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Accurately estimating the person’s head position and orientation is an important task for a wide range of
applications such as driver awareness, meeting analysis and human-robot interaction. Over the past two
decades, many approaches have been suggested to solve this problem, each with its own advantages and
disadvantages. In this paper, we present a probabilistic framework called Generalized Adaptive View-
based Appearance Model (GAVAM) which integrates the advantages from three of these approaches:
(1) the automatic initialization and stability of static head pose estimation, (2) the relative precision
and user-independence of differential registration, and (3) the robustness and bounded drift of keyframe
tracking. In our experiments, we show how the GAVAM model can be used to estimate head position and
orientation in real-time using a simple monocular camera. Our experiments on two previously published
datasets show that the GAVAM framework can accurately track for a long period of time with an average
accuracy of 3.5� and 0.75 in. when compared with an inertial sensor and a 3D magnetic sensor.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Real-time, robust head pose estimation algorithms have the
potential to greatly advance the fields of human–computer and
human-robot interaction. Possible applications include novel
computer input devices [1], head gesture recognition, driver fati-
gue recognition systems [2], attention awareness for intelligent
tutoring systems, and social interaction analysis. Pose estimation
may also benefit secondary face analysis, such as facial expression
recognition and eye gaze estimation, by allowing the 3D face to be
warped to a canonical frontal view prior to further processing.

Three main paradigms exist to automatically estimate head
pose. Dynamic approaches, also called differential or motion-based
approaches, track the position and orientation of the head through
video sequences using pair-wise registration (i.e., transformation
between two frames). Their strength is user-independence and
higher precision for relative pose in short time scales, but they
are typically susceptible to accuracy drift due to accumulated
uncertainty over time. They also usually require the initial position
and orientation of the head to be set either manually or using a sup-
plemental automatic pose detector. Static user-independent
approaches detect head pose from a single image without temporal
ll rights reserved.

: +1 310 574 5725.
rency), jake@mplab.ucsd.edu
).
information and without any previous knowledge of the user
appearance. These approaches can be applied automatically with-
out initialization, but they tend to return coarser estimates of the
head pose. Static user-dependent approaches, also called keyframe-
based or template-based approaches, use information previously
acquired about the user (automatically or manually) to estimate
the head position and orientation. These approaches are more
accurate and suffer only bounded drift over time, but they lack
the relative precision of dynamic approaches. They also require
a procedure for learning the appearance model of individual
users.

In this paper we present a Generalized Adaptive View-based
Appearance Model (GAVAM) which integrates all three pose esti-
mation paradigms described above in one probabilistic frame-
work1. The proposed approach can initialize automatically from
different poses, is completely user-independent, has the high preci-
sion of a motion-based tracker and does not drift over time. GAVAM
was specifically designed to estimate 6 degrees-of-freedom (DOF) of
head pose in real-time from a single monocular camera with
known internal calibration parameters (i.e., focal length and image
center).

The following section describes previous work in head pose esti-
mation and explains the difference between GAVAM and other
1 Watson is a real-time implementation of GAVAM and is available for download at
http://people.ict.usc.edu/~morency/.
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integration frameworks. Section 3 describes formally our view-
based appearance model (GAVAM) and how it is adapted automati-
cally over time. Section 4 explains the details of the estimation
algorithms used to apply GAVAM to head pose tracking. Section 5
describes our experimental methodology and show our comparative
results.

2. Previous work

Over the past two decades, many techniques have been devel-
oped for estimating head pose [3]. Various approaches exist within
the static user-independent paradigm, including simultaneous face
and pose detection [4,5], Active Appearance Models [6], direct
appearance analysis methods [7–10] and some hybrid approaches
[11,5]. Static pose analysis is inherently immune to accuracy drift,
but it also ignores highly useful temporal information that could
improve estimation accuracy.

Very accurate shape models are possible using the Active
Appearance Model (AAM) methodology [12], such as was applied
to 3D head data in [13]. However, tracking 3D AAMs with monoc-
ular intensity images is currently a time-consuming process, and
requires that the trained model be general enough to include the
class of the user being tracked.

Early work in the dynamic paradigm assumed simple shape mod-
els (e.g., planar [14], cylindrical [15], or ellipsoidal [16]). Tracking
can also be performed with a 3D face texture mesh [17] or 3D face
feature mesh [18]. Some recent work looked morphable models
rather than rigid models [19–21]. Differential registration algo-
rithms are known for user-independence and high precision for
short time scale estimates of pose change, but they are typically sus-
ceptible to accuracy drift due to accumulated uncertainty over time.

