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Abstract. Backchannel feedback is an important kind of nonverbal feedback 
within face-to-face interaction that signals a person’s interest, attention and 
willingness to keep listening. Learning to predict when to give such feedback is 
one of the keys to creating natural and realistic virtual humans. Prediction 
models are traditionally learned from large corpora of annotated face-to-face 
interactions, but this approach has several limitations. Previously, we proposed 
a novel data collection method, Parasocial Consensus Sampling, which 
addresses these limitations. In this paper, we show that data collected in this 
manner can produce effective learned models. A subjective evaluation shows 
that the virtual human driven by the resulting probabilistic model significantly 
outperforms a previously published rule-based agent in terms of rapport, 
perceived accuracy and naturalness, and it is even better than the virtual human 
driven by real listeners’ behavior in some cases. 
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1   Introduction 

When people interact face-to-face, actions often speak louder than words. A speaker’s 
facial expressions, gestures and postures can dictate the meaning of an utterance; 
whereas a listener’s nonverbal reactions provide moment-to-moment feedback that 
can alter and serve to co-construct subsequent speech [21,22,23]. Beyond its impact 
on meaning, nonverbal signals communicate emotion and personality, enhance the 
persuasiveness of speech, express social status and regulate conversational flow. Not 
surprisingly, considerable effort has been directed at endowing virtual humans with 
the ability to recognize, understand and exploit the nonverbal channel [16,17,18]. 

Virtual humans that produce such nonverbal signals can induce desirable social 
changes in their human interaction partners. Synthetic nonverbal behaviors can 
enhance the persuasiveness of virtual human speech [7], encourage people to take 
their medicine [12], and promote more cooperation in economic games [11]. Our own 
studies with the Rapport Agent [3] suggest that nonverbal behavior plays a causal role 
in achieving these effects. As a result of its contingent nonverbal feedback, human 
speakers speak more fluently with the Rapport Agent [6], disclose more intimate 
information about themselves [13] and may better remember recent events [14]. 



Indeed, these and related studies suggest that a virtual human’s behavior may be more 
important than its appearance in achieving social effects [8]. 

Although early research on virtual humans relied on hand-crafted algorithms to 
generate nonverbal behaviors, informed by psychological theories or personal 
observations of face-to-face interaction [4], recent scholarship has seen an explosion 
in interest in data-driven approaches that automatically learn virtual human behaviors 
from annotated corpora of human face-to-face interactions. Several systems now exist 
that automatically learn a range of nonverbal behaviors including backchannel 
feedback [2], conversational gestures [9,15] and turn-taking cues [10].  

It is widely assumed that natural human-to-human interaction constitutes the ideal 
dataset from which to learn virtual human behaviors, however, there are drawbacks 
with such data. First, natural data can be expensive and time-consuming to collect. 
Second, human behaviors contain variability so that some of the behavior samples 
may conflict with the social effect that we want the virtual human to produce. Finally, 
each instance in face-to-face interaction only illustrates how one particular individual 
responds to another, yet such data fails to give us insight on how well such responses 
generalize across individuals. Rather than simply exploring more powerful learning 
algorithms that might overcome these drawbacks, we argue that attention should also 
be directed at innovative methods for collecting behavioral data.  

Recently, we proposed a novel data collection approach called Parasocial 
Consensus Sampling (PCS) [1] to inform virtual human nonverbal behavior 
generation. Instead of interacting face-to-face, participants were guided through a 
“parasocial” interaction in which they attempted to produce natural nonverbal 
behaviors to pre-recorded videos of human interaction partners. Through this method 
we were able to quickly collect large amounts of behavioral data, but more 
importantly, we were able to assess how multiple individuals might respond to the 
identical social situation. These multiple perspectives afford the possibility of driving 
virtual humans with the consensus view on how one should respond, rather than 
simply concatenating many idiosyncratic responses. A test of this approach, applied to 
the problem of generating listener nonverbal feedback, showed that 1) participants felt 
comfortable producing behavior in this manner and 2) the resulting consensus 
perceived more accurate and more effective than natural feedback (i.e., feedback from 
the natural listener in face-to-face conversation). Although this was a promising first 
step, it remains to demonstrate that consensus data can be used to train an effective 
predictive model. 

