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Abstract. Backchannel feedback is an important kind of ndoakfeedback
within face-to-face interaction that signals a pafs interest, attention and
willingness to keep listening. Learning to preditten to give such feedback is
one of the keys to creating natural and realistitual humans. Prediction
models are traditionally learned from large corpofaannotated face-to-face
interactions, but this approach has several limoitat Previously, we proposed
a novel data collection method, Parasocial ConsernSampling, which
addresses these limitations. In this paper, we stat data collected in this
manner can produce effective learned models. Aestibp evaluation shows
that the virtual human driven by the resulting @doitistic model significantly
outperforms a previously published rule-based agenterms of rapport,
perceived accuracy and naturalness, and it is lkeettar than the virtual human
driven by real listeners’ behavior in some cases.
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1 Introduction

When people interact face-to-face, actions oftexakpouder than words. A speaker’s
facial expressions, gestures and postures cantalithe meaning of an utterance;
whereas a listener's nonverbal reactions providenerd-to-moment feedback that
can alter and serve to co-construct subsequentisjéé,22,23]. Beyond its impact
on meaning, nonverbal signals communicate emotiah @ersonality, enhance the
persuasiveness of speech, express social statuggmdte conversational flow. Not
surprisingly, considerable effort has been direce@ndowing virtual humans with
the ability to recognize, understand and explatribnverbal channel [16,17,18].
Virtual humans that produce such nonverbal sigeals induce desirable social
changes in their human interaction partners. Syictheonverbal behaviors can
enhance the persuasiveness of virtual human sgégckncourage people to take
their medicine [12], and promote more cooperatioedonomic games [11]. Our own
studies with the Rapport Agent [3] suggest thatveobal behavior plays a causal role
in achieving these effects. As a result of its sagnt nonverbal feedback, human
speakers speak more fluently with the Rapport Adéht disclose more intimate
information about themselves [13] and may bettenemaber recent events [14].



Indeed, these and related studies suggest thatualMiuman’s behavior may be more
important than its appearance in achieving sodfatts [8].

Although early research on virtual humans reliedhamd-crafted algorithms to
generate nonverbal behaviors, informed by psyclicébgtheories or personal
observations of face-to-face interaction [4], recgholarship has seen an explosion
in interest in data-driven approaches that autarallyilearn virtual human behaviors
from annotated corpora of human face-to-face iotéyas. Several systems now exist
that automatically learn a range of nonverbal ba&hravincluding backchannel
feedback [2], conversational gestures [9,15] ancd-taking cues [10].

It is widely assumed that natural human-to-humaerattion constitutes the ideal
dataset from which to learn virtual human behavibi@vever, there are drawbacks
with such data. First, natural data can be expenaind time-consuming to collect.
Second, human behaviors contain variability so 8whe of the behavior samples
may conflict with the social effect that we wang tiirtual human to produce. Finally,
each instance in face-to-face interaction onlystllates how one particular individual
responds to another, yet such data fails to giviasight on how well such responses
generalize across individuals. Rather than simplylaing more powerful learning
algorithms that might overcome these drawbacksangee that attention should also
be directed at innovative methods for collectingadeoral data.

Recently, we proposed a novel data collection apgrocalled Parasocial
Consensus SamplingPCS) [1] to inform virtual human nonverbal belmavi
generation. Instead of interacting face-to-faceatigipants were guided through a
“parasocial” interaction in which they attempted pooduce natural nonverbal
behaviors to pre-recorded videos of human intesagbiartners. Through this method
we were able to quickly collect large amounts othaworal data, but more
importantly, we were able to assess how multipividuals might respond to the
identical social situation. These multiple perspest afford the possibility of driving
virtual humans with the consensus view on how dmeulsl respond, rather than
simply concatenating many idiosyncratic respong&eest of this approach, applied to
the problem of generating listener nonverbal feeldpshowed that 1) participants felt
comfortable producing behavior in this manner andtt® resulting consensus
perceived more accurate and more effective thamalafeedback (i.e., feedback from
the natural listener in face-to-face conversatidddhough this was a promising first
step, it remains to demonstrate that consensuscdatde used to train an effective
predictive model.