Some earlier work in static user-dependent paradigm include
nearest-neighbors prototype methods [22,11] and template-
based approaches [23]. Vacchetti et al. suggested a method to
merge online and offline keyframes for stable 3D tracking [24].
These approaches are more accurate and suffer only bounded
drift over time, but they lack the relative precision of dynamic
approaches.

Several previous pose detection algorithms combine both track-
ing and static pose analysis. Huang and Trivedi [25] combine a sub-
space method of static pose estimation with head tracking. The
static pose detector uses a continuous density HMM to predict
the pose parameters. These are filtered using a Kalman filter and
then passed back to the head tracker to improve face detection
during the next video frame. Sherrah and Gong [26] detect head
position and pose jointly using conditional density propagation
with the combined pose and position vectors as the state. To our
best knowledge, no previous pose detection work has combined
the three paradigms of dynamic tracking, keyframe tracking, and
static pose detection into one algorithm.

Morency et al. [27] presented the Adaptive View-based Appear-
ance Model (AVAM) for head tracking from stereo images which
integrates two paradigms: differential (dynamic) and keyframe
(user-dependent) tracking. GAVAM generalizes the AVAM ap-
proach by integrating all three paradigms and operating on inten-
sity images from a single monocular camera. This generalization
faced three difficult challenges:

� Integrating static user-independent paradigm into the probabi-
listic framework (see Section 3).

� Segmenting the face and selecting base frame set without any
depth information by using a multiple face hypotheses approach
(described in Section 3.1).

� Computing accurate pose-change estimation between two
frames with only intensity images using iterative Normal Flow
Constraint (described in Section 4.1).
GAVAM also includes some new functionality such as the key-
frame management and a 4D pose tessellation space for the key-
frame acquisition (see Section 3.4 for details). The following two
sections formally describe this generalization.
3. Generalized adaptive view-based appearance model

The two main components of the Generalized Adaptive View-
based Appearance Model (GAVAM) are the view-based appearance
model M which is acquired and adapted over time, and the series
of change-pose measurements Y estimated every time a new
frame is grabbed. Fig. 1 shows an overview our GAVAM framework.
Algorithm 1 presents a high-level overview of the main steps for
head pose estimation using GAVAM.

A conventional view-based appearance model [6] consists of dif-
ferent views of the same object of interest (e.g., images representing
the head at different orientations). GAVAM extends the concept of
view-based appearance model by associating a pose and covariance
with each view. Our view-based model M is formally defined as

M ¼ ffIi; xig;KXg

where each view i is represented by Ii and xi which are respectively
the intensity image and its associated pose modeled with a Gauss-
ian distribution, and KX is the covariance matrix over all random
variables xi. For each pose xi, there exist a sub-matrix Kxi

in the
diagonal of KX that represents the covariance of the pose xi. The
poses are six dimensional vector consisting of the translation and
the three Euler angles ½ Tx Ty Tz Xx Xy Xz �. The pose
estimates in our view-based model will be adapted using the
Kalman filter update with pose change measurements Y as obser-
vations and the concatenated poses X as the state vector. Section
3.3 describes this adaptation process in detail.

The views ðIi; xiÞ represent the object of interest (i.e., the head)
as it appears from different angles and depths. Different pose esti-
mation paradigms will use different view types:

� A differential tracker will use only two views: the current frame
ðIt ; xtÞ and the previous frame ðIt�1; xt�1Þ.

� In a keyframe-based (or template-based) approach there will be
1þ n views: the current frame ðIt; xtÞ and the j ¼ 1 . . . n key-
frames fIKj

; xKj
g. Note that GAVAM acquires keyframes online

and GAVAM adapts the poses of these keyframes during tracking
so n; fxKj

g and KX change over time.
� A static user-independent head pose estimator uses only the

current frame ðIt; xtÞ to produce its estimate. In GAVAM, this
pose estimate is modeled as a pose-change measurement yt

k0

between the current frame ðIt ; xtÞ and a reference keyframe
ðIK0 ; xK0 Þ placed at the origin.

Since GAVAM integrates all three estimation paradigms, its
view-based model M consists of 3þ n views: the current frame
ðIt ; xtÞ, the previous frame ðIt�1; xt�1Þ, a reference keyframe
ðIK0 ; xK0 Þ, and n keyframe views fIKj

; xKj
g, where j ¼ 1 . . . n. The key-

frames are selected online to best represent the head under differ-
ent orientation and position. Section 3.4 will describe the details of
this tessellation.

