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Abstract. A step is taken towards fusing symbolic and decision-theoretic problem 
solving in a cognitive architecture by implementing the latter in an architecture 
within which the former has already been demonstrated. The graphical models 
upon which the architecture is based enable a uniform implementation of both 
varieties of problem solving.  They also enable a uniform combination with forms 
of decision-relevant perception, highlighting a potential path towards a tight 
coupling between central cognition and peripheral perception. 
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Introduction 

A cognitive architecture embodies a hypothesis about the fixed structure underlying 
intelligent behavior, whether in natural or artificial systems.  Central to intelligent 
behavior, and thus to any such architecture, is an approach to decision making; i.e., to 
determining what actions should be performed as a function of what is perceived, what 
is known and what is desired.  In a typical symbolic architecture, such as Soar [1], 
perception occurs via distinct perceptual modules interfaced to the architecture; 
knowledge takes the form of rules, facts, cases/episodes or general logical statements; 
and desires are encoded as goals.  In a decision-theoretic architecture, knowledge takes 
a probabilistic form, with desires encoded as numeric utilities [2,3].  Due to 
uncertainty, many leading perception algorithms are likewise probabilistic, implying 
that they may be more compatible with a decision-theoretic formalism for decision 
making than a symbolic one; yet decision-theoretic architectures, to the extent that they 
do perception, also typically interface to separate perceptual modules [4]. 

The ideal architecture would leverage the combined strengths of both symbolic and 
decision-theoretic approaches while also tightly integrating perception into the overall 
framework.  This article reports on the early stages of exploring such a fusion, via an 
architecture that leverages graphical models for hybrid (discrete and continuous) mixed 
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(symbolic and probabilistic) behavior [5,6].  Earlier work showed how such a graphical 
architecture could reproduce a standard form of symbolic decision making, based on 
how the Soar architecture uses long-term memory to generate candidate operators 
representing actions and evaluate them to yield preferences among them, and then 
selects among them via a preference-based decision procedure [7].  Soar also has the 
ability to interface with perceptual modules and to reflect when existing knowledge is 
inadequate for generating or evaluating operators; e.g., when evaluation knowledge is 
insufficient, it can engage in reflective search to determine which operators best reach 
the goal.  This form of reflective search, which is central to symbolic problem solving, 
has also been demonstrated in the graphical architecture. 

Here the focus is on incorporating into the same graphical models that underlie the 
architecture’s memory and symbolic decision making: (1) a decision-theoretic 
approach to operator evaluation that is based on partially observable Markov decision 
problems (POMDPs); and (2) perception that probabilistically grounds decision making 
in the uncertain external environment.  Out of the wide space of probabilistic 
perceptual algorithms, two are considered that combine state-of-the-art performance on 
dynamic multi-step perceptual problems with natural mappings to graphical models: 
conditional random fields (CRFs) [8] and simultaneous localization and mapping 
(SLAM) [9].  Although some work has been done on the mapping aspect of SLAM 
within the graphical architecture, the material here is limited to localization. 

A set of experiments in a simple 1D navigation task is included to verify that the 
combined graph works as expected within the graphical architecture, and to begin 
exploring some of its resulting properties.  But the main result here is qualitative: 
demonstrating the feasibility of fusing symbolic and decision-theoretic models of 
problem solving, while also coupling tightly with a uniform implementation of 
decision-relevant perception – to yield a secondary form of fusion between central 
cognition and peripheral perception – within a theoretically elegant graphical cognitive 
architecture.  This pair of fusions contributes in two ways towards architectures capable 
of broad yet uniformly implemented and tightly integrated functionality. 

The overall focus in graphical models is computational – specifically on efficient 
computation over complex multivariate functions by decomposing them into products 
of simpler functions – rather than biological, but graphical models do share many of 
the attributes of neural networks – performing limited forms of local computation on 
numeric messages within a graph-structured long-term memory – and a number of 
neural network algorithms map directly onto them [10]. There is thus an abstract form 
of biological inspiration, plus potential applicablity to more directly inspired work. 

