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Abstract

Accurately estimating the person’s head position and
orientation is an important task for a wide range of appli-
cations such as driver awareness and human-robot inter-
action. Over the past two decades, many approaches have
been suggested to solve this problem, each with its own ad-
vantages and disadvantages. In this paper, we present a
probabilistic framework called Generalized Adaptive View-
based Appearance Model (GAVAM) which integrates the
advantages from three of these approaches: (1) the auto-
matic initialization and stability of static head pose esti-
mation, (2) the relative precision and user-independence of
differential registration, and (3) the robustness and bounded
drift of keyframe tracking. In our experiments, we show how
the GAVAM model can be used to estimate head position
and orientation in real-time using a simple monocular cam-
era. Our experiments on two previously published datasets
show that the GAVAM framework can accurately track for
a long period of time (>2 minutes) with an average accu-
racy of 3.5◦ and 0.75in with an inertial sensor and a 3D
magnetic sensor.

1. Introduction
Real-time, robust head pose estimation algorithms have

the potential to greatly advance the fields of human-
computer and human-robot interaction. Possible applica-
tions include novel computer input devices [14], head ges-
ture recognition, driver fatigue recognition systems [1], at-
tention awareness for intelligent tutoring systems, and so-
cial interaction analysis. Pose estimation may also benefit
secondary face analysis, such as facial expression recogni-
tion and eye gaze estimation, by allowing the 3D face to be
warped to a canonical frontal view prior to further process-
ing.

Three main paradigms exist for automatically estimating
head pose. Dynamic approaches, also called differential or
motion-based approaches, track the position and orientation

of the head through video sequences using pair-wise reg-
istration (i.e., transformation between two frames). Their
strength is user-independence and higher precision for rel-
ative pose in short time scales, but they are typically sus-
ceptible to long time scale accuracy drift due to accumu-
lated uncertainty over time. They also usually require the
initial position and pose of the head to be set either manu-
ally or using a supplemental automatic pose detector. Static
user-independent approaches detect head pose from single
images without temporal information and without any pre-
vious knowledge of the user appearance. These approaches
can be applied automatically without initialization, but they
tend to return coarser estimates of the head pose. Static
user-dependent approaches, also called keyframe-based or
template-based approaches, use information previously ac-
quired about the user (automatically or manually) to esti-
mate the head position and orientation. These approaches
are more accurate and suffer only bounded drift over time,
but they lack the relative precision of dynamic approaches.
They also require a procedure for learning the appearance
of individual users.

In this paper we present a Generalized Adaptive View-
based Appearance Model (GAVAM) which integrates all
three pose estimation paradigms described above in one
probabilistic framework. The proposed approach can ini-
tialize automatically from different poses, is completely
user-independent, has the high precision of a motion-based
tracker and does not drift over time. GAVAM was specif-
ically designed to estimate 6 degrees-of-freedom (DOF) of
head pose in real-time from a single monocular camera with
known internal calibration parameters (i.e., focal length and
image center).

The following section describes previous work in
head pose estimation and explains the difference be-
tween GAVAM and other integration frameworks. Sec-
tion 3 describes formally our view-based appearance model
(GAVAM) and how it is adapted automatically over time.
Section 4 explains the details of the estimation algorithms
used to apply GAVAM to head pose tracking. Section 5 de-
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scribes our experimental methodology and show our com-
parative results.

2. Previous Work
Over the past two decades, many techniques have been

developed for estimating head pose. Various approaches
exist within the static user-independent paradigm, includ-
ing simultaneous face & pose detection [16], [2], Active
Appearance Models [9], direct appearance analysis meth-
ods [15, 17, 21, 24] and some hybrid approaches [2, 13].
Static pose analysis is inherently immune to accuracy drift,
but it also ignores highly useful temporal information that
could improve estimation accuracy.

Very accurate shape models are possible using the Ac-
tive Appearance Model (AAM) methodology [8], such as
was applied to 3D head data in [5]. However, tracking 3D
AAMs with monocular intensity images is currently a time-
consuming process, and requires that the trained model
be general enough to include the class of the user being
tracked.