Algorithm 1.
Tracking with a Generalized Adaptive View-based Appearance
Model (GAVAM).

for each new frame ðItÞ do

(continued on next page)
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Base Frame Set Selection: Select the nb most similar keyframes to the
current frame and add them to the base frame set. Always include the
previous frame ðIt�1; xt�1Þ and referential keyframe ðIK0 ; xK0 Þ in the base
frame set (see Section 3.1);
Pose-change measurements: For each base frame, compute the rela-
tive transformation yt

s , and its covariance Kyt
s
, between the current

frame and the base frame (see Sections 3.2 and 4 for details);
Model adaptation and pose estimation: Simultaneously update the
pose of all keyframes and compute the current pose xt by solving
Eqs. (2) and (1) given the pose-change measurements fyt

s; Kyt
s
g (see

Section 3.3);
Online keyframe acquisition and management: Ensure a constant
tessellation of the pose space in the view-based model by adding
new frames ðIt ; xtÞ as keyframe if different from any other view in M,
and by removing redundant keyframes after the model adaptation
(see Section 3.4).

end for
3.1. Base frame set selection

The goal of the base frame selection process is to find a subset of
views (base frames) in the current view-based appearance model
M that are similar in appearance (and implicitly in pose) to the
current frame It . This step reduces the computation time since
pose-change measurements will be computed only on this subset.

To perform good base frame set selection (and pose-change
measurements) we need to segment the face in the current frame.
In the original AVAM algorithm [27], face segmentation was sim-
plified by using depth images from the stereo camera; with only
an approximate estimate of the 2D position of the face and a sim-
ple 3D model of the head (i.e., a 3D box), AVAM was able to seg-
ment the face. Since GAVAM uses only a monocular camera
model, its base frame set selection algorithm is necessarily more
sophisticated. Algorithm 2 summarizes the base frame set selec-
tion process.

The ellipsoid head model used to create the face mask for each
keyframe is a half ellipsoid with the dimensions of an average head
(see Section 4.1 for more details). The ellipsoid is rotated and trans-
lated based on the keyframe pose xKj

and then projected in the im-
Online Model
Acquisition
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Base Frame Set Selection Given the current frame It and view-
based model M, returns a set of selected base frames fIs; xsg.

Create face hypotheses for current frame Based on the previous
frame pose xt�1 and its associated covariance Kxt�1 , create a set
of face hypotheses for the current frame (see Section 3.1 for
details). Each face hypothesis is composed of a 2D coordinate
and a scale factor representing the face center and its
approximate depth.

for each keyframe ðIKj
; xKj
Þ do

Compute face segmentation in keyframe Position the ellipsoid
head model (see Section 4.1) at pose xKj

, back-project in image
plane IKj

and compute valid face pixels
for each current frames face hypothesis do

Align current frame Based on the face hypothesis, scale and
translate the current image to be aligned with center of the
keyframe face segmentation.

Compute distance Compute the L2-norm distance between
keyframe and the aligned current frame for all valid pixel from
the keyframe face segmentation.

end for
Select face hypothesis The face hypothesis with the smallest
distance is selected to represent this keyframe.

end for
Base frame set selection Based on their correlation scores, add the

nb best keyframes in the base frame set. Note that the previous
frame ðIt�1; xt�1Þ and referential keyframe ðIK�0; xK�0Þ are
always added to the base frame set.
The face hypotheses set represents different positions and
scales where the face could be in the current frame. The first
hypothesis is created by projecting pose xt�1 from the previous
frame in the image plane of the current frame. Face hypotheses
Pose-change
Measurements
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t
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. During the same pose update process (described in Section 3.3), the poses
icts the referential keyframe ðIk0

; xk0
Þ set at the origin.
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are created around this first hypothesis based on the trace of the
previous pose covariance trðKxt�1 Þ. If trðKxt�1 Þ is larger than a preset
threshold, face hypotheses are created around the first hypothesis
with increments of one pixel along both image plane axes and of
0.2 m along the Z axis. Thresholds were set based on preliminary
experiments and the same values used for all experiments. For
each face hypothesis and each keyframe, a L2-norm distance is
computed and the nb best keyframes are then selected to be added
in the base frame set. The previous frame ðIt�1; xt�1Þ and referential
keyframe ðIK0 ; xK0 Þ are always added to the base frame set.

3.2. Pose-change measurements

Pose-change measurements are relative pose differences be-
tween the current frame and one of the other views in our model
M. We presume that each pose-change measurement is probabilis-
tically drawn from a Gaussian distribution Nðyt

sjxt � xs; Kyt
s
Þ. By

definition pose increments have to be additive, thus pose-changes
are assumed to be Gaussian. Formally, the set of pose-change mea-
surements Y is defined as:

Y ¼ yt
s;Kyt

s

n o

Different pose estimation paradigms will return different pose-
change measurements:

� The differential tracker compute the relative pose between the
current frame and the previous frame, and returns the pose
change-measurements yt

t�1 with covariance Kt
t�1. Section 4.1

describes the view registration algorithm.
� The keyframe tracker uses the same view registration algorithm

described in Section 4.1 to compute the pose-change measure-

ments yt
Ks
;Kyt

Ks

n o
between the current frame and the selected

keyframes frames.
� The static head pose estimator (described in Section 4.2) returns

the pose-change measurement yt
K0
; Kyt

K0

� �
based on the inten-

sity image of the current frame.