1.  The Graphical Models 

The backbone of each of the three techniques to be integrated with symbolic problem 
solving within the graphical architecture  – POMDPs, CRFs and SLAM – consists of a 
chain of state variables over a sequence of time steps (Figure 1).  The links between 
successive variables represent constraints over state transitions, which may encode 
transition probabilities – 
P(Xi | Xi-1) – or more 
general potential functions 
– fk(Xi-1, Xi) – whose 
values convey information 

 
 

Figure 1: Graphical model (Markov network) for state transitions. 



about the relative likelihoods of the transitions.  POMDPs and SLAM use conditional 
probabilities while CRFs use potentials, but in either case the entire graph expresses a 
joint distribution, or function, over its variables that decomposes into the product of the 
individual distributions or functions.  For POMDPs and SLAM, the graph computes 

P(X0,…,XN) = P(Xi0

N
! | Xi"1) , where X-1 is null in P(X0 | X-1) to yield the prior on X0.  

CRFs omit priors and use potentials, but with the actual functions used in the product 
being weighted exponentials of the features, such as  exp(!k • fk (Xi!1,Xi )) .  The overall 
equation for CRFs thus becomes F(X0,...,XN ) = exp( !k • fk (Xi!1,Xi )" ) .	   

Attached to the states in this backbone are variables that represent observations of 
the world (Figure 2).  The links connecting these observations to the states in which 
they occur – the ribs, to continue the metaphor – represent joint constraints over 
observations and states, expressed as further probabilities or potentials – P(Oi | Xi) or 
gl(Oi, Xi) – that contribute to the overall product.  This is how perception influences the 
state variables.  Both CRFs and SLAM depend critically on observations across a 
sequence of states to jointly constrain the individual states.  For example, in a CRF for 
word recognition that is based on observations of a sequence of letters, perceptions of 
all of the letters 
jointly constrain 
the identification 
of each 
individual letter.  
In a POMDP 
there is an 
observation for 
the initial state, 
but the later 
states in the chain are hypothetical during decision making, and thus do not involve 
observations. 

For POMDPs and SLAM, action variables – representing operations that produce 
one state from another – are added to the transitions in this skeleton (Figure 3), 
extending the transition probabilities to P(Xi | Xi-1, Ai-1).  The graphs in Figures 1 and 2 
are Markov networks (aka Markov random fields), undirected graphical models over 
variable nodes, where there is a function implicitly defined over each pair of variables 
on a link.  Markov networks can express functions over more than two variables, but 
this is awkward to display graphically.  So we shift in Figure 3 to a more expressive 
type of graphical model that is central to the graphical architecture, factor graphs, 

 

 
 

Figure 3: Graphical model (factor graph) for state transitions with observations (connected to states via 
mapping functions) and actions. 

 
 

Figure 2: Graphical model (Markov network) for state transitions with observations. 



which include explicit factor nodes for functions.  Like Markov networks, factor graphs 
are undirected, but factor nodes now explicitly represent the distributions or functions, 
and each connects to all of its variables. In the figure, factor nodes are represented as 
squares, with the Ti’s transition functions, the Mi’s map functions that relate objects to 
locations, and Pr the prior distribution on the initial state.  All of the Ti’s implement the 
same function, as do the Mi’s. 

To support operator evaluation via POMDPs, the graph must also include utility 
variables linked to future states, so that action distributions are based not only on the 
current state but on what is to be achieved (Figure 4).  Essentially, constraint from 
localization flows forward in time while constraint from utility flows backwards. The 
overall result is effectively a dynamic decision network (DDN), although one in which 
decomposition of state variables – a significant feature generally in DDNs – has not so 
far been considered.  This graph supports a different form of lookahead search from 
what is the norm in symbolic problem solving, and thus from what has been 
implemented already in a Soar-like manner in the graphical architecture.  In the 
POMDP, the state variable at each time step represents a distribution over all possible 
states of the system at that step, possibly including the full combinatoric set of states in 
the problem space.  The transition function represents a distribution over the states 
resulting from applying each possible action to each possible previous state.  A single 
lookahead graph of a fixed length thus represents a probabilistic search to that depth. 

