power and va-
lence respectively on the test set: 0.1216, 0.2162, 0.1861,
0.0122. The average of these values is 0.1340, which is not
as good as our original word-level correlation of 0.2003. This
results shows us that the co-HMM model is able to better
learn the temporal relationships on frame level than word
level.

6. CONCLUSIONS
In this paper, we proposed an approach that models di-

mensional and continuous human emotions using concate-
nated Hidden Markov Models. Our approach relies on the
assumption that continuous emotion levels can be model by
a set of discrete class labels. Based on this, we first represent
our data by some step-wise labels and use them to train our
co-HMM model. By using the co-HMM model, we are able
to learn both the intrinsic dynamics within each class label,
and the temporal relationships among these labels.

We evaluated our approach on the Audio-Visual Emotion
Challenge (AVEC 2012) dataset. Our results show consider-
able improvement over the regression model presented in [3]
on the test set. We achieve an average of 0.3171 correlation
on the test set, which can be considered as high taking into
account that continuous emotion recognition is a difficult
problem. Using a step-wise representation, we are able to
discover the range of the most relevant subset of label ranges
helps reducing the effect of noise. Therefore, we believe that
our proposed approach can scale to more realistic settings.

We also compared our model to uni-model co-HMM, and
have seen that using all three modalities (audio, video and
time) improves the overall recognition process. This shows
that our co-HMM model is able to learn the temporal re-
lationships among input features, and these features con-
tain complementary information relevant to human emotion
recognition.
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