In this article, we take this next logical steplemonstrating the power of the PCS:
using consensus data, we train a predictive moflstener backchannel feedback.
We compare the performance of this model againspoevious Rapport Agent that
generated behaviors according to a hand-craftechbimgpOur subjective evaluation
shows the virtual human driven by this probabiisthodel performs significantly
better than the Rapport Agent [6] in terms of rappperceived accuracy and
naturalness, and it is even better than the virluaghan driven by real listener's
behavior in some cases.



2 Background: Parasocial Consensus Sampling

Horton and Wohl [19] first introduced the conceptparasocial interaction. This
describes people’s natural tendency to interadh wiedia representations of people
as if they were interacting face-to-face with thetual person. Many researchers
[20,29,30] have documented that people readily ycedsuch "parasocial” responses
and these responses bear similarity to what is doim natural face-to-face
interactions, even if the respondents are cleasgra they are interacting with pre-
recorded media. By exploiting this characteristic humans, we proposed the
parasocial consensus sampling framework [1].

Parasocial Consensus Samplilga new methodological framework that collects
typical human responses in social interactions.

Unlike the traditional way to collect human behaslodata, where participants'
behaviors are recorded during the social interacf@rasocial consensus sampling
guides multiple independent individuals to vicagslyuexperience the same media
representation of social interaction in order tongdne typicality (i.e., consensus
view) of human response.

The idea of parasociabnsensuss to combine multiple parasocial responses to the
same media clip in order to develop a compositev\dé how a typical individual
would respond. For example, if a significant partiof participants smile at certain
points in a videotaped speech, we might naturadlyctude that smiling is a typical
response to whatever is occurring in the medidn@éd moments. More formally, a
parasocial consensus is drawing agreement frorfetfaback of multiple independent
participants when they experience the same megi@sentation of an interaction. It
does not reflect the behavior of any one individbat can be seen more as a
prototypical or summary trend over some populatioh individuals which,
advantageously, allows us to derive both the streand reliability of the responses.

Although we can never know how every person wiip@nd to a given situation,
samplingis a way to estimate the consensus by randomégctied individuals from a
given population. Thus, parasocial consensus samp§ a way to estimate the
consensus behavioral response in face-to-faceatttens by recording the parasocial
responses of multiple individuals to the same média, by replacing one partner in a
pre-recorded interaction with multiple vicarioussebvers). By repeating this process
over a corpus of face-to-face interaction data, ee® augment the traditional
databases used in learning virtual human intenaatibehaviors with estimates of the
strength and reliability of such responses and,efly, learn more reliable and
effective behavioral mappings to drive the behawforirtual humans.

2.1 Definition

We define parasocial consensus sampling as a campbsive elements:
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Fig. 1. Parasocial Consensus Sampling (PCS) works as fallew first recruit participants
from some population and then encourage them to giyarticular responses(e.g.
backchannels, facial expressions, and so on), meésia somechannel(i.e. visual channel,
audio channel, and mechanical channel), in ordesréate thenteractional goalwithin the
parasocial interaction with theediarepresentation of social interaction.

(1) Interactional Goal this is the intended goal of the virtual humateiactional
behaviors. Before participating in parasocial cosses sampling, participants should
be explicitly or implicitly encouraged to behaveammanner which is consistent with
this goal, for example, creating rapport.

(2) Target behavioral respons¢his is the particular response or set of respsns
that the virtual human is going to generate in ptdecreate a specific interactional
goal. Participants should be encouraged to produché behaviors when they are
participating in the parasocial interaction. Caatid behavioral responses include
backchannel feedback, turn-taking, evaluative faoigressions and paraverbals such
as "uh-huh".

(3) Media this is the set of stimuli that will be presentedhe participants in order
to stimulate their parasocial responses. Idealiy #ould be a media clip derived
from a natural face-to-face interaction where thgipipants can view the clip from a
first-person perspective. For example, if the orgiinteraction was a face-to-face
conversation across a table, the camera positiauldghapproximate as close as
possible the perspective of one of the conversat@tners.

(4) Target population this is the population of individuals we wish thkigtual
human to learn. This might consist of members seterom particular group (e.g.,
women, speakers of African-American vernacular, matients with clinical
depression). Participants should be recruited fitumtarget population.