Some years ago a distinction was introduced within Soar between problem space 
search and knowledge search, which maps onto various forms of dual process theory in 
psychology.  Problem space search occurs across decisions.  It is slow and serial, but 
provides an open-ended, potentially combinatoric search over an implicitly defined 
space, with the possibility of exploiting any available knowledge to help control the 
search.  Knowledge search occurs within a single decision.  It is fast and parallel, but 
can only search over a space that is explicitly defined by the existing memory 
structures, with no ability to use additional knowledge to control this search.  The 
POMDP extends Soar’s original notion of knowledge search to probabilistic lookahead 
that is combinatoric yet bounded by the memory structures.  Still, as in Soar, when the 
evaluation knowledge derived from this knowledge search is insufficient to make a 
decision, there is a possibility of unbounded reflective problem space search. 

The full graph that has been implemented (Figure 5) can be viewed as 
decomposing into three modules – one each for CRF perception, SLAM localization, 

 
 

Figure 4: Graphical model (factor graph) with utility functions added for states. 



and POMDP action choice – that interact through shared variable nodes; although they 
are all actually implemented in a uniform manner within a single factor graph.  The 
CRF and SLAM jointly concern the past and present, while the POMDP concerns the 
future.  The CRF computes a distribution over the possible objects (Oi) at the current 
and previous locations (Xi) from sensations (Si), using perception functions (sensation-
object relations: Pi) and object-transition functions (object-adjacency relations: OTi).  
Its backbone here is the perceived objects (Oi) rather than the locations (Xi), with the 
ribs being the sensations (Si).  There are three sensors (S1-S3), each with its own 
perceptual function (P1-P3). SLAM yields a distribution over the current location (X0) 
from the object distributions (Oi) produced by the CRF and evidence about actions 
performed (Ai), while using map functions (object-location probabilities: Mi), 
movement-transition functions (probabilities of new locations given a location and an 
action: XTi) and the prior (Pr), which is uniform in our experiments.  The POMDP 
chooses an action (A0) that maximizes expected utility given the current-location 
distribution (X0) provided by SLAM, using utility (Ui) and movement-transition (XTi) 
functions.  In addition to the shared variables, the one other source of interaction 
among the modules occurs during the training of the CRF, which takes into account 
SLAM’s map function (Mi) and SLAM/POMDP’s transition function (XTi). 

Each module involves bidirectional connectivity internally, and thus bidirectional 
sharing of information and uncertainty among variable nodes that are connected via 
factor nodes.  The unidirectional connectivity shown across modules shouldn’t be 
confused with the directionality in Bayesian networks.  Here it concerns the flow of 
information – via messages passed by the summary product algorithm [11] – rather 
than the direction of probabilistic conditionality.  By enabling flow from SLAM to the 
POMDP, but not in the reverse direction, the POMDP can exploit SLAM’s 
localizations without the utilities used in POMDP’s lookahead affecting localization.  

 
 

Figure 5: Complete graphical model (factor graph) for CRF+SLAM+POMDP.  X0 is the current state and A0 
is the action to be selected.  Bold outlines indicate evidence nodes. 



Similarly, unidirectional flow from the CRF to SLAM implies bottom up perception 
without top-down feedback. 

2. Implementation of a Movement Task in the Graphical Architecture 

A discrete 1D movement task has been implemented, where the goal is to reach a 
specified location, and the actions move a step to the right or left, or do nothing (Figure 
6).  This is a simple task that was chosen primarily to demonstrate that the combined 
graph works within the graphical architecture; however, it does include real world 
complexity stemming from: ambiguity in what is perceived, such as which wall is seen 
when a wall is perceived; errors in the perception functions that can lead to recognizing 
the wrong object; and actions that do not always behave as they are specified.  The 
resulting uncertainty concerning both what is being perceived and where the agent is 
located calls for the kind of evidence combination across steps provided by the CRF 
and SLAM, and the probabilistic decision making provided by the POMDP. 