In this article, we take this next logical step in demonstrating the power of the PCS: 
using consensus data, we train a predictive model of listener backchannel feedback. 
We compare the performance of this model against our previous Rapport Agent that 
generated behaviors according to a hand-crafted mapping. Our subjective evaluation 
shows the virtual human driven by this probabilistic model performs significantly 
better than the Rapport Agent [6] in terms of rapport, perceived accuracy and 
naturalness, and it is even better than the virtual human driven by real listener's 
behavior in some cases.  



2   Background: Parasocial Consensus Sampling 

Horton and Wohl [19] first introduced the concept of parasocial interaction. This 
describes people’s natural tendency to interact with media representations of people 
as if they were interacting face-to-face with the actual person. Many researchers 
[20,29,30] have documented that people readily produce such "parasocial" responses 
and these responses bear similarity to what is found in natural face-to-face 
interactions, even if the respondents are clearly aware they are interacting with pre-
recorded media. By exploiting this characteristic of humans, we proposed the 
parasocial consensus sampling framework [1]. 

Parasocial Consensus Sampling is a new methodological framework that collects 
typical human responses in social interactions. 

Unlike the traditional way to collect human behavioral data, where participants' 
behaviors are recorded during the social interaction, parasocial consensus sampling 
guides multiple independent individuals to vicariously experience the same media 
representation of social interaction in order to gain the typicality (i.e., consensus 
view) of human response.  

The idea of parasocial consensus is to combine multiple parasocial responses to the 
same media clip in order to develop a composite view of how a typical individual 
would respond. For example, if a significant portion of participants smile at certain 
points in a videotaped speech, we might naturally conclude that smiling is a typical 
response to whatever is occurring in the media at these moments. More formally, a 
parasocial consensus is drawing agreement from the feedback of multiple independent 
participants when they experience the same media representation of an interaction. It 
does not reflect the behavior of any one individual but can be seen more as a 
prototypical or summary trend over some population of individuals which, 
advantageously, allows us to derive both the strength and reliability of the responses. 

Although we can never know how every person will respond to a given situation, 
sampling is a way to estimate the consensus by randomly selecting individuals from a 
given population. Thus, parasocial consensus sampling is a way to estimate the 
consensus behavioral response in face-to-face interactions by recording the parasocial 
responses of multiple individuals to the same media (i.e., by replacing one partner in a 
pre-recorded interaction with multiple vicarious observers). By repeating this process 
over a corpus of face-to-face interaction data, we can augment the traditional 
databases used in learning virtual human interactional behaviors with estimates of the 
strength and reliability of such responses and, hopefully, learn more reliable and 
effective behavioral mappings to drive the behavior of virtual humans. 

2.1   Definition 

We define parasocial consensus sampling as a composite of five elements: 



 
Fig. 1. Parasocial Consensus Sampling (PCS) works as follows: we first recruit participants 

from some population, and then encourage them to give particular responses (e.g. 
backchannels, facial expressions, and so on), measured via some channel (i.e. visual channel, 
audio channel, and mechanical channel), in order to create the interactional goal within the 
parasocial interaction with the media representation of social interaction. 

 
(1) Interactional Goal: this is the intended goal of the virtual human interactional 

behaviors. Before participating in parasocial consensus sampling, participants should 
be explicitly or implicitly encouraged to behave in a manner which is consistent with 
this goal, for example, creating rapport. 

(2) Target behavioral response: this is the particular response or set of responses 
that the virtual human is going to generate in order to create a specific interactional 
goal. Participants should be encouraged to produce such behaviors when they are 
participating in the parasocial interaction. Candidate behavioral responses include 
backchannel feedback, turn-taking, evaluative facial expressions and paraverbals such 
as "uh-huh". 

(3) Media: this is the set of stimuli that will be presented to the participants in order 
to stimulate their parasocial responses. Ideally this would be a media clip derived 
from a natural face-to-face interaction where the participants can view the clip from a 
first-person perspective. For example, if the original interaction was a face-to-face 
conversation across a table, the camera position should approximate as close as 
possible the perspective of one of the conversation partners.  