(5) Measurement channethis is the mechanism by which we measure the
parasocial response. The most natural way to meathe response would be to
encourage participants to behave as if they wengicfpmting in face-to-face
interaction and record their responses. Howevetake advantage of the imaginary



nature of parasocial interaction, participants rhigé encouraged to elicit responses
in a more easily measured way. For example, if ieeirgerested in the consensus of
when to smile in an interaction, we can ask padinots to exaggerate the behavior or
even to press a button whenever they feel the nsgpis appropriate. Candidate
measurement channels include the visual channgl Y&eotaping), audio channel

(e.g. voice recording) or mechanical channel (ergss a button).

2.2 PCSin Action: Collect Listener Backchannel Feedback

Prior research [2,4] has suggested that backchafeselback [31] plays an
important role in establishing rapport betweenrgdtants and this paper is going to
learn a probabilistic model to predict the backeterfeedback. First, we illustrate
how to apply parasocial consensus sampling framewtr collect listener
backchannel feedback data.

Parasocial consensus sampling consists of fivediesents: interactional goal,
target behavioral response, media, target populaitd measurement channel. We
customized the parasocial consensus sampling iwotk as follows:

* Interaction Goal Create rapport

 Target Behavioral Respong®ackchannel feedback
* Media Pre-recorded videos

* Target PopulationGeneral public

* Measurement Channefeyboard

We recruited 9 fluent English speakers (2 femalmafes) from a local temporary
employment agency to participate in the parasoitdractions with the human
speaker videos from our previously collected corpluface-to-face interactions [5].
The average age of the participants is 45.2 yelaksamd the standard deviation is
12.6. Participants were instructed to pretend thiese in a video teleconference with
the speaker in the video and to establish rappprednveying they were actively
listening and interested in what was being saidc@iovey this interest, participants
were instructed to press the keyboard each time féllelike providing backchannel
feedback such as head nods or paraverbals (e.¢hdhihor "OK"). In aone-day
experiment, each of the 9 participants interact@ti & total of 45 videos, which is
much more efficient than the original approach tt@ltecting behavioral data from
face-to-face interaction. They gave about 1800kdzennel feedback in total; on
average, it is about 7 or 8 backchannels per miroteext section, we are going to
show how to learn a probabilistic model from theagacial consensus sampling data.

3 Learning a Probabilistic Model from PCS

To learn probabilistic models from parasocial cosses sampling data, we must build
a consensus model from the individual parasocidér®oand then uses this consensus
data to learn a probabilistic model. One advantfdearning from a consensus is it
separates what is idiosyncratic from what is essenOur goal is to learn a
probabilistic model which will generalize the PC8talto new sequences (or live



interactions) not seen in the training set. Thebahilistic model is trained from the
speaker’s actions (e.g., pause, eye gaze, andfispesicon words) to predict the
listener backchannel feedback (i.e., head nods).

3.1 Building Consensus

The backchannel PCS dataset described in Sect®ncésists ofN sets of
parasocial responsesi, 5, ..., Ty , where N is the number of participant. For each
parasocial interaction;,the PCS dataset contains the response timestamgs, t,

...} indicating when the participant gave a respon3éese response timestamps are
combined to create the consensus following a thtep-approach:

(a) Convert timestampdgEach response timestamp can be viewed as a wioflow
opportunity where backchannel feedback is likelglidwing the work of Ward and
Tsukahara [4], we create a one second time windenteced about each timestamp.
The timeline is then sampled at a constant frarreedf10Hz [4]. Figure 2 illustrates
this approach.

t05 t; tp05 05 G, 405 t;05 t; 105
Fig. 2. t1, t2, t3 are the time spots when a participamegibackchannel feedback in a
parasocial interaction. A 1.0s window of opportyn# put around each timestamp so that the
time spot is in the middle of the window. The saesplithin the window are set to 1 to
indicate the presence of feedback, while otherseiréo 0.

time

(b) Correct for individual differenceqoptional): Our current data collection
requires participants to press a button when thge@ a response and it is well
known that individuals can differ significantly their reaction time on such tasks
[27,28]. Therefore, the quality of consensus datalme improved if we first factor out
these individual differences before combining reseotimestamps into a consensus.
We can estimate this delay by comparing the paralsimteraction with the face-to-
face interaction. We follow the approach in [2d]cbunt how often PCS matches the
real listener’'s behaviors and find the time offfledt maximizes this score. This
process was repeated independently on the ningipartts of the PCS data. The
reaction time values varied from 600ms to 1200nith average of 970ms. The 10
video sequences used for our subjective evaluatestribed in Section 4 were not
part of the video sequences used to select théordimes.

