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Abstract

Shallow parsing is one of many NLP tasks
that can be reduced to a sequence la-
beling problem. In this paper we show
that the latent-dynamics (i.e., hidden sub-
structure of shallow phrases) constitutes a
problem in shallow parsing, and we show
that modeling this intermediate structure
is useful. By analyzing the automatically
learned hidden states, we show how the
latent conditional model explicitly learn
latent-dynamics. We propose in this paper
the Best Label Path (BLP) inference algo-
rithm, which is able to produce the most
probable label sequence on latent condi-
tional models. It outperforms two existing
inference algorithms. With the BLP infer-
ence, the LDCRF model significantly out-
performs CRF models on word features,
and achieves comparable performance of
the most successful shallow parsers on the
CoNLL data when further using part-of-
speech features.

1 Introduction

Shallow parsing identifies the non-recursive cores
of various phrase types in text. The paradigmatic
shallow parsing problem is noun phrase chunking,
in which the non-recursive cores of noun phrases,
called base NPs, are identified. As the represen-
tative problem in shallow parsing, noun phrase
chunking has received much attention, with the de-
velopment of standard evaluation datasets and with
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extensive comparisons among methods (McDon-
ald 2005; Sha & Pereira 2003; Kudo & Matsumoto
2001).

Syntactic contexts often have a complex under-
lying structure. Chunk labels are usually far too
general to fully encapsulate the syntactic behavior
of word sequences. In practice, and given the lim-
ited data, the relationship between specific words
and their syntactic contexts may be best modeled
at a level finer than chunk tags but coarser than
lexical identities. For example, in the noun phrase
(NP) chunking task, suppose that there are two lex-
ical sequences, “He is her –” and “He gave her
– ”. The observed sequences, “He is her” and
“He gave her”, would both be conventionally la-
beled by ‘BOB’, where B signifies the ‘beginning
NP’, and O the ‘outside NP’. However, this label-
ing may be too general to encapsulate their respec-
tive syntactic dynamics. In actuality, they have dif-
ferent latent-structures, crucial in labeling the next
word. For “He is her –”, the NP started by ‘her’ is
still incomplete, so the label for – is likely to be I,
which conveys the continuation of the phrase, e.g.,
“[He] is [her brother]”. In contrast, for “He gave
her –”, the phrase started by ‘her’ is normally self-
complete, and makes the next label more likely to
be B, e.g., “[He] gave [her] [flowers]”.

In other words, latent-dynamics is an interme-
diate representation between input features and la-
bels, and explicitly modeling this can simplify the
problem. In particular, in many real-world cases,
when the part-of-speech tags are not available, the
modeling on latent-dynamics would be particu-
larly important.

In this paper, we model latent-dynamics in
shallow parsing by extending the Latent-Dynamic
Conditional Random Fields (LDCRFs) (Morency
et al. 2007), which offer advantages over previ-
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Figure 1: Comparison between CRF and LDCRF.
In these graphical models, x represents the obser-
vation sequence, y represents labels and h repre-
sents hidden states assigned to labels. Note that
only gray circles are observed variables. Also,
only the links with the current observation are
shown, but for both models, long range dependen-
cies are possible.

ous learning methods by explicitly modeling hid-
den state variables (see Figure 1). We expect LD-
CRFs to be particularly useful in those cases with-
out POS tags, though this paper is not limited to
this.

The inference technique is one of the most im-
portant components for a structured classification
model. In conventional models like CRFs, the op-
timal label path can be directly searched by using
dynamic programming. However, for latent condi-
tional models like LDCRFs, the inference is kind
of tricky, because of hidden state variables. In this
paper, we propose an exact inference algorithm,
the Best Label Path inference, to efficiently pro-
duce the optimal label sequence on LDCRFs.

The following section describes the related
work. We then review LDCRFs, and propose the
BLP inference. We further present a statistical
interpretation on learned hidden states. Finally,
we show that LDCRF-BLP is particularly effective
when pure word features are used, and when POS
tags are added, as existing systems did, it achieves
comparable results to the best reported systems.