Early work in the dynamic paradigm assumed simple
shape models (e.g., planar [4], cylindrical [20], or ellip-
soidal [3]). Tracking can also be performed with a 3D face
texture mesh [25] or 3D face feature mesh [31]. Some re-
cent work looked morphable models rather than rigid mod-
els [6, 7, 27]. Differential registration algorithms are known
for user-independence and high precision for short time
scale estimates of pose change, but they are typically sus-
ceptible to long time scale accuracy drift due to accumu-
lated uncertainty over time.

Some earlier work in static user-dependent paradigm
include nearest-neighbors prototype methods [13, 32] and
template-based approaches [19]. Vacchetti et al. suggested
a method to merge online and offline keyframes for stable
3D tracking [28]. These approaches are more accurate and
suffer only bounded drift over time, but they lack the rela-
tive precision of dynamic approaches.

Several previous pose detection algorithms combine
both tracking and static pose analysis. Huang and Trivedi
[18] combine a subspace method of static pose estimation
with head tracking. The static pose detector uses a contin-
uous density HMM to predict the pose parameters. These
are filtered using a Kalman filter and then passed back to
the head tracker to improve face detection during the next
video frame. Sherrah and Gong [26] detect head position
and pose jointly using conditional density propagation with
the combined pose and position vectors as the state. To our
best knowledge, no previous pose detection work has com-
bined the three paradigms of dynamic tracking, keyframe
tracking, and static pose detection into one algorithm.

Morency et al. [23] presented the Adaptive View-based
Appearance Model (AVAM) for head tracking from stereo
images which integrates two paradigms: differential (dy-
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Figure 1. Generalized Adaptive View-based Appearance
Model (GAVAM). The pose of the current frame xt is estimated
using the pose-change measurements from three paradigms: dif-
ferential tracking yt

t−1, keyframe tracking yt
k2 and static pose es-

timation yt
k0 . During the same pose update process (described in

Section 3.3), the poses {xk1 , xk2 , ...} from keyframes acquired
online will be automatically adapted. The star ∗ depicts the refer-
ential keyframe (Ik0 , xk0) set at the origin.

namic) and keyframe (user-dependent) tracking. GAVAM
generalizes the AVAM approach by integrating all three
paradigms and operating on intensity images from a single
monocular camera. This generalization faced three difficult
challenges:

• Integrating static user-independent paradigm into the
probabilistic framework (see Section 3);

• Segmenting the face and selecting base frame set with-
out any depth information by using a multiple face hy-
potheses approach (described in Section 3.1).

• Computing accurate pose-change estimation between
two frames with only intensity images using iterative
Normal Flow Constraint (described in Section 4.1);

GAVAM also includes some new functionality such as the
keyframe management and a 4D pose tessellation space for
the keyframe acquisition (see Section 3.4 for details). The
following two sections formally describe this generaliza-
tion.

3. Generalized Adaptive View-based Appear-
ance Model

The two main components of the Generalized Adaptive
View-based Appearance Model (GAVAM) are the view-
based appearance model M which is acquired and adapted
over time, and the series of change-pose measurements Y
estimated every time a new frame is grabbed. Figure 1



shows an overview our GAVAM framework. Algorithm 1
presents a high-level overview of the main steps for head
pose estimation using GAVAM.

A conventional view-based appearance model [9] con-
sists of different views of the same object of interest (e.g.,
images representing the head at different orientations).
GAVAM extends the concept of view-based appearance
model by associating a pose and covariance with each view.
Our view-based model M is formally defined as

M = {{Ii, xi},ΛX }

where each view i is represented by Ii and xi which are re-
spectively the intensity image and its associated pose mod-
eled with a Gaussian distribution, and ΛX is the covariance
matrix over all random variables xi. For each pose xi, there
exist a sub-matrix Λxi in the diagonal of ΛX that represents
the covariance of the pose xi. The poses are 6 dimensional
vector consisting of the translation and the three Euler an-
gles [ T x T y T z Ωx Ωy Ωz ]. The pose estimates
in our view-based model will be adapted using the Kalman
filter update with pose change measurements Y as observa-
tions and the concatenated poses as the state vector. Sec-
tion 3.3 describes this adaptation process in detail.

