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Abstract

We present methods for turning pair-wise registration algorithms into drift-free trackers. Such registration algorithms are abundant,
but the simplest techniques for building trackers on top of them exhibit either limited tracking range or drift. Our algorithms maintain
the poses associated with a number of key frames, building a view-based appearance model that is used for tracking and refined during
tracking. The first method we propose is batch oriented and is ideal for offline tracking. The second is suited for recovering egomotion in
large environments where the trajectory of the camera rarely intersects itself, and in other situations where many views are necessary to
capture the appearance of the scene. The third method is suitable for situations where a few views are sufficient to capture the appearance
of the scene, such as object-tracking. We demonstrate the techniques on egomotion and head-tracking examples and show that they can
track for an indefinite amount of time without accumulating drift.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Robust algorithms for estimating the change in the pose
of an object from one image to the next are abundant
[34,10,22,3,2,11]. These estimators are an appealing com-
ponent for building trackers because code for them is read-
ily available, and they tend to be very robust and accurate.
Furthermore, they abstract away details such as the image
formation model, the computation of feature correspon-
dences, and the optimization procedure for registering the
images. Instead, we are left with the simpler problem of
combining their reported pose change estimates into a pose
for each frame. Unfortunately, the obvious approaches for
doing this suffer from several problems. One such common
approach is to accumulate the pose changes between suc-
cessive pairs of frames to obtain the pose of the object in
the current frame. Because each pose change is noisy, the
error in the accumulated pose grows over time, and results
in drift. An appealing alternative is to compute the pose
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change between each incoming image and the first image
in the image sequence. But because pairwise pose change
estimation algorithms have limited range, this approach
cannot work for arbitrarily large motions. To overcome
the shortcomings of these approaches, we provide new
methods that utilizes pose-change estimators to build
long-range trackers that exhibit limited drift.

Rather than computing pose changes between temporal-
ly adjacent frames, or between the current frame and the
first frame, we propose computing pose changes between
the current frame and a number of frames that previously
appeared in the image sequence (we called these frames key

frames). These pose changes are then merged to obtain a
pose for the current frame. The pose of the key frames,
are also subsequently updated. By updating the pose of
the key frames (or of the entire trajectory) our tracker effec-
tively maintains an image-based appearance model of the
object to track. This appearance model can later be used
to initialize the tracker on subsequent tracking sessions,
or can be stitched into a 3D model of the object [17].

We propose three related methods for performing these
updates. The first is a batch method, and serves as a good
workhorse technique. The second method is an online
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method well suited to egomotion problems, where capturing
the appearance of the scene can require an indefinite number
of key frames. This method retains all frames seen so far as
candidate key frames, and updates the pose associated with
them in sub-linear time. We demonstrate this technique by
estimating the pose of a camera rig in a very large environ-
ment, and rely on an optical flow-based 2D tracker. The third
method is an online method suitable for maintaining the
appearance of relatively small objects, such as heads, that
fit within the field of view of the camera, and can thus be cap-
tured with just a few key frames. This method recovers the
pose of the objects and adjusts the pose of key frames using
a Kalman update. Because its complexity does not grow over
time, this method can track human heads without drift for an
indefinite time. To demonstrate this, we rely on the 3D pose
change estimator described in [27].

2. Related work

This article is a culmination of our work on building
drift-free trackers [33,28,32]. Our batch algorithm is closely
related to the problem of globally consistent registration,
such as mosaicking of planar scenes [36,34] and stitching
of laser range scans [39,31,6,37,4,21,9]. Our batch method
is most similar to the method of Lu and Milios [21], which
computes pose changes between pairs of laser range scans,
and merges these pose differences into consistent poses by
finding poses that are consistent with the measured pose
changes. Other global registration methods take into
account additional details about the scans, and so do not
use pairwise registration as a subroutine: Stoddart and Hil-
ton [37] attach virtual springs between corresponding
points among all pairs of scans and relax the system to con-
vergence. Chen and Medioni [4] rely on a version of the
Iterated Closest Point (ICP) algorithm to iteratively com-
pute correspondences and transformations between the
scans. Sawhney et al. [34] perform global registration on
the overlapping regions of the scans, which are assumed
to be of planar structures.

The idea of anchoring tracking against landmarks to
reduce drift was exploited in the rigid-body tracking work
of Chiuso, Jin, Favaro, and Soatto [5,15], Their tracker elim-
inates the drift incurred from fixing the coordinate system
against a poorly estimated feature by anchoring the coordi-
nate system against features whose pose is well-known when
they reappear in the scene. Rather than anchoring against 3D
patches, our methods anchor against images using a pose
change estimator. In [40], the tracker is anchored against stat-
ic 3D features that are provided to the tracker before hand.

The literature on simultaneous localization and map-
ping (SLAM) and structure from motion (SFM) and adap-
tive rigid body tracking [24,19,1,18,13,5,15,7] aims to
update an appearance model of the environment (the
map) or of an object while simultaneously tracking the
pose of the object or of the camera. This body of work
tends to differ from ours in that the appearance model is
represented as a set of geometric features, such as 3D lines
and corners, or as an occupancy grid, rather than as a col-
lection of pose-annotated frames. This representation is
easier to operate on because it delegates explicit reasoning
about geometry to the pose change estimation subroutine.
A notable exception is [14] and related methods that cap-
ture appearance with a subspace model.

In the SLAM literature, both [38] and [9] represent the
map as pose-annotated key frames, as we do. As loops in
the trajectory are detected, a propagation step corrects back-
ward poses in the loop. The updates are online, but increase
in complexity linearly in the length of the loop in the case of
[38] and cubically in the case of [9]. These algorithms are sim-
ilar in purpose to the algorithm presented in Section 5.

Updating appearance models becomes more expensive
as more features are introduced, so McLauchlan [24] pro-
posed an efficient online algorithm based on the Kalman
filter update that allows certain features to become fixed.
Our algorithm of Section 6 is similar.
3. Tracking model

As each image becomes available, we compute its pose
change with respect to several past key frames using an
off-the-shelf pose change estimator, and combine these
pose change measurements to update the estimate of the
pose of the object throughout the sequence. To do this,
we first describe a generative model for pose change estima-
tors, and then describe algorithms for approximating the
maximum a posteriori (MAP) estimate of the poses.

Let ys,t denote the measured pose change between
frames t and s, and let Y T ¼ fys;tgðs;tÞ2O denote the set of
measured pose changes up to time T, stacked vertically into
a column vector. Let xt denote the true (unknown) state of
the object at time t. The state maintains information about
the pose and the dynamics of the object. Let
XT = {xt}t = 1. . .T be the state trajectory of the object from
time t = 1 to time t = T, stacked vertically into a column
vector. Finally, let xM denote the appearance model, which
simply consists of the poses of a set of key frames.