GAVAM integrates all three estimation paradigms. Section 4 de-
scribes how the pose-change measurements are computed for
head pose estimation.

3.3. Model adaptation and pose estimation

To estimate the pose xt of the new frame based on the pose-
change measurements, we use the Kalman filter formulation de-
scribed in [27]. The state vector X is the concatenation of the view
poses fxt; xt�1xK0 ; xK1 ; xK2 ; . . .g as described in Section 3 and the
observation vector Y is the concatenation of the pose measure-

ment yt
t�1; yt

K0
; yt

K1
; yt

K2
; . . .

n o
as described in the previous section.

The covariance between the components of X is denoted by KX.
The Kalman filter update computes a prior for pðXt jY1...t�1Þ by

propagating pðXt�1jY1...t�1Þ one step forward using a dynamic mod-
el. Each pose-change measurement yt

s 2 Y between the current
frame and a base frame of X is modeled as having come from:

yt
s ¼ Ct

sXþx;
Ct

s ¼ I 0 � � � �I � � � 0½ �;

where x is Gaussian and Ct
s is equal to I at the view t, equal to �I for

the view s and is zero everywhere else. Each pose-change measure-
ment yt

s;Kyt
s

� �
is used to update all poses using the Kalman Filter

state update:
½KXt �
�1 ¼ ½KXt�1 �

�1 þ Ct
s
>
K�1

yt
s

Ct
s ð1Þ

Xt ¼ KXt ½KXt�1 �
�1
Xt�1 þ Ct

s
>
K�1

yt
s

yt
s

� �
ð2Þ

After individually incorporating the pose-changes ðyt
s;Kyt

s
Þ using this

update, Xt is the mean of the posterior distribution pðMjYÞ. The
proof of convergence described in [27] directly applies to the our
model since we are using the same Kalman filter formulation. This
proof states that the marginal variance of the pose of the keyframes
shrinks and so the marginal variance of any frame registered against
these is also bounded.
3.4. Online keyframe acquisition and management

An important advantage of GAVAM is the fact that keyframes
are acquired online during tracking. GAVAM generalized the previ-
ous AVAM [27] by (1) extending the tesselation space from 3D to
4D by including the depth of the object as the forth dimension
and (2) adding an extra step of keyframe management to ensure
a constant tesselation of the pose space.

After estimating the current frame pose xt , GAVAM must decide
whether the frame should be inserted into the view-based model
as a keyframe or not. The goal of the keyframes is to represent
all different views of the head while keeping the number of key-
frames low. In GAVAM, we use 4 dimensions to model the wide
range of appearance. The first three dimensions are the three rota-
tional axis (i.e., yaw, pitch and roll) and the last dimension is the
depth of the head. This fourth dimension was added to the view-
based model since the image resolution of the face changes when
the user moves forward or backward and maintaining keyframes
at different depths improves the base frame set selection.

In our experiments, the pose space is tessellated in bins of equal
size: 10degr for the rotational axis and 100 mm for the depth
dimension. These bin sizes were set empirically to the maximum
pose differences that our pose-change measurement algorithm
(described in Section 4.1) can accurately estimate.

The current frame ðIt ; xtÞ is added as a keyframe if either (1) no
keyframe exists already around the pose xt and its variance is
smaller than a threshold, or (2) the keyframe closest to the current
frame pose has a larger variance than the current frame. The
variance of xi is defined as the trace of its associated covariance
matrix Kxi

.
The keyframe management step ensures that the original pose

tessellation stays constant and no more than one keyframe repre-
sents the same space bin. During the keyframe adaptation step
described in Section 3.3, keyframe poses are updated and some
keyframes may have shifted from their original poses. The key-
frame management goes through each tesselation bin from our
view-based model and check if more than one keyframe pose is
the region of that bin. If this is the case, then the keyframe with
the lowest variance is kept while all the other keyframes are
removed from the model. This process improves the performance
of our GAVAM framework by compacting the view-based
model.
4. Monocular head pose estimation