The views (Ii, xi) represent the object of interest (i.e.,
the head) as it appears from different angles and depths.
Different pose estimation paradigms will use different type
of views:

• A differential tracker will use only two views:
the current frame (It, xt) and the previous
frame (It−1, xt−1).

• In a keyframe-based (or template-based) approach
there will be 1 + n views: the current frame (It, xt)
and the j = 1...n keyframes {IKj , xKj}. Note
that GAVAM acquires keyframes online and GAVAM
adapts the poses of these keyframes during tracking so
n, {xKj} and ΛX change over time.

• A static user-independent head pose estimator uses
only the current frame (It, xt) to produce its es-
timate. In GAVAM, this pose estimate is model
as pose-change measurement between the current
frame (It, xt) and a reference keyframe (IK0 , xK0)
placed at the origin.

Since GAVAM integrates all three estimation paradigms,
its view-based modelM consists of 3+n views: the current
frame (It, xt), the previous frame (It−1, xt−1), a reference
keyframe(IK0 , xK0), and n keyframe views {IKj , xKj},
where j = 1...n. The keyframes are selected online to best
represent the head under different orientation and position.
Section 3.4 will describe the details of this tessellation.

Algorithm 1 Tracking with a Generalized Adaptive View-
based Appearance Model (GAVAM).

for each new frame (It) do
Base Frame Set Selection: Select the nb most similar
keyframes to the current current frame and add them to
the base frame set. Always include the previous frame
(It−1, xt−1) and referential keyframe (IK0 , xK0) in
the base frame set (see Section 3.1);
Pose-change measurements: For each base frame,
compute the relative transformation yt

s, and its co-
variance Λyt

s
, between the current frame and the base

frame (see Sections 3.2 and 4 for details);
Model adaptation and pose estimation: Simulta-
neously update the pose of all keyframes and com-
pute the current pose xt by solving Equations 1 and 2
given the pose-change measurements {yt

s,Λyt
s
} (see

Section 3.3);
Online keyframe acquisition and management: En-
sure a constant tessellation of the pose space in the
view-based model by adding new frames (It, xt) as
keyframe if different from any other view inM, and by
removing redundant keyframes after the model adapta-
tion (see Section 3.4).

end for

3.1. Base Frame Set Selection
The goal of the base frame set into selection process is

to find a subset of views (base frames) in the current view-
based appearance model M that are similar in appearance
(and implicitly in pose) to the current frame It. This step
reduces the computation time since pose-change measure-
ments will be computed only on this subset.

To perform good base frame set selection (and pose-
change measurements) we need to segment the face in the
current frame. In the original AVAM algorithm [23], face
segmentation was simplified by using the depth images
from the stereo camera; with only an approximate estimate
of the 2D position of the face and a simple 3D model of
the head (i.e., a 3D box), AVAM was able to segment the
face. Since GAVAM uses only a monocular camera model,
its base frame set selection algorithm is necessarily more
sophisticated. Algorithm 2 summarizes the base frame set
selection process.

The ellipsoid head model used to create the face mask
for each keyframe is a half ellipsoid with the dimensions of
an average head (see Section 4.1 for more details). The el-
lipsoid is rotated and translated based on the keyframe pose
xKj and then projected in the image plane using the cam-
era’s internal calibration parameters (focal length and image
center).

The face hypotheses set represents different positions
and scales of where the face could be in the current frame.



The first hypothesis is created by projecting pose xt−1

from the previous frame in the image plane of the current
frame. Face hypotheses are created around this first hy-
pothesis based on the trace of the previous pose covari-
ance tr(Λxt−1). If tr(Λxt−1) is larger than a preset thresh-
old, face hypotheses are created around the first hypothe-
sis with increments of one pixel along both image plane
axes and of 0.2 meters along the Z axis. Thresholds were
set based on preliminary experiments and the same val-
ues used for all experiments. For each face hypothesis and
each keyframe, a L2-norm distance is computed and the nb

best keyframes are then selected to be added in the base
frame set. The previous frame (It−1, xt−1) and referential
keyframe (IK0 , xK0) are always added to the base frame
set.