(c) Build consensus view from multiple interactioaistogram is computed over
time by looking at all the parasocial interactioghenever there is backchannel
feedback occurring on a sample (sampled at 10He) htstogram of that sample is
increased by 1. Thus, each sample is associatédawiumber indicating how many
participants agree to give backchannel feedbacthatt point. Figure 3 shows an
example of one parasocial consensus and compatesthie backchannel feedback
from the real listener in the original face-to-fasgeraction.
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Fig. 3. Example segment showing a parasocial consensustehdr backchannel varies

over time. While individual feedback (from the dngl face-to-face interaction) only gives

discrete prediction, our parasocial consensus shbevselative importance of each feedback.
By applying a consensus level to the parasociaeosus, we get only important feedback.

By looking at the real listener's feedback, it see¢hat pause is a good elicitor of
listener feedback, but the relative strength of fieiature is unclear. In contrast, the
parasocial consensus clearly shows that the pali§esin their propensity to elicit
feedback. Looking more carefully at the examplesese the utterances before the first
two pauses are statements, while the last one gsgBsean opinion, suggesting that
pauses after opinions may be better predictorsstafrler feedback. Also, the speaker
expressed emphasis on the third utterance. Thidt igises us a tool to better analyze
and understand features that predict backchanedbéek.

By applying a threshold, thebnsensus levelo the parasocial consensus, feedback
with less importance can be filtered out. Followithg work in [1], we select a
consensus level that makes the number of backclafmoen parasocial consensus
closest to that from the original face-to-face atgion data.

3.2 Learning Probabilistic Model

To build the predictive model for virtual humansg find the relationship between
speaker’s features and the consensus. Recenthg, llas been seen an explosion in
interest in data-driven approaches that automatiéiad such patterns using machine
learning methods [2,9,10,15]. Given the time-senegure of human behavior,
sequential model is a good one to learn the intedgaamic structure existing in
human behavior. We apply a similar strategy ast¢2earn aConditional Random
Field (CRF) model from parasocial consensus sampling. detiis method takes as
input a sequence of human speaker’s features amchsea sequence of probabilities
to give backchannel feedback.

Although semantic information is an importanatige in predicting backchannel
feedback, it has been mentioned in other work [thd} non-verbal information itself
also provides lots of clues in backchannel prediictin this paper, we try to push the



state of the art of non-verbal feature based mo&®@isr speaker features are selected
as suggested in [2]:
» Pauseusing binary encoding
* Speaker looking at the listeneising ramp encoding with a width of 2
seconds and a 1 second delay
» ‘and’ using step encoding with a width of 1 second ardklay of 0.5
seconds
» Speaker looking at the listenasing binary encoding

All the features mentioned above were hand labkledoders. While training, we
split the data set (the videos used for evaluaitioBection 4 are not included) into
training set and validation set. This is done bfoNcross validation. This means N-
1 folders are used for training, and the remairioider is used as validation data for
testing the model. This process is repeated N tirmes then the best model is
selected based on the performance of our modeésp&Hormance is measured by F
score, which is the harmonic mean of precisionragedll. Precision is the probability
that predicted backchannels correspond to actsédniér behavior; recall is the
probability that a backchannel produced by an adisener was predicted by the
model.

Given new test sequence, CRF outputs probabilitgr dime to indicate the
likelihood of giving backchannel feedback. The lavaximum of the probability are
selected as the candidates. In order to generatdirthl backchannel feedback, we
have to pick up a feedback level as shown in Figurén this paper, we set the
feedback level so that the number of feedback f@R# model is closest to that from
the training set.
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Fig. 4. Generate the final backchannel feedback by applyiadeedback level to the output
of CRF model. The stars (*) are the final backcledsin

4 Subjective Evaluation

In evaluating the performance of the probabilistiodel, we conduct a subjective
evaluation experiment to assess whether the vittuaian driven by the CRF model
can be used to achieve the interactional goaltiagaapport, when compared against
the Rapport Agent and the original human lister@pecially, we compose videos



illustrating a human speaker interacting with tiveual human (Figure 5) and contrast
subjective impressions of different models for gatiag the virtual human’s
behavior.