(4) Target population: this is the population of individuals we wish the virtual 
human to learn. This might consist of members selected from particular group (e.g., 
women, speakers of African-American vernacular, or patients with clinical 
depression). Participants should be recruited from this target population. 

(5) Measurement channel: this is the mechanism by which we measure the 
parasocial response. The most natural way to measure the response would be to 
encourage participants to behave as if they were participating in face-to-face 
interaction and record their responses. However, to take advantage of the imaginary 



nature of parasocial interaction, participants might be encouraged to elicit responses 
in a more easily measured way. For example, if we are interested in the consensus of 
when to smile in an interaction, we can ask participants to exaggerate the behavior or 
even to press a button whenever they feel the response is appropriate. Candidate 
measurement channels include the visual channel (e.g. videotaping), audio channel 
(e.g. voice recording) or mechanical channel (e.g. press a button). 

2.2   PCS in Action: Collect Listener Backchannel Feedback 

Prior research [2,4] has suggested that backchannel feedback [31] plays an 
important role in establishing rapport between interactants and this paper is going to 
learn a probabilistic model to predict the backchannel feedback. First, we illustrate 
how to apply parasocial consensus sampling framework to collect listener 
backchannel feedback data. 

Parasocial consensus sampling consists of five key elements: interactional goal, 
target behavioral response, media, target population and measurement channel. We 
customized the parasocial consensus sampling in our work as follows: 

• Interaction Goal: Create rapport 
• Target Behavioral Response: Backchannel feedback 
• Media: Pre-recorded videos 
• Target Population: General public 
• Measurement Channel: Keyboard 

We recruited 9 fluent English speakers (2 female, 7 males) from a local temporary 
employment agency to participate in the parasocial interactions with the human 
speaker videos from our previously collected corpus of face-to-face interactions [5]. 
The average age of the participants is 45.2 years old, and the standard deviation is 
12.6. Participants were instructed to pretend they were in a video teleconference with 
the speaker in the video and to establish rapport by conveying they were actively 
listening and interested in what was being said. To convey this interest, participants 
were instructed to press the keyboard each time they felt like providing backchannel 
feedback such as head nods or paraverbals (e.g. "uh-huh" or "OK"). In a one-day 
experiment, each of the 9 participants interacted with a total of 45 videos, which is 
much more efficient than the original approach that collecting behavioral data from 
face-to-face interaction. They gave about 18000 backchannel feedback in total; on 
average, it is about 7 or 8 backchannels per minute. In next section, we are going to 
show how to learn a probabilistic model from the parasocial consensus sampling data. 

3   Learning a Probabilistic Model from PCS 

To learn probabilistic models from parasocial consensus sampling data, we must build 
a consensus model from the individual parasocial coders and then uses this consensus 
data to learn a probabilistic model. One advantage of learning from a consensus is it 
separates what is idiosyncratic from what is essential. Our goal is to learn a 
probabilistic model which will generalize the PCS data to new sequences (or live 



interactions) not seen in the training set. The probabilistic model is trained from the 
speaker’s actions (e.g., pause, eye gaze, and specific lexicon words) to predict the 
listener backchannel feedback (i.e., head nods). 

3.1   Building Consensus 

The backchannel PCS dataset described in Section 2.2 consists of N sets of 
parasocial responses: T1, T2, ..., TN , where N is the number of participant. For each 
parasocial interaction Ti, the PCS dataset contains the response timestamps T = {t1, t2, 
…} indicating when the participant gave a response.  These response timestamps are 
combined to create the consensus following a three-step approach: 

(a) Convert timestamps: Each response timestamp can be viewed as a window of 
opportunity where backchannel feedback is likely. Following the work of Ward and 
Tsukahara [4], we create a one second time window centered about each timestamp. 
The timeline is then sampled at a constant frame rate of 10Hz [4]. Figure 2 illustrates 
this approach. 

 

 
Fig. 2. t1, t2, t3 are the time spots when a participant gives backchannel feedback in a 

parasocial interaction. A 1.0s window of opportunity is put around each timestamp so that the 
time spot is in the middle of the window. The samples within the window are set to 1 to 
indicate the presence of feedback, while others are set to 0. 