3.2. Pose-Change Measurements
Pose-change measurements are relative pose differences

between the current frame and one of the other views in our
model M. We presume that each pose-change measure-
ment is probabilistically drawn from a Gaussian distribution
N (yt

s|xt − xs,Λyt
s
). By definition pose increments have to

be additive, thus pose-changes are assumed to be Gaussian.
Formally, the set of pose-change measurements Y is defined
as:

Y =
�
yt

s,Λyt
s

�

Different pose estimation paradigms will return different
pose-change measurements:

• The differential tracker compute the relative pose be-
tween the current frame and the previous frame, and
returns the pose change-measurements yt

t−1 with co-
variance Λt

t−1. Section 4.1 describes the view regis-
tration algorithm.

• The keyframe tracker uses the same view registra-
tion algorithm described in Section 4.1 to compute the
pose-change measurements {yt

Ks
,Λyt

Ks
} between the

current frame and the selected keyframes frames.

• The static head pose estimator (described in Sec-
tion 4.2) returns the pose-change measurement
(yt

K0
,Λyt

K0
) based on the intensity image of the cur-

rent frame.

GAVAM integrates all three estimation paradigms. Sec-
tion 4 describes how the pose-change measurements are
computed for head pose estimation.

3.3. Model Adaptation and Pose Estimation
To estimate the pose xt of the new frame based on the

pose-change measurements, we use the Kalman filter for-

Algorithm 2 Base Frame Set Selection Given the current
frame It and view-based model M, returns a set of selected
base frames {Is, xs}.

Create face hypotheses for current frame Based on the
previous frame pose xt−1 and its associated covariance
Λxt−1 , create a set of face hypotheses for the current
frame (see Section 3.1 for details). Each face hypothe-
sis is composed of a 2D coordinate and and a scale factor
representing the face center and its approximate depth.
for each keyframe (IKj , xKj ) do

Compute face segmentation in keyframe Position
the ellipsoid head model (see Section 4.1) at pose xKj ,
back-project in image plane IKj and compute valid
face pixels
for each current frames face hypothesis do

Align current frame Based on the face hypothesis,
scale and translate the current image to be aligned
with center of the keyframe face segmentation.
Compute distance Compute the L2-norm distance
between keyframe and the aligned current frame for
all valid pixel from the keyframe face segmentation.

end for
Select face hypothesis The face hypothesis with the
smallest distance is selected to represent this keyframe.

end for
Base frame set selection Based on their correlation
scores, add the nb best keyframes in the base frame set.
Note that the previous frame (It−1, xt−1) and referen-
tial keyframe (IK−0, xK−0) are always added to the base
frame set.

mulation described in [23]. The state vector X is the con-
catenation of the view poses {xt, xt−1xK0 , xK1 , xK2 , . . .}
as described in Section 3 and the observation vec-
tor Y is the concatenation of the pose measurement
{yt

t−1, y
t
K0

, yt
K1

, yt
K2

, . . .} as described in the previous sec-
tion. The covariance between the components of X is de-
noted by ΛX .

The Kalman filter update computes a prior for
p(Xt|Y1..t−1) by propagating p(Xt−1|Y1..t−1) one step for-
ward using a dynamic model. Each pose-change measure-
ment yt

s ∈ Y between the current frame and a base frame of
X is modeled as having come from:

yt
s = Ct

sX + ω,

Ct
s =

�
I 0 · · · −I · · · 0

�
,

where ω is Gaussian and Ct
s is equal to I at the view t, equal

to−I for the view s and is zero everywhere else. Each pose-
change measurement (yt

s,Λyt
s
) is used to update all poses



using the Kalman Filter state update:

[ΛXt ]
−1 =

�
ΛXt−1

�−1 + Ct
s
�Λ−1

yt
s

Ct
s (1)

Xt = ΛXt

��
ΛXt−1

�−1Xt−1 + Ct
s
�Λ−1

yt
s

yt
s

�
(2)

After individually incorporating the pose-changes (yt
s,Λyt

s
)

using this update, Xt is the mean of the posterior distribu-
tion p(M|Y).