The graph in Figure 5 is solved at each step to choose the action to perform given 
the available evidence.  The selected action is then performed in the world – an 
environment simulator – where it usually behaves as specified, but may fail.  The graph 
acts as a sliding window that considers a fixed distance into the past (via the CRF and 
SLAM) and the future (via the POMDP).  After an action is performed, the existing 
evidence is slid back a step (via extra-architectural code) and new observations arrive.  
The CRF senses rectangles (doors and walls), circles (doorknobs), and colors (doors 
have distinctive colors), usually correctly but occasionally in error.  From the current 
and (within window) past sensations, object distributions are created for each time step.  
SLAM leverages these object distributions, along with evidence about previous actions, 
to generate a distribution over the current location.  The POMDP exploits this 
distribution to initiate a probabilistic lookahead that yields a distribution over the action 
to be chosen.  The best action is then selected in working memory, and applied in the 
world, enabling the whole process to repeat. 

This task has been implemented within the graphical architecture without building 
specialized CRF, SLAM, and POMDP algorithms into it.  Instead, knowledge is added 
to long-term memory (LTM) and evidence to working memory (WM).  Since general 
perception and learning mechanisms are not yet in place, external code is used to 
initialize WM and LTM.  LTM is encoded via conditionals built from conditions, 
actions, condacts, and functions.  Conditions, actions and condacts are specified as 
patterns over named predicates with typed arguments. Conditions and actions behave 
much as in rule systems, with conditions matching to working memory and actions 

 
 

Figure 6: Task environment with two walls, three doors, an initial location (I) and a goal location (G).  
The relative values of the utility function for this goal location can be seen in the square shading.  From 
the initial state, a lookahead of at least three is needed here before any discrimination is provided. 



proposing changes to it.  Condacts – a neologism for conditions and actions – meld 
these functionalities, by passing messages both from and to WM, to yield the 
bidirectional processing that is crucial in probabilistic graphical models.  A conditional 
function defines a constraint over a combination of variables in the conditional. 

Working memory includes a function for each predicate, with each compiling to a 
factor node to which variable nodes are attached.  For each of the variable nodes in 
Figure 5 there is thus also an unshown WM factor node. Each conditional in LTM 
compiles to a factor subgraph, with across-conditional linkage based on common 
predicates, via sharing of WM nodes.  The graphical architecture’s compiler actually 
generates a factor graph that differs in some details from this nominal graph, even 
beyond the inclusion of WM factor nodes, but the two are logically equivalent.  The 
graph shown, with three steps of input for localization plus a lookahead of three steps 
for action choice, compiles within the graphical architecture into 132 variable nodes 
and 161 factor nodes (for 
293 nodes total).  The 
largest graph with which 
we’ve so far experimented 
uses ten steps of input for 
localization and five steps 
of lookahead.  It requires 
376 variable nodes and 
451 factor nodes (for 827 
nodes total).  

The bidirectional links in the figure arise from condacts, with the factor nodes 
defined by functions.  Figure 7, for example, shows the conditional for the transition 
probabilities from location X1 to location X2 via action A1.  Conditions specify the 
unidirectional interface links among modules, as shown in Figure 8 for map M-1, and 
are also used with 
actions to form rules 
that convert the 
results of operator 
evaluation into 
preferences for the 
next action, as shown 
in Figure 9. Selection 
in this context occurs via the same code that drives selection in declarative memory and 
symbolic decision making [7].  Behavior then occurs over a sequence of graph cycles, 
each of which involves passing messages within the factor graph – via a variant of the 
summary product algorithm that uses a mixture of integration and maximization to 
summarize out variables at factor nodes – until quiescence, and then selected changes 
being made to working memory. 

Three experiments have been run to 
verify that the combined graph works 
and to begin exploring its behavior.  
These vary: (1) the initial and goal 
locations, each from 0 to 11; (2) the 
localization length, from 1 to 10; and (3) the lookahead length, from 1 to 5.  When 
parameters are not varying as part of an experiment, they are set to: the initial and goal 
locations, and the utility function shown in Figure 6; localization of 5 steps; and 

CONDITIONAL 'Map_X-1_O-1 
 Conditions: (O-1 object:o-1) 
 Condacts: (X-1 location:x-1) 
 Function: .8<0,W>, .2<0,∧>, 0<0,{D1,D2,D3}>, 

        .1<1,W>, .9<1,∧>, 0<1,{D1,D2,D3}>, 
        ... 

Figure 8: Map conditional for objects and locations (∧ denotes no object). 

CONDITIONAL Acceptable 
 Conditions: (A0 action:a0) 
 Actions: (Selected operator:a0) 

 
Figure 9: Action-selection conditional. 