2 Related Work

There is a wide range of related work on shallow
parsing. Shallow parsing is frequently reduced to
sequence labeling problems, and a large part of
previous work uses machine learning approaches.
Some approaches rely on k-order generative proba-
bilistic models of paired input sequences and label
sequences, such as HMMs (Freitag & McCallum
2000; Kupiec 1992) or multilevel Markov mod-
els (Bikel et al. 1999). The generative model

provides well-understood training and inference
but requires stringent conditional independence as-
sumptions.

To accommodate multiple overlapping features
on observations, some other approaches view the
sequence labeling problem as a sequence of clas-
sification problems, including support vector ma-
chines (SVMs) (Kudo & Matsumoto 2001) and a
variety of other classifiers (Punyakanok & Roth
2001; Abney et al. 1999; Ratnaparkhi 1996).
Since these classifiers cannot trade off decisions at
different positions against each other (Lafferty et
al. 2001), the best classifier based shallow parsers
are forced to resort to heuristic combinations of
multiple classifiers.

A significant amount of recent work has shown
the power of CRFs for sequence labeling tasks.
CRFs use an exponential distribution to model the
entire sequence, allowing for non-local dependen-
cies between states and observations (Lafferty et
al. 2001). Lafferty et al. (2001) showed that CRFs
outperform classification models as well as HMMs
on synthetic data and on POS tagging tasks. As for
the task of shallow parsing, CRFs also outperform
many other state-of-the-art models (Sha & Pereira
2003; McDonald et al. 2005).

When the data has distinct sub-structures, mod-
els that exploit hidden state variables are advanta-
geous in learning (Matsuzaki et al. 2005; Petrov
et al. 2007). Sutton et al. (2004) presented an
extension to CRF called dynamic conditional ran-
dom field (DCRF) model. As stated by the authors,
training a DCRF model with unobserved nodes
(hidden variables) makes their approach difficult
to optimize. In the vision community, the LD-
CRF model was recently proposed by Morency et
al. (2007), and shown to outperform CRFs, SVMs,
and HMMs for visual sequence labeling.

In this paper, we introduce the concept of latent-
dynamics for shallow parsing, showing how hid-
den states automatically learned by the model
present similar characteristics. We will also pro-
pose an improved inference technique, the BLP,
for producing the most probable label sequence in
LDCRFs.

3 Latent-Dynamic Conditional Random
Fields

The task is to learn a mapping between a sequence
of observations x = x1, x2, . . . , xm and a sequence
of labels y = y1, y2, . . . , ym. Each y j is a class la-
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bel for the j’th token of a word sequence and is a
member of a set Y of possible class labels. For
each sequence, the model also assumes a vector of
hidden state variables h = {h1, h2, . . . , hm}, which
are not observable in the training examples.

Given the above definitions, we define a latent
conditional model as follows:

P(y|x,Θ) =
∑

h

P(y|h, x,Θ)P(h|x,Θ), (1)

where Θ are the parameters of the model. The LD-
CRF model can seem as a natural extension of the
CRF model, and the CRF model can seem as a spe-
cial case of LDCRFs employing one hidden state
for each label.

To keep training and inference efficient, we re-
strict the model to have disjointed sets of hidden
states associated with each class label. Each h j is
a member of a set Hy j of possible hidden states for
the class label y j. We define H, the set of all pos-
sible hidden states to be the union of all Hy j sets.
Since sequences which have any h j < Hy j will by
definition have P(y|x,Θ) = 0, we can express our
model as:

P(y|x,Θ) =
∑

h∈Hy1×...×Hym

P(h|x,Θ), (2)

where P(h|x,Θ) is defined using the usual con-
ditional random field formulation: P(h|x,Θ) =

exp Θ·f(h|x)/
∑
∀h exp Θ·f(h|x), in which f(h|x) is

the feature vector. Given a training set consisting
of n labeled sequences (xi, yi) for i = 1 . . . n, train-
ing is performed by optimizing the objective func-
tion to learn the parameter Θ∗:

L(Θ) =

n∑
i=1

log P(yi|xi,Θ) − R(Θ). (3)

The first term of this equation is the conditional
log-likelihood of the training data. The second
term is the regularizer.