In this subsection we describe in detail how the pose-change
measurements yt

s are computed for the different paradigms. For
the differential and keyframe tracking, yt

t�1 and yt
Kj

are computed
using Iterative Normal Flow Constraint described in the next sec-
tion. Section 4.2 describes the static pose estimation technique
used for estimating yt

K0
.
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4.1. Monocular iterative normal flow constraint

Our goal is to estimate the 6-DOF transformation between a
frame with known pose ðIs; xsÞ and a new frame with unknown
pose It . Our approach is to use a simple 3D model of the head (half
of an ellipsoid) and an iterative version of the Normal Flow Con-
straint (NFC) [28]. Since pose is known for the base frame ðIs; xsÞ,
we can position the ellipsoid based on its pose xs and use it to solve
the NFC linear system. The Algorithm 3 shows the details of our
iterative NFC.

Algorithm 3.
Iterative Normal Flow Constraint Given the current frame It , a
base frame ðIs; xsÞ and the internal camera calibration for both
images, returns the pose-change measurement yt

s between both
frames and its associated covariance Kyt

s
.

Compute initial transformation Set initial value for yt
s as the 2D

translation between the face hypotheses for the current frame
and the base frame (see Section 3.1

Texture the ellipsoid model Position the ellipsoid head model at
xs þ yt

s. Map the texture from Is on the ellipsoid model by using
the calibration information

repeat
Project ellipsoid model Back-project the textured ellipsoid in
the current frame using the calibration information.

Normal Flow Constraint Create a linear system by applying the
normal flow constraint [28] to each valid pixel in the current
frame.

Solve linear system Estimate Dyt
s

by solving the NFC linear
system using linear least square. Update the pose-change

measurement yt
s
ðnewÞ ¼ yt

s
ðoldÞ þ Dyt

s
and estimate the covariance

matrix Kyt
s

[29].
Warp ellipsoid model Apply the transformation Dyt

s
to the

ellipsoid head model
until Maximum number of iterations reached or convergence:

traceðKyt
s
Þ < TK
4.2. Static pose estimation

The static pose detector consists of a bank of Viola–Jones style
detectors linked using a probabilistic context-dependent architec-
ture [30]. The first element of this bank is a robust but spatially
inaccurate detector capable of finding faces with up to 45� devia-
tions from frontal. The detected faces are then processed by a col-
lection of context dependent detectors whose role is to provide
spatial accuracy over categories of interest. These include the loca-
tion of the eyes, nose, mouth, and yaw (i.e., side-to-side pan of the
head). The yaw detectors where trained to discriminate between
yaw ranges of ½�45; �20��; ½�20; 20��, and ½20; 45�� directly from
the static images. All the detectors were trained using the Gentle-
Boost algorithm applied to Haar-like box filter features, as in Viola
and Jones [31]. For training, the GENKI dataset was used [30] which
contains over 60,000 images from the Web spanning a wide range
of persons, ethnicities, geographical locations, and illumination
conditions. The dataset has been coded manually for yaw, pitch,
and roll parameters using a 3D graphical pose labeling program.

The output of the feature detectors and the yaw detectors is
combined using linear regression to provide frame-by-frame esti-
mates of the 3D pose. The covariance matrix of the estimates of
the 3D pose parameters was estimated using the GENKI dataset.
More details about this discriminative approach can be found in
[32].
5. Experiments

The goal is to evaluate the accuracy and robustness of the GA-
VAM tracking framework on previously published datasets. The
following section describes these datasets while Section 5.2 pre-
sents the details of the models compared in our experiments.
Our results are shown in Sections 5.3 and 5.4. Our C++ implemen-
tation of GAVAM runs at 12 Hz on one core of an Intel X535 Quad-
core processor. The system was automatically initialized using the
static pose estimator described in the previous section.
5.1. Datasets

We evaluated the performance of our approach on two different
datasets: the BU dataset from La Cascia et al. [15] and the MIT data-
set from Morency et al. [27].

BU dataset consists of 45 sequences (nine sequences for each of
five subjects) taken under uniform illumination where the subjects
perform free head motion including translations and both in-plane
and out-of-plane rotations. All the sequences are 200 frames long
(approximatively 7 s) and contain free head motion of several sub-
jects. Ground truth for these sequences was simultaneously col-
lected via a ‘‘Flock of Birds” 3D magnetic tracker [33]. The video
signal was digitized at 30 frames per second at a resolution of
320 � 240. Since the focal length of the camera is unknown, we
approximated it to 500 (in pixel) by using the size of the faces
and knowing that they should be sitting approximately one meter
from the camera. This approximate focal length add challenges to
this dataset.