We define a prior p(XT) on the trajectory of poses, and a
likelihood p(YTjXT) on the trajectory, and show how to
update pðxt; xMjY T Þ, the posterior distribution over trajec-
tories and the appearance model, as new pose changes
become available. This distribution captures our estimate
and uncertainty in the pose of the object and the appear-
ance model given all measurements so far.
3.1. Trajectory prior p(XT)

We will assume that the object’s pose follows a priori

Markovian dynamics:

pðX T Þ ¼ pðx1Þ
YT

t¼2

pðxtjxt�1Þ: ð1Þ

The transition density p(xtjxt�1) is a distribution over the
state of the object at time t given only its state at time xt�1.
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Fig. 1. Independence structure between trajectory and measured pose
changes. Each hidden node xt is the pose associated with a frame. The
observed nodes ys,t are measured pose changes as recovered by a
registration algorithm.
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We will assume linear Gaussian dynamics and let the state
encode the pose of the object and the derivative of the pose.

For example, define the state xt ¼ ½ut vt _ut _vt�> to be the
2D location and 2D velocity to be tracked. A sensible state-
transition model is:

pðxtjxt�1Þ ¼NðxtjAxt�1;KxÞ; ð2Þ

A ¼

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

2
6664

3
7775; ð3Þ

where Nðxjl;KÞ denotes a multivariate Gaussian with
mean l and covariance K. At each time step, this model
updates the pose by adding the velocity and some noise
to the previous pose, and updates the velocity by adding
some random noise to it. Such a model can describe 3D
motion by including rotation and angular velocity in the
state. The recursive algorithms presented later can operate
with nonlinear transition densities of the form
pðxtjxt�1Þ ¼Nðxtjfðxt�1Þ;KxÞ by linearizing f at the current
estimate of xt at each iteration.

Eq. (2) can be re-written as

xt ¼ Axt�1 þ xt; ð4Þ

where xt is a zero-mean Gaussian random variable with
covariance Kx.

3.2. Observation model p(YTjXT)

For certain types of transformations, the ideal pose
change y�s;t is additively related to xs and xt, so that
xt ¼ y�s;t þ xs. This holds, for example, if the poses represent
translations. For other transformations, the relationship is
multiplicative, so that x̂t ¼ ŷ�s;t x̂s, where the �̂ operator
reshapes a vector into a square matrix of the appropriate size
(the inverse operation, vec (Æ), stacks the elements of a matrix
into a column vector). To discuss both types of transforma-
tions in one framework, we use the notation xt ¼ y�s;t � xs,
and write y�s;t ¼ xt � xs to describe the inverse operation. To
stay consistent with both multiplication and addition, these
operators are associative but not commutative.

Observed pose changes are noisy versions of xt § xs. The
distribution p(ys,tjxs,xt) represents the uncertainty in pose-
change estimation between two frames at known poses xs

and xt. Each pose change ys,t is assumed to be mutually inde-
pendent of other pose changes conditioned on xs and xt

1:
1 This independence assumption is a simplification: in general pose
change measurements that share a frame are dependent, even when
conditioned on the true poses. This is because the random variables
ys,tjxs,xt and ys,ujxs,xu are obtained by registering images, so that
ys,tjxs,xt = f(Is,It) and ys,ujxs,xu = f(Is,Iu). These images are in turn
stochastic functions of the poses. Since ys,tjxs,xt and ys,ujxs,xu are built
from a common random variable Is, they are dependent on each other.
The independence assumption is exact when Is is a deterministic function
of xs, but in general, this independence assumption results in adequate
performance and greatly simplifies the model.
pðY T jX T Þ ¼
Y
ðs;tÞ2O

pðys;tjxs; xtÞ: ð5Þ

Fig. 1 depicts the independence relationship between poses
and pose-change measurements.

To simplify computing the posterior distribution over
XT, we approximate the distribution p(ys,tjxs,xt) with a
Gaussian, as explained in the appendix:

pðys;tjxs; xtÞ �Nðys;tjy�;Ks;tÞ; ð6Þ
y� ¼ xt � xs; ð7Þ

Ks;t ¼ r̂2
X
p2P

_uðp; y�Þ>rI tðpÞ>rI tðpÞ _uðp; y�Þ
" #�1

; ð8Þ

r̂2 ¼ 1

jPj
X
i2P
½I sðiþ uði; y�ÞÞ � I tðiÞ�2; ð9Þ

Under this approximation, the mean of the distribution is the
true pose change. The covariance reflects the average sensi-
tivity of the components of the registration model at each
pixel, and the strength of the image features at that pixel. It
is scaled by the reconstruction error r̂2 after warping accord-
ing to the recovered pose change. Equivalently, this can be
re-written as

ys;t ¼ xt � xs þ xs;t; ð10Þ

where xs,t is a zero-mean Gaussian with covariance Ks,t.

4. Method 1: batch

The a posteriori most probable trajectory, given mea-
surements YT, is defined as

X � ¼ argmax
X T

pðX T jY T Þ ¼ argmax
X T

pðY T jX T ÞpðX T Þ: ð11Þ

X* is the trajectory that is most consistent with the obser-
vations YT according to the generative model of the previ-
ous section.

When the likelihood p(YTjXT) is linear in XT (for exam-
ple, when § is a simple difference) and p(XT) is Gaussian,
X* can be found by solving a sparse linear least-squares
problem [33,21]. When p(YTjXT) is a Gaussian whose mean
depends nonlinearly on XT (when § involves matrix inver-
sion), X* can be found by solving a sparse nonlinear least-
squares problem.
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4.1. Linear-Gaussian case

When p(xtjxt�1) is Gaussian and linear in xt�1 (for
example, see Eq. (2)), XT is a zero-mean Gaussian random
variable with

pðX T Þ / expð�ðX T Þ>K�1
X X T Þ; ð12Þ

with the inverse covariance K�1
X block tri-diagonal.