4 BLP Inference on Latent Conditional
Models

For testing, given a new test sequence x, we want
to estimate the most probable label sequence (Best
Label Path), y∗, that maximizes our conditional
model:

y∗ = argmaxyP(y|x,Θ∗). (4)

In the CRF model, y∗ can be simply searched by
using the Viterbi algorithm. However, for latent

conditional models like LDCRF, the Best Label
Path y∗ cannot directly be produced by the Viterbi
algorithm because of the incorporation of hidden
states.

In this paper, we propose an exact inference al-
gorithm, the Best Label Path inference (BLP), for
producing the most probable label sequence y∗ on
LDCRF. In the BLP schema, top-n hidden paths
HPn = {h1,h2 . . . hn} over hidden states are effi-
ciently produced by using A∗ search (Hart et al.,
1968), and the corresponding probabilities of hid-
den paths P(hi|x,Θ) are gained. Thereafter, based
on HPn, the estimated probabilities of various la-
bel paths, P(y|x,Θ), can be computed by summing
the probabilities of hidden paths, P(h|x,Θ), con-
cerning the association between hidden states and
each class label:

P(y|x,Θ) =
∑

h: h∈Hy1×...×Hym∧h∈HPn

P(h|x,Θ). (5)

By using the A∗ search, HPn can be extended in-
crementally in an efficient manner, until the algo-
rithm finds that the Best Label Path is ready, and
then the search stops and ends the BLP inference
with success. The algorithm judges that y∗ is ready
when the following condition is achieved:

P(y1|x,Θ) ≥ P(y2|x,Θ) +
∑

h<Hy1×...×Hym

P(h|x,Θ), (6)

where y1 is the most probable label sequence, and
y2 is the second ranked label sequence estimated
by using HPn. It would be straightforward to prove
that y∗ = y1, and further search is unnecessary, be-
cause in this case, the unknown probability mass
can not change the optimal label path. The un-
known probability mass can be computed by using∑

h<Hy1×...×Hym

P(h|x,Θ) = 1 −
∑

h∈Hy1×...×Hym

P(h|x,Θ). (7)

The top-n hidden paths of HPn produced by the
A∗-search are exact, and the BLP inference is ex-
act. To guarantee HPn is exact in our BLP in-
ference, an admissible heuristic function should
be used in A∗ search (Hart et al., 1968). We use
a backward Viterbi algorithm (Viterbi, 1967) to
compute the heuristic function of the forward A∗
search:

Heui(h j) = max
h′i =h j∧h′i ∈HP|h|i

P
′
(h
′ |x,Θ∗), (8)
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where h′i = h j represents a partial hidden path
started from the hidden state h j, and HP|h|i rep-
resents all possible partial hidden paths from the
position i to the ending position |h| . Heui(h j) is
an admissible heuristic function for the A∗ search
over hidden paths, therefore HPn is exact and BLP
inference is exact.

The BLP inference is efficient when the prob-
ability distribution among the hidden paths is in-
tensive. By combining the forward A∗ with the
backward Viterbi algorithm, the time complexity
of producing HPn is roughly a linear complexity
concerning its size. In practice, on the CoNLL test
data containing 2,012 sentences, the BLP infer-
ence finished in five minutes when using the fea-
ture set based on both word and POS information
(see Table 3). The memory consumption is also
relatively small, because it is an online style algo-
rithm and it is not necessary to preserve HPn.

In this paper, to make a comparison, we also
study the Best Hidden Path inference (BHP):

yBHP = argmaxyP(hy|x,Θ∗), (9)

where hy ∈ Hy1 × . . . ×Hym . In other words, the
Best Hidden Path is the label sequence that is di-
rectly projected from the most probable hidden
path h∗.