3.4. Online Keyframe Acquisition and Management
An important advantage of GAVAM is the fact that

keyframes are acquired online during tracking. GAVAM
generalized the previous AVAM [23] by (1) extending the
tesselation space from 3D to 4D by including the depth of
the object as the forth dimension and (2) adding an extra
step of keyframe management to ensure a constant tessela-
tion of the pose space.

After estimating the current frame pose xt, GAVAM
must decide whether the frame should be inserted into the
view-based model as a keyframe or not. The goal of the
keyframes is to represent all different views of the head
while keeping the number of keyframes low. In GAVAM,
we use 4 dimensions to model the wide range of appear-
ance. The first three dimensions are the three rotational axis
(i.e., yaw, pitch and roll) and the last dimension is the depth
of the head. This fourth dimension was added to the view-
based model since the image resolution of the face changes
when the user moves forward or backward and maintaining
keyframes at different depths improves the base frame set
selection.

In our experiments, the pose space is tessellated in bins
of equal size: 10 degrees for the rotational axis and 100 mil-
limeters for the depth dimension. These bin sizes were set to
the pose differences that our pose-change measurement al-
gorithm (described in Section 4.1) can accurately estimate.

The current frame (It, xt) is added as a keyframe if ei-
ther (1) no keyframe exists already around the pose xt and
its variance is smaller than a threshold, or (2) the keyframe
closest to the current frame pose has a larger variance than
the current frame. The variance of xi is defined as the trace
of its associated covariance matrix Λxi .

The keyframe management step ensures that the orig-
inal pose tessellation stays constant and no more than
one keyframe represents the same space bin. During
the keyframe adaptation step described in Section 3.3,
keyframe poses are updated and some keyframes may have
shifted from their original poses. The keyframe manage-
ment goes through each tesselation bin from our view-based
model and check if more than one keyframe pose is the re-
gion of that bin. If this is the case, then the keyframe with
the lowest variance is kept while all the other keyframes
are removed from the model. This process improves the

Algorithm 3 Iterative Normal Flow Constraint Given the
current frame It, a base frame (Is, xs) and the internal cam-
era calibration for both images, returns the pose-change
measurement yt

s between both frames and its associated co-
variance Λyt

s
.

Compute initial transformation Set initial value for yt
s

as the 2D translation between the face hypotheses for the
current frame and the base frame (see Section 3.1
Texture the ellipsoid model Position the ellipsoid head
model at xs+yt

s. Map the texture from Is on the ellipsoid
model by using the calibration information
repeat

Project ellipsoid model Back-project the textured el-
lipsoid in the current frame using the calibration infor-
mation.
Normal Flow Constraint Create a linear system by
applying the normal flow constraint [29] to each valid
pixel in the current frame.
Solve linear system Estimate ∆yt

s
by solving the NFC

linear system using linear least square. Update the
pose-change measurement yt

s
(new) = yt

s
(old) + ∆yt

s

and estimate the covariance matrix Λyt
s

[22].
Warp ellipsoid model Apply the transformation ∆yt

s

to the ellipsoid head model
until Maximum number of iterations reached or conver-
gence: trace(Λyt

s
) < TΛ

performance of our GAVAM framework by compacting the
view-based model.

4. Monocular Head Pose Estimation

In this subsection we describe in detail how the pose-
change measurements yt

s are computed for the different
paradigms. For the differential and keyframe tracking, yt

t−1

and yt
Kj

are computed using Iterative Normal Flow Con-
straint described in the next section. Section 4.2 describes
the static pose estimation technique used for estimating
yt

K0
.