 
(b) Correct for individual differences (optional): Our current data collection 

requires participants to press a button when they expect a response and it is well 
known that individuals can differ significantly in their reaction time on such tasks 
[27,28]. Therefore, the quality of consensus data can be improved if we first factor out 
these individual differences before combining response timestamps into a consensus. 
We can estimate this delay by comparing the parasocial interaction with the face-to-
face interaction. We follow the approach in [2,4] to count how often PCS matches the 
real listener’s behaviors and find the time offset that maximizes this score. This 
process was repeated independently on the nine participants of the PCS data. The 
reaction time values varied from 600ms to 1200ms, with average of 970ms. The 10 
video sequences used for our subjective evaluation described in Section 4 were not 
part of the video sequences used to select the reaction times. 

 (c) Build consensus view from multiple interactions: a histogram is computed over 
time by looking at all the parasocial interactions. Whenever there is backchannel 
feedback occurring on a sample (sampled at 10Hz), the histogram of that sample is 
increased by 1. Thus, each sample is associated with a number indicating how many 
participants agree to give backchannel feedback at that point. Figure 3 shows an 
example of one parasocial consensus and compares it to the backchannel feedback 
from the real listener in the original face-to-face interaction. 



 
Fig. 3. Example segment showing a parasocial consensus of listener backchannel varies 

over time. While individual feedback (from the original face-to-face interaction) only gives 
discrete prediction, our parasocial consensus shows the relative importance of each feedback. 
By applying a consensus level to the parasocial consensus, we get only important feedback. 

 
By looking at the real listener's feedback, it seems that pause is a good elicitor of 

listener feedback, but the relative strength of this feature is unclear. In contrast, the 
parasocial consensus clearly shows that the pauses differ in their propensity to elicit 
feedback. Looking more carefully at the example we see the utterances before the first 
two pauses are statements, while the last one expresses an opinion, suggesting that 
pauses after opinions may be better predictors of listener feedback. Also, the speaker 
expressed emphasis on the third utterance. This result gives us a tool to better analyze 
and understand features that predict backchannel feedback. 

By applying a threshold, the consensus level, to the parasocial consensus, feedback 
with less importance can be filtered out. Following the work in [1], we select a 
consensus level that makes the number of backchannels from parasocial consensus 
closest to that from the original face-to-face interaction data. 

3.2   Learning Probabilistic Model 

To build the predictive model for virtual humans, we find the relationship between 
speaker’s features and the consensus. Recently, there has been seen an explosion in 
interest in data-driven approaches that automatically find such patterns using machine 
learning methods [2,9,10,15]. Given the time-series nature of human behavior, 
sequential model is a good one to learn the internal dynamic structure existing in 
human behavior. We apply a similar strategy as [2] to learn a Conditional Random 
Field (CRF) model from parasocial consensus sampling data. This method takes as 
input a sequence of human speaker’s features and returns a sequence of probabilities 
to give backchannel feedback.  
   Although semantic information is an important feature in predicting backchannel 
feedback, it has been mentioned in other work [2,4] that non-verbal information itself 
also provides lots of clues in backchannel prediction. In this paper, we try to push the 



state of the art of non-verbal feature based models. Four speaker features are selected 
as suggested in [2]:  

• Pause using binary encoding 
• Speaker looking at the listener using ramp encoding with a width of 2 

seconds and a 1 second delay 
• ‘and’ using step encoding with a width of 1 second and a delay of 0.5 

seconds 
• Speaker looking at the listener using binary encoding 

All the features mentioned above were hand labeled by coders. While training, we 
split the data set (the videos used for evaluation in Section 4 are not included) into 
training set and validation set. This is done by N-fold cross validation. This means N-
1 folders are used for training, and the remaining folder is used as validation data for 
testing the model. This process is repeated N times, and then the best model is 
selected based on the performance of our models. The performance is measured by F1 
score, which is the harmonic mean of precision and recall. Precision is the probability 
that predicted backchannels correspond to actual listener behavior; recall is the 
probability that a backchannel produced by an actual listener was predicted by the 
model.  