In (Morency et al. 2007), y∗ is estimated by us-
ing the Best Point-wise Marginal Path (BMP). To
estimate the label y j of token j, the marginal prob-
abilities P(h j = a|x,Θ) are computed for possible
hidden states a ∈ H. Then, the marginal probabili-
ties are summed and the optimal label is estimated
by using the marginal probabilities.

The BLP produces y∗ while the BHP and the
BMP perform an estimation on y∗. We will make
an experimental comparison in Section 6.

5 Analyzing Latent-Dynamics

The chunks in shallow parsing are represented with
the three labels shown in Table 1, and shallow pars-
ing is treated as a sequence labeling task with those
three labels. A challenge for most shallow parsing
approaches is to determine the concepts learned by
the model. In this section, we show how we can
analyze the latent-dynamics.

5.1 Analyzing Latent-Dynamics
In this section, we show how to analyze the charac-
teristics of the hidden states. Our goal is to find the
words characterizing a specific hidden state, and

B words beginning a chunk
I words continuing a chunk
O words being outside a chunk

Table 1: Shallow parsing labels.

then look at the selected words with their associ-
ated POS tags to determine if the LDCRF model
has learned meaningful latent-dynamics.

In the experiments reported in this section, we
did not use the features on POS tags in order to
isolate the model’s capability of learning latent dy-
namics. In other words, the model could simply
learn the dynamics of POS tags as the latent dy-
namics if the model is given the information about
POS tags. The features used in the experiments are
listed on the left side (Word Features) in Table 3.

The main idea is to look at the marginal proba-
bilities P(h j = a|x,Θ) for each word j, and select
the hidden state a∗ with the highest probability. By
counting how often a specific word selected a as
the optimal hidden state, i.e., δ(w, a), we can cre-
ate statistics about the relationship between hidden
states and words. We define relative frequency as
the number of times a specific word selected a hid-
den state while normalized by the global frequency
of this word:

RltFreq(w, h j) =
Freq( δ(w, h j) )

Freq(w)
. (10)

5.2 Learned Latent-Dynamics from CoNLL

In this subsection, we show the latent-dynamics
learned automatically from the CoNLL dataset.
The details of these experiments are presented in
the following section.

The most frequent three words corresponding to
the individual hidden states of the labels, B and O,
are shown in Table 2. As shown, the automati-
cally learned hidden states demonstrate prominent
characteristics. The extrinsic label B, which begins
a noun phrase, is automatically split into 4 sub-
categories: wh-determiners (WDT, such as “that”)
together with wh-pronouns (WP, such as “who”),
the determiners (DT, such as “any, an, a”), the per-
sonal pronouns (PRP, such as “they, we, he”), and
the singular proper nouns (NNP, such as “Nasdaq,
Florida”) together with the plural nouns (NNS,
such as “cities”). The results of B1 suggests that
the wh-determiners represented by “that”, and the
wh-pronouns represented by “who”, perform simi-
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Labels HidStat Words POS RltFreq

B

That WDT 0.85
B1 who WP 0.49

Who WP 0.33
any DT 1.00

B2 an DT 1.00
a DT 0.98
They PRP 1.00

B3 we PRP 1.00
he PRP 1.00
Nasdaq NNP 1.00

B4 Florida NNP 0.99
cities NNS 0.99

O

But CC 0.88
O1 by IN 0.73

or IN 0.67
4.6 CD 1.00

O2 1 CD 1.00
11 CD 0.62
were VBD 0.94

O3 rose VBD 0.93
have VBP 0.92
been VBN 0.97

O4 be VB 0.94
to TO 0.92

Table 2: Latent-dynamics learned automatically by
the LDCRF model. This table shows the top three
words and their gold-standard POS tags for each
hidden states.

lar roles in modeling the dynamics in shallow pars-
ing. Further, the singular proper nouns and the
plural nouns are grouped together, suggesting that
they may perform similar roles. Moreover, we can
notice that B2 and B3 are highly consistent.