4.1. Monocular Iterative Normal Flow Constraint

Our goal is to estimate the 6-DOF transformation be-
tween a frame with known pose (Is, xs) and a new frame
with unknown pose It. Our approach is to use a simple 3D
model of the head (half of an ellipsoid) and an iterative ver-
sion of the Normal Flow Constraint (NFC) [29]. Since pose
is known for the base frame (Is, xs), we can position the
ellipsoid based on its pose xs and use it to solve the NFC
linear system. The Algorithm 3 shows the details of our
iterative NFC.



4.2. Static Pose Estimation
The static pose detector consists of a bank of Viola-

Jones style detectors linked using a probabilistic context-
dependent architecture [11]. The first element of this bank
is a robust but spatially inaccurate detector capable of find-
ing faces with up to 45 degree deviations from frontal. The
detected faces are then processed by a collection of context
dependent detectors whose role is to provide spatial accu-
racy over categories of interest. These include the loca-
tion of the eyes, nose, mouth, and yaw (i.e., side-to-side
pan of the head). The yaw detectors where trained to dis-
criminate between yaw ranges of [−45,−20]◦, [−20, 20]◦,
and [20, 45]◦ directly from the static images. All the detec-
tors were trained using the GentleBoost algorithm applied
to Haar-like box filter features, as in Viola & Jones [30]. For
training, the GENKI dataset was used [11] which contains
over 60,000 images from the Web spanning a wide range
of persons, ethnicities, geographical locations, and illumi-
nation conditions. The dataset has been coded manually for
yaw, pitch, and roll parameters using a 3D graphical pose
labeling program .

The output of the feature detectors and the yaw detectors
is combined using linear regression to provide frame-by-
frame estimates of the 3D pose. The covariance matrix of
the estimates of the 3D pose parameters was estimated using
the GENKI dataset.

5. Experiments
The goal is to evaluate the accuracy and robustness of

the GAVAM tracking framework on previously published
datasets. The following section describes these datasets
while Section 5.2 presents the details of the models com-
pared in our experiments. Our results are shown in Sec-
tions 5.3 and 5.4. Our C++ implementation of GAVAM
runs at 12Hz on one core of an Intel X535 Quad-core pro-
cessor. The system was automatically initialized using the
static pose estimator described in the previous section.

5.1. Datasets
We evaluated the performance of our approach on two

different datasets: the BU dataset from La Cascia et al [20]
and the MIT dataset from Morency et al. [23].

BU dataset consists of 45 sequences (nine sequences
for each of five subjects) taken under uniform illumina-
tion where the subjects perform free head motion including
translations and both in-plane and out-of-plane rotations.
All the sequences are 200 frames long (approximatively
seven seconds) and contain free head motion of several sub-
jects. Ground truth for these sequences was simultaneously
collected via a “Flock of Birds” 3D magnetic tracker [12].
The video signal was digitized at 30 frames per second at a
resolution of 320x240. Since the focal length of the camera

Technique Tx Ty Tz
GAVAM 0.90in 0.89in 0.48in
Technique Pitch Yaw Roll
GAVAM 3.67◦ 4.97◦ 2.91◦

Table 1. Average accuracies on BU dataset [20]. GAVAM success-
fully tracked all 45 sequences while La Cascia et al. [20] reported
an average percentage of tracked frame of only ∼75%.

is unknown, we approximated it to 500 (in pixel) by using
the size of the faces and knowing that they should be sitting
approximately one meter from the camera. This approxi-
mate focal length add challenges to this dataset.

MIT dataset contains 4 video sequences with ground
truth poses obtained from an Inertia Cube2 sensor. The
sequences were recorded at 6 Hz and the average length
is 801 frames (∼133sec). During recording, subjects un-
derwent rotations of about 125 degrees and translations of
about 90cm, including translation along the Z axis. The
sequences were originally recorded using a stereo camera
from Videre Design [10]. For our experiments, we used
only the left images. The exact focal length was known.
By sensing gravity and earth magnetic field, Inertia Cube2

estimates for the axis X and Z axis (where Z points out-
side the camera and Y points up) are mostly driftless but the
Y axis can suffer from drift. InterSense reports a absolute
pose accuracy of 3◦RMS when the sensor is moving. This
dataset is particularly challenging since the recorded frame
rate was low and so the pose differences between frames
will be larger.