Given new test sequence, CRF outputs probability over time to indicate the 
likelihood of giving backchannel feedback. The local maximum of the probability are 
selected as the candidates. In order to generate the final backchannel feedback, we 
have to pick up a feedback level as shown in Figure 4. In this paper, we set the 
feedback level so that the number of feedback from CRF model is closest to that from 
the training set. 

 
Fig. 4. Generate the final backchannel feedback by applying the feedback level to the output 

of CRF model. The stars (*) are the final backchannels. 

4   Subjective Evaluation 

In evaluating the performance of the probabilistic model, we conduct a subjective 
evaluation experiment to assess whether the virtual human driven by the CRF model 
can be used to achieve the interactional goal: creating rapport, when compared against 
the Rapport Agent and the original human listener. Specially, we compose videos 



illustrating a human speaker interacting with the virtual human (Figure 5) and contrast 
subjective impressions of different models for generating the virtual human’s 
behavior. 

 
Fig. 5. Videos for subjective evaluation. 
 
We claim that a potential advantage PCS over traditional training methods is that 

the consensus data better reflects the intended interactional goal than typical face-to-
face data.  To better assess this claim we assess the approach against three classes of 
face-to-face interactions:  high-rapport interactions where the original human listener 
exhibited high rapport; low-rapport interactions where the original human listener 
exhibited low rapport, and “typical” interactions that contain a mixture of both.  

4.1   Backchannel Prediction Models 

We selected 10 speaker videos not used in training the CRF model. When these 
face-to-face interactions were originally conducted, speakers were asked to assess the 
rapport they felt with their conversation partner. Five videos were those from our 
corpus with the lowest rapport score and 5 were those with the highest rapport score. 
We created three variants of each of these videos, replacing the human listener with a 
virtual human whose behavior was driven by one of three different prediction models: 

(1) PCS-CRF: the virtual human is driven by the CRF model trained on parasocial 
consensus. The training set doesn’t include the 10 videos used for evaluation. 

(2) Natural: the virtual human is driven by the real listener’s backchannel feedback 
from the original face-to-face interaction. 

(3) Rapport Agent: Gratch et al. [6] built the Rapport Agent by applying a rule-
based model to predict when to give backchannel feedback. The backchannels were 
predicted from two rules: (a) If the speaker nods, the listener should nod back, (b) if 
there are backchannel opportunities in the speaker's speech, the listener should nod 
back. The Rapport Agent uses Watson [26] to detect head nods and LAUN [6] to 
detect backchannel opportunities using the approach of Ward and Tsukahara [4]. We 
replicate the Rapport Agent’s behavior by using the same two tools to extract features 
from human speaker videos and applying the same rules for backchannel prediction. 



4.2   User Study 

We recruited 17 participants to evaluate the quality of the virtual human’s 
behavior. Before watching videos, they were told “you are going to evaluate different 
versions of a virtual agent in the context of interacting with a human speaker. In each 
video, there is a speaker telling a story and the virtual agent giving nonverbal 
feedback to the speaker by nodding. We need you to evaluate the timing of the 
agent’s head nods.” After watching each video, participants evaluated the virtual 
human’s behavior by answering 7 questions: 

Rapport Scale: 
1. Close Connection: Do you feel a close connection between the agent and the 

human speaker? ( 1(not at all) – 7(yes, definitely close connection) ) 
2. Engrossed: Did the agent appear to be engrossed in listening to the story? ( 

1(not engrossed at all) – 7(very much engrossed) ) 
3. Rapport: Did there seem to be rapport between the agent and the speaker? ( 

1(no rapport at all) – 7(yes, there’s rapport) ) 
4. Listen Carefully: Did the agent appear NOT to be listening carefully to the 

speaker? ( 1(No, he doesn’t listen at all) – 7(Yes, he is listening very 
carefully)) 

Perceived accuracy: 
5. Precision: How often do you think the agent nodded his head at an 

inappropriate time? ( 1(always inappropriate) – 7(always appropriate) ) 
6. Recall: How often do you think the agent missed head nod opportunities? ( 

1(missed a lot) – 7(never missed) ) 
Naturalness: 
7. Do you think the virtual agent's behavior is natural? ( 1(not natural at all) - 

7(yes, absolutely natural) ) 

4.3   Results 

ANOVA test is applied to find whether there is significant difference among the 
three versions. The four items related to rapport are averaged into a single scale that 
showed good reliability (Cronbach's alpha = 0.98). 