If the relationship between observation ys,t and xs and xt

is additive, Eq. (7) becomes:

y�s;t ¼ Cxt � Cxs ¼ Cs;tX T ; ð13Þ
Cs;t ¼ ½0 � � � � C � � � 0 � � � C � � ��; ð14Þ

The matrix C extracts the pose components of the state xt,
so that, for example, if xt ¼ ½ut vt _ut _vt�>, then
Cxt ¼ ½ut vt�>. The matrix Cs,t has �C at the location corre-
sponding to s, C at the location corresponding to t, and 0

elsewhere.
Stacking up the Cs,t into C and Ks,t into KYjX gives the

likelihood

pðY T jX T Þ ¼NðY T jCX T ;KY jX Þ: ð15Þ

This linear-Gaussian likelihood, in conjunction with the
Gaussian prior (12) gives a Gaussian posterior p(XTjYT)
over XT. The covariance KXjY and the mean mXjY of this
posterior can be obtained by solving these two equations
[30]:

K�1
X jY ¼ K�1

X þ C>K�1
Y jXC; ð16Þ

K�1
X jY mX jY ¼ C>K�1

Y jX Y T : ð17Þ

When there are T trajectory steps and jOj observations, this
computation can take O(T3) if performed naively. Using
the conjugate gradient method, Eq. (17) can be solved in
OðT ðT þ jOjÞÞ: T iterations, each requiring a matrix multi-
plication that takes time proportional to the number of
nonzero elements in K�1

X jY .
4.2. Nonlinear case

When Eq. (7) relates ys,t nonlinearly with xt and xs, we
can linearize the relationship and apply the batch method
of the previous section. The batch solution provides a
new point about which to linearize the relationship, and
the process is repeated.

In the case of affine transformations, for example, a first
order Taylor series approximation of Eq. (7) about �̂xt and
�̂xs gives [26]:

xt � xs ¼ x̂tx̂�1
s � vecð�̂xt�̂x�1

s Þ þ dð�̂xt�̂x�1
s Þ; ð18Þ

dð�̂xt�̂x�1
s Þ ¼ ðd�̂xtÞ�̂x�1

s þ �̂xtdð�̂x�1
s Þ

¼ ðd�̂xtÞ�̂x�1
s � �̂xt�̂x�1

s ðd�̂xsÞ�̂x�1
s ; ð19Þ

d�̂xs ¼ x̂s � �̂xs; ð20Þ
d�̂xt ¼ x̂t � �̂xt: ð21Þ
Substituting terms, and applying the identity ve-
c(ABC) = (C> 	 A)vec(B), where 	 is the Kronecker prod-
uct [26], yields

y�s;t � vecð�̂xt�̂x�1
s Þ ¼ ð�̂x�>s 	 IÞxt � ð�̂x�>s 	 �̂xt�̂x�1

s Þxs; ð22Þ

where I is the identity matrix. This relationship is now in
the form of Eq. (13) and the method of the previous section
can be applied.

Once the optimal xs and xt are found, the system is lin-
earized again as per Eq. (22) and the operation is repeated.
4.3. Selecting pairs of frames

Applying the pose change estimator is the main compu-
tational bottleneck of the batch method. In practice, it is
costly to compute the pose change between every pair of
frame (s, t), so O must be chosen with care. In addition, reg-
istration algorithms work most reliably if the motion
between the two views is small. For example, when track-
ing a head, the 6-degrees-of-freedom registration algorithm
we use in our experiments returns a reliable pose estimate if
the head has undergone a rotation of at most 10 degrees
along any axis. To find frame pairs (s, t) that yield high-
quality registration (as quantified by the trace of Ks, t) with-
out actually performing registration on every pair of imag-
es, we search for pairs of images that are similar according
to their sum of squared differences (SSD). If the SSD
between frames s and t is within some threshold, (s, t) is
inserted into O and ys,t is computed using the registration
algorithm.
5. Method 2: online updates

In online tracking, pose changes must be incorporated
into the estimate of the trajectory XT as soon as a new
frame becomes available. We show an efficient way of
approximately updating XT with pose change measure-
ments as they become available. Rather than re-running
the batch algorithm of the previous section each time, we
propose simplifying the a posteriori correlation between
the pose estimates to allow measurements to be incorporat-
ed without solving the full system of Eqs. (16) and (17).

A new measurements is independent of past measure-
ments conditioned on XT, so the maximum a posteriori

XT can be updated recursively as follows:

max
X T

pðX T jY T Þ ¼ max
X T

pðX T jY T�1; ys;tÞ

¼ max
X T

pðys;tjX T ÞpðX T jY T�1Þ: ð23Þ

This update uses p(XTjYt�1) as a prior, and p(ys,tjXT) as a
likelihood. When p(ys,tjXT) is linear and Gaussian (see
(13)), and p(XTjYT�1) is Gaussian with mean mX and
covariance KX, the posterior over XT can again be obtained
in closed form by solving KXjY and mXjY [30]:
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K�1
X jY ¼ K�1

X þ C>s;tðKs;tÞ�1
Cs;t; ð24Þ

K�1
X jY mX jY ¼ K�1

X mX þ C>s;tðKs;tÞ�1ys;t: ð25Þ

Solving for mXjY using conjugate gradient takes
OðT 2 þ T jOjÞ. That is, incorporating a single ys,t takes as
much work as incorporating all of YT all at once! Our solu-
tion is to approximate KX by a tri-diagonal matrix before
applying these updates. This makes K�1

X jY invertible in time
linear in T using forward–backward substitution, allowing
us to incorporate new measurements in time O(T).

In this section, we present a method for simplifying K�1
X jY

to block tri-diagonal form after each measurement is insert-
ed. Since K�1

X jY serves as KX for incorporating the next set of
measurements, this ensures that all updates are in time
O(T) in the worst case, and in constant time in practice.
For a set of Gaussian variables, a block tri-diagonal covari-
ance matrix describes a Markovian independence structure.
Intuitively, a Markov structure between the poses of chrono-
logically adjacent frames expresses the prior knowledge that
frames that are observed near the same time should have sim-
ilar poses. We demonstrate in Section 7.1 that a simpler
structure such as a diagonal matrix, which does not allow
for such propagation, does not result in smooth trajectories.
With minor adaptation, the method presented here can sim-
plify K�1

X jY to any tree structure, but the tri-diagonal or Mar-
kov structure is appealing because it is the simplest structure
that allows the influence of measurements to propagate
throughout the entire trajectory XT, allowing loops to be
closed and resulting in smooth trajectories.

The approximation strategy follows the pattern of
assumed density filtering (ADF) [25]: at each iteration,
p(XTjYT�1) is approximated with a simpler distribution
q(XT) that factors as a Markov chain. To incorporate a
new measurement ys,t, we apply Bayes rule with q(XT) as
a prior and p(ys,tjxs,xt) as likelihood:

pðX T jY T Þ / pðys;tjxs; xtÞqðX T Þ: ð26Þ

To incorporate the next measurement, p(XTjYT) is again
approximated with a simpler distribution q, and the pro-
cess is repeated. Fig. 2 summarizes this process.