5.2. Models

We compared three models for head pose estimation:
our approach GAVAM as described in this paper, a monoc-
ular version of the AVAM and the original stereo-based
AVAM [23].

GAVAM The Generalized Adaptive View-based Ap-
pearance Model (GAVAM) is the complete model as de-
scribed in Section 3. This model integrates all three pose
estimation paradigms: static pose estimation, differential
tracking and keyframe tracking. It is applied on monocu-
lar intensity images.

2D AVAM The monocular AVAM uses the same infras-
tructure as the GAVAM but without the integration of the
static pose estimator. This comparison will highlight the
importance of integrating all three paradigm in one proba-
bilistic model. This model uses monocular intensity images.

3D AVAM The stereo-based AVAM is the original model
suggested by Morency et al. [23]. The results for this model
are taken directly from their research paper. Since this
model uses intensity images as well as depth images, we
should expect better accuracy for this 3D AVAM.



Technique Pitch Yaw Roll
GAVAM 3.3◦ ± 1.4◦ 3.9◦ ± 3.2◦ 2.7◦ ± 1.6◦

2D AVAM 5.3◦ ± 15.3◦ 4.9◦ ± 9.6◦ 3.6◦ ± 6.3 ◦

3D AVAM 2.4◦ 3.5◦ 2.6◦
Table 2. Average rotational accuracies on MIT dataset [23].
GAVAM performs almost as well as the 3D AVAM which was
using stereo calibrated images while our GAVAM works with
monocular intensity images. GAVAM clearly outperforms the 2D
AVAM showing how the integration of all three paradigms is im-
portant for head pose estimation.

5.3. Results with BU dataset
The BU dataset presented in [20] contains 45 video se-

quences from 5 different people. The results published by
La Cascia et al. are based on three error criteria: the average
% of frames tracked, the position error and the orientation
error. The position and orientation errors includes only the
tracked frames and ignores all frames with very large error.
In our results, the GAVAM successfully tracked all 45 video
sequences without losing track at any point. The Table 1
shows the accuracy of our GAVAM pose estimator. The
average rotational accuracy is 3.85◦ while the average po-
sition error is 0.75inches( 1.9cm). These results show that
GAVAM is accurate and robust even when the focal length
can only be approximated.

5.4. Results with MIT dataset
The MIT dataset presented in [23] contains four long

video sequences (∼2mins) with a large range of rotation
and translation. Since the ground truth head positions were
not available for this dataset, we present results for pose an-
gle estimates only. Figure 2 shows the estimated orientation
for GAVAM and the 2D AVAM compared to the output of
the inertial sensor for one video sequence. We can see that
2D AVAM loses track after frame 700 while GAVAM keeps
tracking. In fact, GAVAM successfully tracked all four se-
quences. The Figure 3 shows head pose (represented by a
white cube) for eight frames from the same video sequence.
Table 2 shows the averaged angular error for all three mod-
els. The results for 3D AVAM were taken for the original
publication [23]. We can see that GAVAM performs almost
as well as the 3D AVAM which was using stereo calibrated
images while our GAVAM works with monocular intensity
images. GAVAM clearly outperforms the 2D AVAM show-
ing how the integration of all three paradigms is important
for head pose estimation.

6. Conclusion
In this paper, we presented a probabilistic frame-

work called Generalized Adaptive View-based Appearance
Model (GAVAM) which integrates the advantages from
three of these approaches: (1) the automatic initializa-
tion and stability of static static head pose estimation, (2)
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Figure 2. GAVAM angular pose estimates compared to a 2D
AVAM and an inertial sensor (ground truth). Same video sequence
shown in Figure 3.

the relative precision and user-independence of differen-
tial registration, and (3) the robustness and bounded drift
of keyframe tracking. On two challenging 3-D head pose
datasets, we demonstrated that GAVAM can reliably and
accurately estimate head pose and position using a simple
monocular camera.
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