Fig. 5. Videos for subjective evaluation.

We claim that a potential advantage PCS over toait training methods is that
the consensus data better reflects the intendedasttonal goal than typical face-to-
face data. To better assess this claim we adsesgpproach against three classes of
face-to-face interactions: high-rapport interatsiavhere the original human listener
exhibited high rapport; low-rapport interactions es the original human listener
exhibited low rapport, and “typical” interactiortgat contain a mixture of both.

4.1 Backchannel Prediction M odels

We selected 10 speaker videos not used in traitiagCRF model. When these
face-to-face interactions were originally conductgukeakers were asked to assess the
rapport they felt with their conversation partnEive videos were those from our
corpus with the lowest rapport score and 5 wersdhwith the highest rapport score.
We created three variants of each of these videptacing the human listener with a
virtual human whose behavior was driven by ondade different prediction models:

(1) PCS-CREthe virtual human is driven by the CRF modelrteai on parasocial
consensus. The training set doesn't include theid€os used for evaluation.

(2) Natural: the virtual human is driven by the real listesdvackchannel feedback
from the original face-to-face interaction.

(3) Rapport AgentGratch et al. [6] built the Rapport Agent by appy a rule-
based model to predict when to give backchannelbi@ek. The backchannels were
predicted from two rules: (a) If the speaker ndtls, listener should nod back, (b) if
there are backchannel opportunities in the speakpeech, the listener should nod
back. The Rapport Agent uses Watson [26] to deteedd nods and LAUN [6] to
detect backchannel opportunities using the appro&&iard and Tsukahara [4]. We
replicate the Rapport Agent’s behavior by usingsame two tools to extract features
from human speaker videos and applying the sames fat backchannel prediction.



4.2 User Study

We recruited 17 participants to evaluate the quatif the virtual human’s
behavior. Before watching videos, they were toldd'yare going to evaluate different
versions of a virtual agent in the context of iat#ing with a human speaker. In each
video, there is a speaker telling a story and thieual agent giving nonverbal
feedback to the speaker by nodding. We need yoav&duate the timing of the
agent's head nods.” After watching each video, ipigdnts evaluated the virtual
human’s behavior by answering 7 questions:

Rapport Scale:

1. Close ConnectianDo you feel a close connection between the agedtthe

human speaker? ( 1(not at all) — 7(yes, definitdbge connection) )

2. EngrossedDid the agent appear to be engrossed in listetonipe story? (
1(not engrossed at all) — 7(very much engrossed) )

3. Rapport Did there seem to be rapport between the agentten speaker? (
1(no rapport at all) — 7(yes, there’s rapport) )

4. Listen Carefully Did the agent appear NOT to be listening cargftdl the
speaker? ( 1(No, he doesn't listen at all) — 7(Yks, is listening very
carefully))

Per ceived accuracy:

5. Precision How often do you think the agent nodded his heddan
inappropriate time? ( 1(always inappropriate) Wégs appropriate) )

6. Recall How often do you think the agent missed head opgdortunities? (
1(missed a lot) — 7(never missed) )

Naturalness:

7. Do you think the virtual agent's behavior is nafira1(not natural at all) -
7(yes, absolutely natural) )

4.3 Results

ANOVA test is applied to find whether there is sfgrant difference among the
three versions. The four items related to rappateveraged into a single scale that
showed good reliability (Cronbach's alpha = 0.98).

The results are summarized from Figure 6 to 9.dchefigure, from left to right,
they are mean values for all 10 videos (Overall)high-rapport videos (High
Rapport), and 5 low-rapport videos (Low Rapporgpetively. The start (*) means
there is significant difference between the versionder the bracket.