In the linear-Gaussian case, it is possible to compute in
O(T) a Gaussian approximation q(XT) with minimum Kull-
back-Leibler divergence to p(XTjYT�1). One way to do this is
(a) Measurement appears.
(
l

(c) The correlation st
proximated to allow 
ments to be incorpora

Fig. 2. Using Assumed Density Filtering to maintain a Markov approxim
to invoke tools for covariance extension (see, for example,
[16,20]). The remainder of this section describes our variant
of these techniques, which is formulated as a two-pass mes-
sage-passing algorithm on a loop. This approach is particu-
larly well suited for this problem because messages need not
be propagated beyond a node if the influence of the message
on the node is small. This allows early termination of the
algorithm, allowing it to take time sub-linear in T.

5.1. Updating the trajectory

We would like to approximate an arbitrary distribution
that factors according to pðX Þ ¼

Q
tptðxtjPa½xt�Þ with one

that factors according to the Markov property
qðX Þ ¼

Q
tqtðxtjxt�1Þ. Here, Pa[xt] are the parents of node

xt in the graph prescribed by the factorization of p(X). In
Appendix B, we show that the distribution q that is closest
to p according to the Kullback-Leibler divergence is

qtðxtjxt�1Þ ¼ pðxtjxt�1Þ: ð27Þ
So the best conditional qt is built up from the conditional
marginals of p. Computing each qt in a graph is generally
an expensive operation, but in a graph with a single loop,
it can be done in time proportional to the number of nodes
in the graph.

Instead of first computing p(XTjYT) and then simplify-
ing it onto a suitable q(XT), we compute q directly from
p(XTjYT�1). We have just shown that this q factors into
conditional distributions qt(xtjxt�1) = p(xtjxt�1,ys,t,Y

T�1).
These factors are computed differently depending on their
location in the graph. In what follows, we omit the depen-
dence on YT�1 for brevity, and assume that all distribu-
tions are conditioned on YT�1.

5.1.1. Finding p(xsjxs�1,ys,t) for s < s < t

Because for every s < s < t, p(xsjxs�1,xt) =
p(xsjxs�1,xt,ys,t) (see Fig. 2), we have

pðys;t; xs�1; xs; xtÞ ¼ pðys;t; xs�1; xtÞpðxsjxs�1; xtÞ; ð28Þ

We can find p(xsjxs�1,y) by marginalizing out xt from
p(ys,t,xs�1,xs,xt) and normalizing. We can also find p(xsjy)
by marginalizing out both xt and xs�1 and normalizing.
Finally, we can compute p(y,xs,xt) for the next s in the
iteration.
b) Hidden variables become corre-
ated a posteriori.

ructure is ap-
new measure-
ted easily.

ation to the correlation induced by measurements on the trajectory.
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There are two missing pieces for computing
p(ys,t,xs�1,xs,xt): The first is p(ys,t,xs,xt) = p(ys,tjxs,xt)p(xs,xt)
for starting the recursion. p(yjxs,xt) is the given measurement
model, and p(xs,xt) can be obtained by marginalizing over
p(XT). The second missing piece is p(xsjxs�1,xt). Note that
this quantity does not depend on the measurements and
could be computed offline. The recursion for calculating it is:

pðxsjxs�1; xtÞ / pðxtjxsÞpðxsjxs�1Þ; ð29Þ

pðxtjxsÞ ¼
Z

dxsþ1pðxtjxsþ1Þpðxsþ1jxsÞ: ð30Þ

The second equation describes a recursion that starts from
t and goes down to s. It computes the influence of node s
on node t. Eq. (29) is coupled to this recursion and uses
its output. Because this recursion runs in the opposite
direction of the recursion described by (28), p(xsjxs�1,xt)
has to be computed in a separate pass.

The forward and backward recursions visit every ele-
ment of the chain once. To speed up computation, we stop
a recursion in either direction when it does not modify the
value of the current node significantly. This is an accept-
able stopping criterion because a small change in a node
guarantees that the iterations will not modify subsequent
nodes significantly.

5.1.2. Finding p(xsjxs�1,ys,t) for 1 6 s 6 s

Starting from s = s � 1, compute

pðys;tjxsÞ ¼
Z

dxsþ1pðys;tjxsþ1Þpðxsþ1jxsÞ; ð31Þ

pðxsjys;tÞ / pðys;tjxsÞpðxsÞ; ð32Þ
pðxsjxs�1; ys;tÞ / pðys;tjxsÞpðxsjxs�1Þ: ð33Þ

The recursion first computes the influence of xs on the
observation, then computes the marginal and the transition
probability.

5.1.3. Finding p(xsjxs�1,ys,t) for t 6 s 6 T

Starting from s = t, compute

pðxsjys;tÞ ¼
Z

dxs�1pðxsjxs�1; ys;tÞpðxs�1jys;tÞ; ð34Þ

pðxsjxs�1; ys;tÞ ¼ pðxsjxs�1Þ: ð35Þ

The second identity follows from the independence
structure on the right side of observed nodes.

To handle nonlinear observations, one can again linear-
ize the observation equation, as in Section 4.2. If so
desired, after running the operation described in this sec-
tion, the procedure may be repeated to yield a better
answer. In this way, the procedure described here serves
as an approximate Newton step.

5.2. Selecting frame pairs

At each time step t, the online algorithm must determine
the set of frames s < t to register against the frame at time t.
Picking frames whose appearance is similar to the current
frame works well if there is a one-to-one mapping between
appearance and pose. But in some situations, for example
objects with repetitive texture such as floor tiles or a cali-
bration cube with identical sides, different poses yield the
same appearance. To disambiguate between these situa-
tions, key frames that sufficiently resemble the current
frame in appearance are registered only if their pose is
likely to be within tracking range of each other.

To assess the probability that the pose xs of a potential
base frame is within tracking range of the pose xt of the
current frame, we compute the probability that jxs � xtj
is above some tracking range Dx. If this probability is
above a threshold, then the two frames are deemed likely
to be close in pose and ys,t is measured. This probability
can be estimated by evaluatingZ
jxs�xt j6Dx

pðxs; xtjY T�1; yt�1;tÞdxsdxt; ð36Þ

which is the probability that xs and xt are within tracking
range given all measurements prior to measuring the pose
change between s and t. The mean and covariance of
p(xs,xtjYT�1, yt�1,t) can be read from the parameters of
p(XTjYT�1, yt�1,t). Eq. (36) can be quickly approximated
by Monte Carlo by drawing samples (xs,xt) from
p(xs,xtjYT�1, yt�1,t) and reporting the ratio of samples
where jxs � xtj 6 Dx to the total number of samples drawn.