The results are summarized from Figure 6 to 9. In each figure, from left to right, 
they are mean values for all 10 videos (Overall), 5 high-rapport videos (High 
Rapport), and 5 low-rapport videos (Low Rapport) respectively. The start (*) means 
there is significant difference between the versions under the bracket. 



4.3.1 Rapport Scale 

 
Fig. 6 Rapport Scale. Overall, the virtual human driven by CRF is significantly better than 

Rapport Agent. For low-rapport videos, the virtual human driven by CRF is significantly better 
than the one driven by real listener's behavior. 

 
Overall, the virtual human driven by the CRF model (PCS-CRF) is significantly 

better than the Rapport Agent [6]. It demonstrates a better prediction model can be 
learned from parasocial consensus sampling data. If applied to virtual human systems, 
it has the potential to create better social effects than the Rapport Agent did.  

By looking at the virtual human driven by PCS-CRF and the one driven by real 
listener’s behavior, we don't see significant difference overall, but there is significant 
difference between the two in the low-rapport videos, which shows PCS-CRF can do 
as well as real human listeners who succeed in creating rapport and do better than 
those who fail to. 

4.3.2 Perceived Accuracy 

 
Fig.7  Precision. The virtual human driven by CRF provides backchannel feedback more 

precisely than the Rapport Agent. 

 
Fig. 8 Recall. The virtual human driven by real listener's behavior misses more opportunities 

to provide backchannel feedback than the other two versions do. 
 
For the Precision question, PCS-CRF does significantly better than the Rapport 

Agent; while there is no difference between the two for the Recall question. The 
Rapport Agent gave responses whenever he saw the speaker nodded or the presence 
of backchannel opportunities. Such simple rules may lead to many unnecessary head 



nods so that the recall is high (Fig. 8), while the precision is low (Fig. 7). This 
explains the reason why PCS-CRF outperforms Rapport Agent. 

By comparing the virtual human driven by CRF and the one driven by real 
listener's behavior, we don't see significant difference between them for the Precision 
question, which is expected, since real listeners are not likely to give wrong feedback 
in natural face-to-face interactions. However, there is significant difference between 
the two for the Recall question, and the difference mainly comes from the low-rapport 
videos. This explains why PCS-CRF does better than real listener's behavior in the 
low-rapport videos. Real listeners sometimes don't give enough appropriate 
backchannel responses within the interactions and thus fail to create rapport.  On the 
other hand, PCS-CRF is learned from consensus data which is not likely to fail in this 
regard unless most of the parasocial interactions fail to create rapport at the same 
time.  

4.3.3 Naturalness 

 
Fig. 9 Natural. Overall, The virtual human driven by CRF is more natural than Rapport 

Agent. For low-rapport videos, the virtual human driven by CRF is more natural than the one 
driven by real listener's behavior. 

 
By comparing the Natural question (Fig. 9) with the Rapport Score question (Fig. 

6), we find the virtual human is perceived more natural when it creates more rapport 
within the interaction, which confirms previous finding that creating rapport does lead 
to positive social effects. 

5   Conclusion and Future Work 

In this paper, we learned a probabilistic model for predicting listener backchannel 
feedback from parasocial consensus sampling data. By comparing the virtual humans 
driven by (1) CRF model trained on PCS data, (2) real listener’s behavior and (3) 
Rapport Agent’s behavior, we found that the virtual human driven by CRF model is 
significantly better than the one driven by Rapport Agent’s behavior, and it has 
almost the same performance as the one driven by real listener’s behavior. The result 
demonstrated we could learn a better prediction model from PCS data and proved the 
validity of this data collection framework in advance. As future work, we are planning 
to assess the power of the PCS framework with other conversation cues such as 
smiling, turn-taking and interruptions, other interactional goals besides rapport, and 
other measurement channels, such as vision-based methods. 
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