4.3.1 Rapport Scale

Overall High Rapport Low Rapport
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— A —

3 3 3
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PCS-CRF Natural Rapport Agent PCS-CRF Natural Rapport Agent ¢ PCS-CRF Natural Rapport Agent
Fig. 6 Rapport ScaleOverall, the virtual human driven by CRF is sfgantly better than
Rapport Agent. For low-rapport videos, the virtheman driven by CRF is significantly better

than the one driven by real listener's behavior.

Overall, the virtual human driven by the CRF moffeCS-CRF) is significantly
better than the Rapport Agent [6]. It demonstratdsetter prediction model can be
learned from parasocial consensus sampling dagplied to virtual human systems,
it has the potential to create better social efféitan the Rapport Agent did.

By looking at the virtual human driven by PCS-CRt#l dhe one driven by real
listener's behavior, we don't see significant d#fece overall, but there is significant
difference between the two in the low-rapport vislewhich shows PCS-CRF can do
as well as real human listeners who succeed inticgegapport and do better than
those who fail to.

4.3.2 Per ceived Accur acy
¢ Overall ¢ High Rapport ¢ Low Rapport
s T p— 1 s [ = | s — 1
. . .
2 2 2
2 2 2
: 1 1
¢ PCS-CRF Natural  Rapport Agent °  PCS-CRF Natural  Rapport Agent *  PCS-CRF Natural  Rapport Agent

Fig.7 Precision.The virtual human driven by CRF provides backchafeedback more
precisely than the Rapport Agent.
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PCS-CRF Natural Rapport Agent PCS-CRF Natural Rapport Agent
Fig. 8 Recall The virtual human driven by real listener's beblamisses more opportunities
to provide backchannel feedback than the othenivsions do.

PCS-CRF Natural Rapport Agent

For thePrecision question, PCS-CRF does significantly better tha Rapport
Agent; while there is no difference between the fiwp the Recall question. The
Rapport Agent gave responses whenever he saw éakespnodded or the presence
of backchannel opportunities. Such simple rules feag to many unnecessary head



nods so that the recall is high (Fig. 8), while fhecision is low (Fig. 7). This
explains the reason why PCS-CRF outperforms Rapgayent.

By comparing the virtual human driven by CRF aneé time driven by real
listener's behavior, we don't see significant défeee between them for tiecision
question, which is expected, since real listenezmat likely to give wrong feedback
in natural face-to-face interactions. However, ¢hisr significant difference between
the two for theRecallquestion, and the difference mainly comes fromaherapport
videos. This explains why PCS-CRF does better tieah listener's behavior in the
low-rapport videos. Real listeners sometimes dagite enough appropriate
backchannel responses within the interactions huos fail to create rapport. On the
other hand, PCS-CRF is learned from consensusadatd is not likely to fail in this
regard unless most of the parasocial interactiailstdé create rapport at the same
time.

4.3.3 Natur alness
3 o o
5 : |
Overall High Rapport Low Rapport
a a . a ;—%
—

PCS-CRF Natural Rapport Agent ° PCS-CRF Natural Rapport Agent ° PCS-CRF Natural Rapport Agent
Fig. 9 Natural. Overall, The virtual human driven by CRF is mordunal than Rapport
Agent. For low-rapport videos, the virtual humaivein by CRF is more natural than the one
driven by real listener's behavior.

By comparing the Natural question (Fig. 9) with RRapport Score question (Fig.
6), we find the virtual human is perceived moreuratwhen it creates more rapport
within the interaction, which confirms previousding that creating rapport does lead
to positive social effects.

5 Conclusion and Future Work

In this paper, we learned a probabilistic modelgadicting listener backchannel
feedback from parasocial consensus sampling dgtaoBiparing the virtual humans
driven by (1) CRF model trained on PCS data, (2) listener's behavior and (3)
Rapport Agent’s behavior, we found that the virthaian driven by CRF model is
significantly better than the one driven by Rappadgent's behavior, and it has
almost the same performance as the one drivendbyiseener’'s behavior. The result
demonstrated we could learn a better predictionahfsxdm PCS data and proved the
validity of this data collection framework in adwan As future work, we are planning
to assess the power of the PCS framework with otloewersation cues such as
smiling, turn-taking and interruptions, other iretional goals besides rapport, and
other measurement channels, such as vision-bastddse
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