6. Method 3: sparse key frames

For some tracking applications, only a few key frames
are needed to capture the appearance of the scene. In these
cases, instead of updating the entire trajectory history, we
update the pose of the current frame and that of a few
key frames only. The pose of these frames is maintained
as a state vector using a Kalman filter. The prediction step
of the filter can remove old entries or insert new entries in
the state vector as needed. The update step of the filter
incorporates new measurements. The resulting filter has a
computational complexity that grows cubically in the size
of the state vector, so in practice we limit the number of
key frames to about 50.

At time t, the filter maintains a Gaussian distribution
pðxt; xMjY T Þ over the pose of the current frame and the pos-
es xM ¼ fxM1

; xM2
; � � �g of the key frames. Define the vari-

able X as the vertical concatenation xt and xM:

X ¼ ½xt; xM1
; xM2

; . . .�: ð37Þ
Toe represent pðxt; xMjY T Þ, the tracker need only maintain
the mean mX and covariance KX of p(XjYT). To incorpo-
rate a new measurement ys,t, the tracker applies a Kalman
update to pðXjY T�1Þ to obtain pðXjY T�1; ys;tÞ. After all
pairwise measurements involving frame t have been per-
formed, the prediction step turns xt into a key frame, and
may decide to evict one of the older key frames. Then the
tracker must prepare to incorporate pose change estimates
involving a new frame at time t + 1. We examine each step
separately.
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6.1. Incorporating a new measurement

In the linear case, as before, incorporating ys,t with the
prior pðXjY T Þ gives a Gaussian pðXjY T ; ys;tÞ whose mean
and covariance can be obtained by solving for mnew

X jY and
Knew

X jY in

½Knew
X �

�1 ¼ ½KX��1 þ C>s;tK
�1
s;t Cs;t; ð38Þ

½Knew
X �

�1mnew
X ¼ ½KX��1mX þ C>s;tK

�1
s;t ys;t: ð39Þ

The main computational burden in introducing a new mea-
surement is solving for mnew

X in Eq. (39). ½Knew
X �

�1 will be
dense after a few measurements, so solving the linear sys-
tem takes cubic time in the number of key frames. We
can bound the complexity of this update by capping the
number of key frames. When pose change measurements
are nonlinearly related to poses, the relationship can be lin-
earized prior to applying Eqs. (38) and (39) using Eq. (22).
6.2. Preparing for a new frame

After incorporating all pose changes relating to frame t,
the frame at time t becomes a key frame, and the mean and
covariance of X are augmented to make room for the pose
xt+1, to represent the distribution pðxtþ1; xt; xMjY T Þ. If we
have no a priori information about the pose xt+1, we simply
set the corresponding entry in the inverse covariance to 0.
This translates to infinite marginal variance on xt+1:

maug
X ¼ ½0;mnew

X �; ð40Þ

½Kaug
X �

�1 ¼
0 0

0 ½Knew
X �

�1

� �
: ð41Þ

Since the augmented blocks of KX are 0, we have assumed
that a priori, xt+1 is independent of xt. If there is side
knowledge about dynamics, it can be incorporated in this
step. maug

X and Kaug
X are used as mX and KX when incorporat-

ing the next measurement.
6.3. Evicting old key frames

When a key frame is no longer needed, it is marginalized
out of the distribution pðXjY T Þ. This is accomplished by
removing the corresponding elements of mX and the corre-
sponding rows and columns from KX.

In our tracker, a frame t � 1 is always used as a base
frame for frame t. Often, this frame is eliminated from
the key frame set after estimating its pose change with
frame t. In addition, older key frames are sometimes
dropped to make room for key frames corresponding to
poses that are more commonly visited.
6.4. Picking good key frames

To populate the key frames, we seek frames with accu-
rate pose estimates that capture representative views of
the object. A key frame should be available whenever the
object returns near a previously visited pose. To identify
poses that the object is likely to revisit, the pose-space is
tessellated into adjacent regions, each region maintaining
a key frame. A key frame is assigned to a region if it can
be ascertained that the pose of the key frame falls within
the region with high probability.

After estimating the pose of frame t, the tracker deter-
mines whether frame t � 1 should become a key frame.
The probability that xt�1 belongs to a region centered at
xr is:

Pr½xt�1 2 BðxrÞ� ¼
Z

x2BðxrÞ
NðxjE½xt�1�;Kt�1Þdx; ð42Þ

where B(x) is the region centered around a location x, and
E[xt�1] and Kt�1 can be read from mnew

X and Knew
X .

If frame xt�1 belongs to a region with higher probability
than any other frame so far, it is deemed the best represen-
tative for that region, and it is assigned to that region. If
the pose does not belong to any region with sufficiently
high probability, or all regions already maintain key frames
with higher probability, the frame is discarded.

These criteria exhibit several desirable properties: (1)
Frames are assigned to regions near their estimated pose.
(2) Frames with low certainty in their pose do not become
key frames, because the integral of a Gaussian under a
fixed volume decreases with the variance of the Gaussian.
(3) key frames are replaced when better key frames are
found for a given region.
7. Experiments

The online algorithm of Section 6 is well-suited for
scenes or objects whose appearance can be captured with
a few key frames. We apply it to a face tracking application
that uses stereo cameras. The algorithm of Section 5 retains
the pose of all frames seen so far, and is well suited for sit-
uations where the appearance of the scene or object cannot
be captured well with a few frames. We demonstrate it on
an egomotion experiment in an large environment whose
appearance requires many views to capture. Since the batch
algorithm of Section 4 can also potentially use all frames as
key frames, we compare it against the online algorithm of
Section 5 to evaluate the quality of the Markov chain sim-
plification the latter performs.
7.1. Egomotion in a room

To demonstrate the online algorithm of Section 5, we
manually maneuvered a monocular camera inside a large
environment and attempted to recover the location of the
camera. The camera faced upward and observed its motion
relative to the ceiling. The excursions were about three
minutes long, producing about 6000 frames of data for
each experiment. The trajectory was marked on the floor
before the experiment so we could revisit specific locations
(see the schematics of Figs. 3 and 5). This was done to



Fig. 3. Recovered trajectories from egomotion experiments. Axes are labeled in centimeters. The camera smoothly followed the trajectory shown in the
schematic on the upper left, visiting the waypoints in the order specified by the numbers, starting with waypoint 1. The image in the upper right shows a
typical snapshot of the ceiling. The bottom left panel compares the trajectory recovered by accumulating pose changes between successive frames (thick
dotted path) to the batch solution of Section 4 (solid path). Loops are not closed well (bottom and left insets). The middle panel compares the trajectory
recovered by fully factorizing the covariance after incorporating each measurement (dotted path) and the batch solution (solid path). Loops are closed
abruptly, resulting in large jumps in the trajectory (bottom inset). The right panel compares the algorithm of Section 5 to the batch solution. Loops are
closed, and the trajectory is smooth. The average distance between pose estimates between the batch solution and each online algorithm was 27 cm for
naive accumulation, 26 cm for the fully factorized solution, and 23 cm for the Markov factorization solution.
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make the evaluation of the results simpler. The trajectory
estimation worked at frame rate for the duration of both
trajectories, although it was processed offline to simplify
data acquisition.