CONDITIONAL 'Transition_X1_X2_A1 
 Condacts: (X1 location:x1) 
           (X2 location:x2) 
           (A1 action:a1) 
 Function: 1<0,0,∧>, 1<0,0,L>, .2<0,0,R>, 
           0<0,1,∧>, 0<0,1,L>, .8<0,1,R>, 
           0<1,0,∧>, .8<1,0,L>, 0<1,0,R>, 
           ... 
 Figure 7: Location-transition conditional (∧ denotes no-move action). 



lookahead of 3 steps.  The localization subgraph is initialized with evidence for all 
prior steps that corresponds to what is sensed at the initial location, modulo noise, and 
the action of doing nothing.  

The first experiment examined how the full graph worked across the space of 
problems, yielding overview data on its performance. The graph solved 78% of the 144 
distinct problems within 30 cycles, with failures primarily due to the localization 
ambiguity resulting from empty starting locations, which all look alike.  The solved 
problems required an average of 7802 messages/cycle and 14 seconds/cycle,2 with an 
average ratio of 1.7 between the number of cycles to solve a problem and the minimum 
number of moves possible to solve it.  Although the uncertainties and errors can thus 
lead to non-optimal moves, it usually recovers and solves the problem within 30 steps. 

The second experiment evaluated the impact of varying the SLAM localization 
length from 1 (requiring 794 messages and 1 second per cycle) up to 10 (26447 
messages and 34 seconds per cycle).  Localization improved as the graph went from 1 
to 6 steps, but then decreased from there.  As the localization window got large, faulty 
observations and failed actions contaminated the localization process for too long (an 
issue that should be addressable by an incremental learning approach).   The third 
experiment explored lookahead via the POMDP.  Given the utility function plus the 
initial and final locations, a lookahead of 1 yielded random decisions, but anything 
more enabled it to head towards the goal.  The strength of the correct action increased 
with lookahead length, as did the computational cost in terms of both messages per 
cycle (from 6621 to 9426) and time per cycle (from 11 to 20 seconds). 

  The key result here is that the architecture yields behavior corresponding to a 
combination of CRF, SLAM, and POMDP from knowledge-driven activities on top of 
the architecture’s theoretically elegant, hybrid mixed model of memory and processing 
– based on factor graphs and the summary product algorithm – rather than from 
extensions to the architecture.  The same memory and decision-making capabilities 
earlier shown to support things like semantic and rule-based memories, as well as 
symbolic problem solving, also yield decision theoretic problem solving and perception.  
The main issue in these experiments is the cost of processing the graph.  A cognitive 
architecture must achieve ~50 msec per cycle to model real-time human-like results.  
The timings here are off by two to three orders of magnitude.  However, further 
optimizations plus parallelizing message passing do look to provide a promising route. 

3. Summary and Future 

By investigating decision-theoretic problem solving (via a POMDP) in a graphical 
architecture that has already been shown capable of classical symbolic problem solving, 
a step has been taking towards fusing these distinct approaches.  The uniform 
integration of perception (via a CRF), plus the localization it supports (via SLAM) for 
the POMDP, also demonstrates the additional potential for unification provided by this 
architectural approach, particularly between central cognition and peripheral perception. 

Much additional progress is required beyond the step taken here.  The POMDP 
work in isolation has shown that the graphical architecture enables a generic 
representation of time steps with a step variable – avoiding the need to replicate the 

                                                             
2 The timings for the three experiments are from different machines.  The exact values aren’t critical; it 

is the orders of magnitude that are significant. 



subgraph for each step – but this remains to be exploited for the entire joint graph.  We 
are also looking to extend SLAM to mapping, the POMDP to multiagent reasoning and 
Theory of Mind [12], and the CRF to latent dynamic conditional random fields 
(LDCRF) [13].  It is further crucial to investigate how these graphs can scale efficiently, 
be learned, and integrate with other capabilities, such as: mental imagery, as a general 
intermediary between perception and cognition [14]; episodic learning and memory, or 
some other incremental approach, to utilize past observations in SLAM; and reflection, 
to cope with insufficient decision theoretic knowledge. 
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