MIT dataset contains 4 video sequences with ground truth
poses obtained from an Inertia Cube2 sensor. The sequences were
recorded at 6 Hz and the average length is 801 frames ð	 133 sÞ.
During recording, subjects underwent rotations of about 125�
and translations of about 90 cm, including translation along the Z
axis. The sequences were originally recorded using a stereo camera
from Videre Design [34]. For our experiments, we used only the left
images. The exact focal length was known. By sensing gravity and
earth magnetic field, Inertia Cube2 estimates for the axis X and Z
axis (where Z points outside the camera and Y points up) are
mostly driftless but the Y axis can suffer from drift. InterSense re-
ports a absolute pose accuracy of 3� RMS when the sensor is mov-
ing. This dataset is particularly challenging since the recorded
frame rate was low and so the pose differences between frames
will be larger. Also, the average resolution for the faces (distance
between outer eye corners) was 33 pixels.
5.2. Models

To evaluate the importance of integrating all three paradigms,
we compared our GAVAM approach with simpler models which in-
cludes only one or two of the tracking paradigms. We evaluated a
total of six models for head pose estimation:

GAVAM The Generalized Adaptive View-based Appearance
Model (GAVAM) is the complete model as described in Section 3.
This model integrates all three pose estimation paradigms: static
pose estimation, differential tracking and keyframe tracking. It is
applied on monocular intensity images.

Dynamic only This approach uses only the differential tracking
paradigm and ignores static pose estimation and keyframe track-
ing. The transformation between adjacent frames is computed
using the monocular iterative normal flow constraint described
in Section 4.1. This approach is applied on the monocular intensity
images.

Static only This approach uses only the static user-independent
paradigm and ignores the dynamic and keyframes paradigms. The



Table 1
Average rotational accuracies (mean absolute error) on BU dataset [15]. GAVAM
successfully tracked all 45 sequences while La Cascia et al. [15] reported an average
percentage of tracked frame of only 	75%.

Technique Tx Ty Tz Pitch Yaw Roll

GAVAM 0.90 in. 0.89 in. 1.91 in. 3.67� 4.97� 2.91�

Table 2
Average rotational accuracies (mean absolute error) on MIT dataset [27]. GAVAM
performs almost as well as the 3D AVAM which was using stereo calibrated images
while our GAVAM works with monocular intensity images. GAVAM clearly outper-
forms all combinations of one or two individual paradigms (dynamic only, static only,
dynamic + static and 2D AVAM). This result shows that integrating all three
paradigms improves head pose estimation.

Technique Pitch Yaw Roll

GAVAM 3:3� 
 1:4� 3:9� 
 3:2� 2:7� 
 1:6�

Dynamic only 12:2� 
 9:5� 13:0� 
 50:7� 15:9� 
 47:5�

Static only [32] 5:1� 
 2:3� 5:4� 
 0:9� 3:7� 
 2:0�

Dynamic + static 5:4� 
 1:6� 5:2� 
 3:7� 4:6� 
 3:1�

2D AVAM 5:3� 
 15:3� 4:9� 
 9:6� 3:6� 
 6:3�

3D AVAM [27] 2.4� 3.5� 2.6�

L.-P. Morency et al. / Image and Vision Computing 28 (2010) 754–761 759
pose at each frame is computed using the algorithm described in
Section 4.2. This approach uses monocular intensity images.

Dynamic + Static This approach combines dynamic tracking
with static user-independent. This comparison will highlight the
importance of acquiring and updating keyframes. This approach
is also applied on the monocular intensity images.

2D AVAM The monocular AVAM uses the same infrastructure as
the GAVAM but without the integration of the static pose estima-
tor. This comparison will highlight the importance of integrating
all three paradigm in one probabilistic model. This model uses
monocular intensity images.

3D AVAM The stereo-based AVAM is the original model sug-
gested by Morency et al. [27]. The results for this model are taken
directly from their research paper. Since this model uses intensity
images as well as depth images, we should expect better accuracy
for this 3D AVAM.

Note that we did not included a model which uses only the Key-
frame paradigm since this approach requires the differential para-
digm to be able to acquire the keyframe online. The 2D AVAM and
3D AVAM show the performance when combining the keyframe
and differential paradigms.
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Fig. 2. GAVAM angular pose estimates compared to a 2D AVAM and an i
5.3. Results with BU dataset

The BU dataset presented in [15] contains 45 video sequences
from five different people. The results published by La Cascia
et al. are based on three error criteria: the average % of frames
tracked, the position error and the orientation error. The position
and orientation errors includes only the tracked frames and ignores
all frames with very large error. In our results, the GAVAM success-
fully tracked all 45 video sequences without losing track at any
point. Table 1 shows the accuracy of our GAVAM pose estimator.
The average rotational accuracy is 3.85� while the average position
error is 0.75 in. ( 1.9 cm). These results show that GAVAM is
accurate and robust even when the focal length can only be
approximated.
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Fig. 3. Smoothed average rotational accuracy as a function of ground truth rotation from the magnetic sensor on the MIT dataset.