In these experiments, the pose parameters were (x,y)
locations on the floor. All experiments assume the motion
dynamics detailed in Section 3.1. For each new frame, pose
changes were computed with respect to at most three base
frames. The selection of base frames was based on a com-
parison of the appearances of the current frame and all
past frames. The pose-change estimator was a Lucas-
Kanade optical flow tracker [23]. To compute pose dis-
placements, we computed a robust average of the flow vec-
tors using an iterative outlier rejection scheme. We used the
number of inlier flow vectors as a crude estimate of the pre-
cision of p(ys,tjxs,xt).

Figs. 3 and 5 compare the algorithm of Section 5 against
three others: a naive differential tracker that accumulates
the pose change between adjacent frames, the batch
approach of Section 4, and a variant of the online method
of Section 4 that projects the covariance matrix to a fully
factorized form after incorporating each pose change.
Fig. 4 plots the distance between the location recovered
the batch method and each of the three algorithms.
Although our recovered trajectories do not coincide exactly
with the batch solutions, ours are smooth and consistent.

In contrast, more naive methods of reconstructing tra-
jectories do not exhibit these two desiderata. Estimating
the motion of each frame with respect to only the previous
base frame yields an unsmooth trajectory. Furthermore,
loops can not be closed correctly (for example, the robot
is not found to return to the origin).

Projecting the correlation structure to a fully factored
form is a very simple way of taking into account multiple
base frames. This corresponds to using a diagonal matrix
to represent the correlation between the poses (instead of
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Fig. 4. The distance between the batch algorithm and the three other
algorithms. While the Markov factorization method exhibits some
shrinkage early in the sequence, it overtakes the other two algorithms
later on.
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the tri-diagonal inverse covariance matrix our algorithm
uses). This method also fails to meet our requirements:
the resulting trajectory is not smooth, and loops are not
closed well.

The trajectories were each about 2000 frames long. The
computational complexity of the online algorithm of 5 is
linear in the number of frames in the worst case, but thanks
to the stopping criterion of the algorithm, the first and last
frames both about 5 ms to incorporate (MATLAB code on
a 1.2 Ghz PIII), while incorporating a loop closure took
about 20 ms.

By taking into account a minimum amount of correla-
tion between frame poses, loops have been closed correctly
and the trajectory is correctly found to be smooth.
7.2. Key-frame-based 6-DOF stereo tracking

In this experiment, we qualitatively compare three
approaches for head-pose tracking: differential tracking,
tracking using the first and previous frames as key frames,
and the algorithm of Section 6. All three approaches use a
6-DOF (degree-of-freedom) registration algorithm
(described in [27] and in the following subsection) to track
and create an appearance model of a head undergoing large
movements in the near field (approximately one meter from
the camera) for several minutes. The camera system is a
Videre Design stereo camera pair [41] that delivers depth
and intensity maps in real time. In the second experiment,
we present a quantitative analysis of our view-based track-
ing approach by comparing it with the Inertia Cube2 iner-
tial sensor.
7.2.1. 6-DOF registration algorithm

At each time step, the camera system provides an inten-
sity image It and a depth image Zt. Given frames (It,Zt)
and (Is,Zs), the registration algorithm estimates a 6-DOF
(3 rotation using the twist parameterization [29] and 3
translation parameters) pose change ys,t between these
frames. It first identifies the object of interest by assuming
that it is the front-most object in the scene, as determined
by the range images Zs and Zt. For both frames, the fore-
ground pixels are grouped into a connected component,
and the background is masked out. The registration
parameters are computed in several steps: First the centers
of mass of the regions of interest are aligned in 3D transla-
tion. This provides a good starting point for aligning the
images using 2D cross-correlation in the image plane.
The output of this alignment provides a good initialization
point for a finer-grained registration algorithm based on
iterative closest point (ICP) and the brightness constancy
constraint equation (BCCE).

The ICP algorithm iteratively computes correspondences
between points in the depth images and finds the 6-DOF
transformation parameters that minimize the distance
between these pixels. By using depth values obtained from
the range images, the BCCE can also be used to recover 3D
pose-change estimates [10]. We have found that the BCCE
provides superior performance in estimating rotations,
whereas ICP provides more accurate translation estimates.

The registration technique of [27] minimizes the sum of
the objective functions of ICP and BCCE iteratively, taking
advantage of the strengths of both algorithms. At each step
of the minimization, correspondences are computed for
building the ICP cost function. Then the ICP and BCCE
cost functions are linearized, and the locally optimal solu-
tion is found using a robust least-squares solver [12]. This
process usually converges within 3–4 iterations. For more
details, see [27].

7.2.2. Head-pose tracking

We tested our view-based approach with sequences
recorded at 5 Hz. The tracking was performed using the
method of Section 6. The pose space used for acquiring
the view-based model was evenly tessellated in rotation
only. On a 1.7 GHz Pentium 4, our C++ implementation
of the tracking framework, including frame grabbing,
3D-view registration, and pose updates, runs at 7 Hz.

Tracking requires no manual intervention: the tracker
searches for a frontal face in the scene using a face detector
[42]. Because the face is frontal, we use this first frame to
establish the origin. The system begins with no key frames,
so accurate tracking in the early stages requires the user to
move slowly. As more key frames are acquired, the system
becomes robust to very fast movements. During steady
state, the head tracker maintains about 50 key frames.

Fig. 6 shows tracking results from a video sequence in
which the subject underwent rotations of about 110� and
translations of about 80 cm, including translation along
the Z-axis. While this sequence was 2 min long, in practice,
tracking can continue indefinitely under these conditions.
We have run experiments where the tracker was stable
for 30 min, limited only by the patience of the subject.
The tracker is tolerant of most hazards, including lighting
variations and occlusions, as long as the segmentation



Fig. 5. See caption of Fig. 3 for the setup. Naive accumulation does not close loops well, full factorization results in abrupt jumps in the trajectory, and the
Markov factorization results in smooth trajectories that close loops well. The average distance between pose estimates between the batch solution and each
online algorithm was 26 cm for naive accumulation, 18 cm for the fully factorized solution, and 12 cm for the Markov factorization solution.
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algorithm provides good foreground pixels. In the current
implementation, the segmentation algorithm simply
returns pixels near the camera, so intervening objects can
interfere with tracking. The left column of Fig. 6 shows
that a differential tracker based on our pose-change estima-
tion algorithm drifts after a short while on this sequence.
When tracking with only the first and previous frames as
key frames (center column), the pose estimate is accurate
when the subject is near-frontal but drifts when moving
outside this region. The view-based approach (right col-
umn) gives accurate poses during the entire the sequence
for both large and small movements. Usually, the view-
based tracker used 2 or 3 base frames (including the previ-
ous frame) to estimate each pose.

Fig. 7 shows the key frames acquired during a tracking
session. Fig. 8 demonstrates how loop closures reduce drift
and cause key frames to undergo adjustments.
To quantitatively analyze our algorithm, we compared
our results to an Inertia Cube2 sensor from InterSense.
Inertia Cube2 is an inertial 3-DOF orientation tracking sys-
tem. The sensor was mounted on the inside structure of a
construction hat. By sensing gravity and the earth’s mag-
netic field, Inertia Cube2 estimates for the X- and Z-axes
(where Z points outside the camera and Y points up) are
mostly drift-free, but the Y-axis estimate can suffer from
drift. InterSense reports an absolute pose accuracy of 3�
RMS when the sensor is moving.

We recorded 4 sequences, using the Inertia Cube2 sensor.
The sequences were recorded at 6 Hz and their average
length was 801 frames (
133 s). During recording, subjects
underwent rotations of about 125� and translations of
about 90 cm, including translation along the Z-axis.
Fig. 9 shows the pose estimates of our adaptive view-based
tracker for one of the sequences. Fig. 10 compares the



Fig. 7. The key frames acquired during one sequence, organized according
to their pose. The key frames are spread evenly in the space of rotations to
provide additional base frames for as many frames as possible.

Fig. 6. Comparison of face tracking results using a 6-DOF registration
algorithm. Rows represent results at 31.4, 52.2, 65, 72.6, 80, 88.4, 113, and
127 s into the video. Each image shows the foreground pixels and a
rendered cube representing the pose of the head. The thickness of the lines
defining the box around each face is inversely proportional to the
uncertainty in the pose estimate (the determinant of the covariance of xt,
read from KX). The number of indicator squares below the box indicate
the number of base frames used during tracking. Background pixels and
pixels where no range data was available are shown in black. Differential
tracking (left column) drifts after a few seconds. Tracking with only the
first and the previous frame is inaccurate for long excursions away from
the first frame, but tracking does not drift (center column). Adaptively
adding new key frames provides the best accuracy and suffers no drift.
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tracking results of this sequence with those of the inertial
sensor. Since the inertial sensor can only recover rotations,
we only compare these parameters. The average root mean
squared distance to the output of the inertial sensor is 2.8�,
which means our results are accurate to within the resolu-
tion of the Inertia Cube2 sensor.
8. Conclusion

We have shown how to turn pose-change estimators into
accurate drift-free trackers. Our algorithms use pose-change
estimators to track poses while simultaneously updating a
view-based appearance model. This makes it relatively easy
to build trackers, since pose change estimators are available
off-the-shelf. We derived a Gaussian approximation to rep-
resent the uncertainty in the output of parametric pose-
change estimators. Three tracking recipes were presented,
each suitable for different situations. The batch method is
exact and uses all frames as key frames. The online method
of Section 5 is appropriate for situations where many key
frames are needed, but it grows linearly in the number of



Fig. 9. To gather ground truth, the subject wore on his head an inertial sensor, whose output is compared with that of our adaptive view-based tracker in
Fig. 10.

Fig. 8. Because key frames are correlated, closures can refine the pose of many key frames. The left panel shows two degrees of rotation of 15 key frames
(solid squares) and of the current estimate of the pose of the head (outlined square). The light square is the key frame used for registration. It can be seen
from the misalignment of the overlaid cube that the estimate pose of the head is slightly wrong. When the next frame becomes available, the current frame
is compared against two key frames. Because one of these key frames was acquired much earlier, this closes a loop (right panel). The estimate of the pose of
the head is corrected, and the key frames on the upper leg are adjusted as a result of the closure (the crosses depict the position of these key frames in the
left panel).
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frames used. By contrast, the complexity of the online
method of Section 6 does not grow over time. This algorithm
is well suited for situations where the appearance of the scene
can be captured with a small number of key frames. Our
experiments showed that these trackers can run for a very
long time without significant drift.

Appendix A. Uncertainty in parametric pose-change

estimation

Some pose change estimators do not provide an uncer-
tainty measure over their output. We present here a generic
form for a distribution p(ys,tjxs,xt) that captures the uncer-
tainty in the pose change estimate obtained from a large
class of pose change estimators. We assume that p(ys,tjxs,xt)
can be approximated by a Gaussian Nðys;tjy�;Ks;tÞ, where
y* = xt § xs is the true pose change, and proceed to derive
a form for Ks,t. We assume that the pose change estimator
minimizes a least-squares registration error using a known
motion model2.
2 An alternative idea, suggested by one of the anonymous reviewers, is to
learn p(ys,tjxs,xt) from labeled data.
Note that p(ys,tjxs,xt) is a function of the true poses, but
that registration algorithms operate on images. When the
appearance of an image is largely governed by its pose,
so that the distributions p(Ijx) are peaked, we have
p(ys,tjxs,xt) � p(ys,tjIs,It) as a function of ys,t. We therefore
proceed by finding a Gaussian approximation to the distri-
bution p(ys,tjIs,It).

We assume that the pose change estimators in question
are parametric motion estimators that search for the mode
of the following distribution as a function of ys,t:

pðys;tjIs; I tÞ / exp � 1

2r2

X
i2P
½Isðiþ uði; ys;tÞÞ � I tðiÞ�2

 !
;

ðA:1Þ

where the summation is over the pixels P of It, and r2 is an
unknown variance parameter. The function u warps a pixel
i by an amount dictated by its second argument. Finding
the mode of this distribution amounts to finding the pose
change that minimizes the residual between the two images
under the family of warpings u.