Fig. 4. Head pose estimates from GAVAM depicted as a white box superimposed on the original images. In the top right corner of each image, the textured elliptical model
after the completed pose estimation is shown. The thickness of cube is inversely proportional to the variance of the pose. The small dots underneath the box represent the
number of base frame used to estimate the pose.

760 L.-P. Morency et al. / Image and Vision Computing 28 (2010) 754–761
5.4. Results with MIT dataset

The MIT dataset presented in [27] contains four long video se-
quences ð	 2 minÞ with a large range of rotation and translation.
Since the ground truth head positions were not available for this
dataset, we present results for pose angle estimates only. Fig. 2
shows the estimated orientation for GAVAM and the 2D AVAM
compared to the output of the inertial sensor for one video se-
quence. We can see that 2D AVAM loses track after frame 700
while GAVAM keeps tracking. In fact, GAVAM successfully tracked
all four sequences. Fig. 4 shows head pose (represented by a white
cube) for eight frames from the same video sequence. Table 2
shows the averaged angular error for all six models described in
Section 5.2. The results for 3D AVAM were taken for the original
publication [27]. We can see that GAVAM performs almost as well
as the 3D AVAM which was using stereo calibrated images while
our GAVAM works with monocular intensity images. Note that
using only the static user-independent paradigm (referred as Static
only in Table 2) does perform well with an average accuracy of 4.7�
but this approach is only able to successfully track 74.3% of the
frames. By adding the dynamic paradigm, all frames are success-
fully estimated with an average accuracy of 5.1�. Fig. 3 shows the
smoothed average rotational error as a function of the ground truth
angle from the inertial sensor used when recording the MIT data-
set. In both Table 2 and Fig. 3, GAVAM clearly outperforms all com-
binations of one or two individual paradigms (dynamic only, static
only, dynamic + static and 2D AVAM). This result shows that inte-
grating all three paradigms improves head pose estimation.
6. Conclusion

In this paper, we presented a probabilistic framework called
Generalized Adaptive View-based Appearance Model (GAVAM)
which integrates the advantages from three of these approaches:
(1) the automatic initialization and stability of static head pose
estimation, (2) the relative precision and user-independence of dif-
ferential registration, and (3) the robustness and bounded drift of
keyframe tracking. On two challenging 3-D head pose datasets,
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we demonstrated that GAVAM can reliably and accurately estimate
head pose and position using a simple monocular camera.
Acknowledgements

This work was sponsored by the US Army Research, Develop-
ment, and Engineering Command (RDECOM) and the US Naval
Research Laboratory under grant # NRL 55-05-03. The content does
not necessarily reflect the position or the policy of the Govern-
ment, and no official endorsement should be inferred.
References

[1] Y. Fu, T.S. Huang, hmouse: Head tracking driven virtual computer mouse, in:
IEEE Workshop Applications of Computer Vision, 2007, pp. 30–35.

[2] S. Baker, I. Matthews, J. Xiao, R. Gross, T. Kanade, T. Ishikawa, Real-time non-
rigid driver head tracking for driver mental state estimation, in: Proc. 11th
World Congress Intelligent Transportation Systems, 2004.

[3] E. Murphy-Chutorian, M. Triverdi, Head pose estimation in computer vision: a
survey, IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (4)
(2009) 607–626.

[4] C. Huang, H. Ai, Y. Li, S. Lao, High-performance rotation invariant multiview
face detection, PAMI 29 (4) (2007) 671–686.

[5] V.N. Balasubramanian, S. Krishna, S. Panchanathan, Person-independent head
pose estimation using biased manifold embedding, EURASIP Journal on
Advances in Signal Processing 2008 (2008), Article No. 31. Available from:
<http://portal.acm.org/citation.cfm?id=1387880>.

[6] T.F. Cootes, G.V. Wheeler, K.N. Walker, C.J. Taylor, View-based active
appearance models, Image and Vision Computing 20 (2002) 657–664.

[7] J. Huang, X. Shao, H. Wechsler, Face pose discrimination using support vector
machines (SVM), in: Proc. Int. Conf. Pattern Recognition, 1998, pp. 154–156.

[8] E. Murphy-Chutorian, A. Doshi, M.M. Trivedi, Head pose estimation for driver
assistance systems: a robust algorithm and experimental evaluation, in:
Intelligent Transportation Systems, 2007.

[9] N. Gourier, J. Maisonnasse, D. Hall, J. Crowley, Head pose estimation on low
resolution images, Lecture Notes in Computer Science 4122 (2007) 270–280.

[10] A. Lanitis, C. Taylor, T. Cootes, Automatic interpretation of human faces and
hand gestures using flexible models, in: FG, 1995, pp. 98–103.

[11] Y. Fu, T. Huang, Graph embedded analysis for head pose estimation, in: Proc.
IEEE Int. Conf. Automatic Face and Gesture Recognition, 2006, pp. 3–8.

[12] T. Cootes, G. Edwards, C. Taylor, Active appearance models, PAMI 23 (6) (2001)
681–684.
[13] V. Blanz, T. Vetter, A morphable model for the synthesis of 3D faces, in:
SIGGRAPH99, 1999, pp. 187–194.

[14] M. Black, Y. Yacoob, Tracking and recognizing rigid and non-rigid facial
motions using local parametric models of image motion, in: ICCV, 1995, pp.
374–381.

[15] M. La Cascia, S. Sclaroff, V. Athitsos, Fast, reliable head tracking under varying
illumination: an approach based on registration of textured-mapped 3D
models, PAMI 22 (4) (2000) 322–336.

[16] S. Basu, I. Essa, A. Pentland, Motion regularization for model-based head
tracking, in: Proceedings. International Conference on Pattern Recognition,
1996.

[17] A. Schodl, A. Haro, I. Essa, Head tracking using a textured polygonal model, in:
PUI98, 1998.

[18] L. Wiskott, J. Fellous, N. Kruger, C. von der Malsburg, Face recognition by elastic
bunch graph matching, PAMI 19 (7) (1997) 775–779.

[19] M. Brand, Morphable 3D models from video, in: CVPR, 2001.
[20] C. Bregler, A. Hertzmann, H. Biermann, Recovering non-rigid 3D shape from

image streams, in: CVPR, 2000.
[21] L. Torresani, A. Hertzmann, Automatic non-rigid 3D modeling from video, in:

ECCV, 2004.
[22] J. Wu, M.M. Trivedi, An integrated two-stage framework for robust head pose

estimation, in: Int. Workshop on Analysis and Modeling of Faces and Gestures,
2005.

[23] R. Kjeldsen, Head gestures for computer control, in: Proc. Second Int.
Workshop on Recognition, Analysis and Tracking of Faces and Gestures in
Real-time Systems, 2001, pp. 62–67.

[24] L. Vacchetti, V. Lepetit, P. Fua, Fusing online and offline information for stable
3d tracking in real-time, in: CVPR, 2003.

[25] K. Huang, M. Trivedi, Robust real-time detection, tracking, and pose estimation
of faces in video streams, in: ICPR, 2004.

[26] J. Sherrah, S. Gong, Fusion of perceptual cues for robust tracking of head pose
and position, Pattern Recognition 34 (8) (2001) 1565–1572.

[27] L.-P. Morency, A. Rahimi, T. Darrell, Adaptive view-based appearance model,
in: CVPR, vol. 1, 2003, pp. 803–810.

[28] S. Vedula, S. Baker, P. Rander, R. Collins, T. Kanade, Three-dimensional scene
flow, in: ICCV, 1999, pp. 722–729.

[29] C. Lawson, R. Hanson, Solving Least Squares Problems, Prentice-Hall, 1974.
[30] M. Eckhardt, I. Fasel, J. Movellan, Towards practical facial feature detection,

IJPRAI 23 (3) (2009) 379–400.
[31] P. Viola, M. Jones, Robust real-time face detection, in: ICCV, 2001, p. II: 747.
[32] J. Whitehill, J. Movellan, A discriminative approach to frame-by-frame head

pose tracking, in: Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition,
2008.

[33] The Flock of Birds, P.O. Box 527, Burlington, Vt. 05402.
[34] V. Design, MEGA-D Megapixel Digital Stereo Head, http://www.ai.sri.com/

konolige/svs/ (2000).

http://portal.acm.org/citation.cfm?id=1387880
http://www.ai.sri.com/konolige/svs/
http://www.ai.sri.com/konolige/svs/

	Monocular head pose estimation using generalized adaptive view-based appearance model
	Introduction
	Previous work
	Generalized adaptive view-based appearance model
	Base frame set selection
	Pose-change measurements
	Model adaptation and pose estimation
	Online keyframe acquisition and management

	Monocular head pose estimation
	Monocular iterative normal flow constraint
	Static pose estimation

	Experiments
	Datasets
	Models
	Results with BU dataset
	Results with MIT dataset

	Conclusion
	Acknowledgements
	References