To approximate p(ys,tjIs,It), we substitute the maximum
likelihood estimate of r, and set the mean y* of the approx-
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Fig. 10. Comparison of the head-pose estimation from our adaptive view-
based approach with the measurements from the Inertia Cube2 sensor. The
Inertia Cube2 only recovers rotations, so only the rotation axes are shown.
The root mean squared difference between the output of the inertial sensor
and our adaptive view-based tracker was about 2.8�, which is within the
accuracy of the Inertia Cube2 itself.
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imating Gaussian to xt § xs, which will be near a mode of
p(ys,tjIs,It) when there is not much imaging noise. The
covariance Ks,t will be set to the inverse curvature of log -
p(ys,tjIs,It) at ys,t = y* following Laplace’s approximation
[8].

To justify this choice of covariance matrix, take the sec-
ond order Taylor series expansion of logp(ys,tjIs,It) about
y*. The first order term vanishes because the first derivative
is zero near the mode:

log pðys;tjI s; I tÞ � log pðy�jIs; I tÞ þ ðys;t � y�Þ>Hðys;t

� y�Þ: ðA:2Þ
Exponentiating both sides gives a Gaussian approximation
to the posterior:
pðys;tjIs; I tÞ � j expððys;t � y�Þ>Hðys;t � y�ÞÞ

¼N ys;tjy�;�
1

2
H�1

� �
: ðA:3Þ

This approximation effectively fits a Gaussian near the
mode of p(ys,tjIs,It), matching its curvature there.

The Hessian H of logp(ys,tjIs,It) at ys,t = y* is

H ¼ � 1

r̂2

X
i2P

_uði; y�Þ>rIsðiþ uði; y�ÞÞ>rIsði

þ pði; y�ÞÞ _uði; y�Þ þ rðy�Þr2Isðiþ uði; y�ÞÞ; ðA:4Þ

where r(y*) is the residual of the images after warping Is by
y*. At y*, the residual is very small, and
Is(i + u(i,y*)) � It(i), so H can be approximated by

H � � 1

r̂2

X
i2P

_uði; y�Þ>rI tðiÞ>rI tðiÞ _uði; y�Þ: ðA:5Þ

Finally, the maximum likelihood estimate of r can be
found by differentiating p(ys,tjIs,It) with respect to r, and
setting to zero:

r̂2 ¼ 1

jPj
X
i2P

½I sðiþ uði; y�ÞÞ � I tðiÞ�2; ðA:6Þ

where jPj denotes the number of pixels in P. Putting every-
thing together, we get the Gaussian approximation

pðys;tjxs; xtÞ �Nðys;tjy�;Ks;tÞ; ðA:7Þ
y� ¼ xt � xs; ðA:8Þ

Ks;t ¼ r̂2
X
i2P

_uði; y�Þ>rI tðiÞ>rI tðiÞ _uði; y�Þ
" #�1

: ðA:9Þ

Eq. (A.9) has an intuitive interpretation. The variance r̂2 is
the RMS reconstruction error after warping according to
the recovered pose change. The summation measures the
average sensitivity of each component of u, weighted by
the strength of the features in the image. This is because
$ It(i)

>$It(i) represents the strength of a feature at location
x (see [35]), and _uðiÞ is the sensitivity to ys,t at various
points in the image.

In the translational case, u(i,y) = i + y. So o
oy uði; yÞ ¼ I.

The covariance becomes

Ktranslation ¼ r̂2
X
i2P
rI tðiÞ>rI tðiÞ

" #�1

; ðA:10Þ

which is just the reconstruction error weighted by a mea-
sure of how textured the image is.

In the case of an affine tracker, the partial of u is:

o

oy
uði; yÞ ¼

i1 i2 1 0 0 0

0 0 0 i1 i2 1

� �
: ðA:11Þ

If we set $It(i)
>$It(i) = I, effectively assigning the same tex-

ture to all points, the covariance becomes
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Kaff ¼ r̂2
X
i2P

i2
1 i1i2 i1

i1i2 i2
2 i2 0

i1 i2 1

i2
1 i1i2 i1

0 i1i2 i2
2 i2

i1 i2 1

2
666666664

3
777777775

2
666666664

3
777777775

�1

: ðA:12Þ

Consistent with intuition, points away from the center
of the coordinate system reduce the uncertainty in the mul-
tiplicative portion of the affine transformation more than
the central points. In addition all points contribute equally
to the translation parameters.

Appendix B. Minimum KL-divergence simplification of a

factored distribution

We would like to approximate a distribution pðX Þ ¼Q
tptðxtjPa½xt�Þ with a distribution qðX Þ ¼

Q
tqtðxtjQa½xt�Þ

whose factors qt(xtjQa[xt]) depend on a subset of the vari-
ables that appear in the corresponding factor pt (ie,
Qa[xt] � Pa[xt]). We want q to be as close as possible to p

in the KL-divergence sense, where the KL-divergence
between two distributions p and q is defined as
KLðpkqÞ ¼

R
X pðX Þ ln pðX Þ

qðX Þ. It is well known that the closest
such q is obtained by dropping the additional edges from
the factors of p.

To see this, expand the KL divergence:

KLðpkqÞ ¼
Z

X
pðX Þ ln

Q
t

ptðxtjPa½xt�ÞQ
t

qtðxtjQa½xt�Þ
ðB:1Þ

¼
Z

X
pðX Þ

X
t

ln
ptðxtjPa½xt�Þ
qtðxtjQa½xt�Þ

ðB:2Þ

¼
X

t

Z
xt ;Pa½xt �

pðxt;Pa½xt�Þ ln
ptðxtjPa½xt�Þ
qtðxtjQa½xt�Þ

: ðB:3Þ

Since each term in the summation can be optimized over qt

separately, after dropping terms that do not depend on q

and flipping signs, we get

q�t ðxtjQa½xt�Þ ¼ argmax
qt

Z
xt ; Pa½xt �

ptðxt;Pa½xt�Þ lnqtðxtjQa½xt�Þ

ðB:4Þ

¼ argmax
qt

Z
Qa½xt �

pðQa½xt�Þ
Z

xt

ptðxtjQa½xt�Þ lnqtðxtjQa½xt�Þ

ðB:5Þ
¼ ptðxtjQa½xt�Þ: ðB:6Þ

The last statement follows because the inner integral in Eq.
(B.5) is the KL divergence between pt(xtjQa[xt]) and
qt(xtjQa[xt]).
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