The label O is automatically split into the coordi-
nating conjunctions (CC) together with the prepo-
sitions (IN) indexed by O1, the cardinal numbers
(CD) indexed by O2, the past tense verbs (VBD)
together with the personal verbs (VBP) indexed by
O3, and another sub-category, O4. From the results
we can find that gold-standard POS tags may not
be adequate in modeling latent-dynamics in shal-
low parsing, as we can notice that three hidden
states out of four (O1, O3 and O4) contains relat-
ing but different gold-standard POS tags.

6 Experiments

Following previous studies on shallow parsing, our
experiments are performed on the CoNLL 2000

Word Features:
{wi−2, wi−1, wi, wi+1, wi+2, wi−1wi, wiwi+1}
×{hi, hi−1hi, hi−2hi−1hi}
POS Features:
{ti−1, ti, ti+1, ti−2ti−1, ti−1ti, titi+1, ti+1ti+2,
ti−2ti−1ti, ti−1titi+1, titi+1ti+2}
×{hi, hi−1hi, hi−2hi−1hi}

Table 3: Feature templates used in the experi-
ments. wi is the current word; ti is current POS
tag; and hi is the current hidden state (for the case
of latent models) or the current label (for the case
of conventional models).

data set (Sang & Buchholz 2000; Ramshow &
Marcus 1995). The training set consists of 8,936
sentences, and the test set consists of 2,012 sen-
tences. The standard evaluation metrics for this
task are precision p (the fraction of output chunks
matching the reference chunks), recall r (the frac-
tion of reference chunks returned), and the F-
measure given by F = 2pr/(p + r).

6.1 LDCRF for Shallow Parsing

We implemented LDCRFs in C++, and optimized
the system to cope with large scale problems, in
which the feature dimension is beyond millions.
We employ similar predicate sets defined in Sha
& Pereira (2003). We follow them in using predi-
cates that depend on words as well as POS tags in
the neighborhood of a given position, taking into
account only those 417,835 features which occur
at least once in the training data. The features are
listed in Table 3.

As for numerical optimization (Malouf 2002;
Wallach 2002), we performed gradient decent with
the Limited-Memory BFGS (L-BFGS) optimiza-
tion technique (Nocedal & Wright 1999). L-BFGS
is a second-order Quasi-Newton method that nu-
merically estimates the curvature from previous
gradients and updates. With no requirement on
specialized Hessian approximation, L-BFGS can
handle large-scale problems in an efficient manner.
We implemented an L-BFGS optimizer in C++ by
modifying the OWLQN package (Andrew & Gao
2007) developed by Galen Andrew. In our exper-
iments, storing 10 pairs of previous gradients for
the approximation of the function’s inverse Hes-
sian worked well, making the amount of the ex-
tra memory required modest. Using more pre-
vious gradients will probably decrease the num-
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ber of iterations required to reach convergence,
but would increase memory requirements signifi-
cantly. To make a comparison, we also employed
the Conjugate-Gradient (CG) optimization algo-
rithm. For details of CG, see Shewchuk (1994).

Since the objective function of the LDCRF
model is non-convex, it is suggested to use the ran-
dom initialization of parameters for the training.
To reduce overfitting, we employed an L2 Gaus-
sian weight prior (Chen & Rosenfeld 1999). Dur-
ing training and validation, we varied the number
of hidden states per label (from 2 to 6 states per
label), and also varied the L2-regularization term
(with values 10k, k from -3 to 3). Our experiments
suggested that using 4 or 5 hidden states per label
for the shallow parser is a viable compromise be-
tween accuracy and efficiency.

7 Results and Discussion

7.1 Performance on Word Features

As discussed in Section 4, it is preferred to not
use the features on POS tags in order to isolate
the model’s capability of learning latent dynam-
ics. In this sub-section, we use pure word fea-
tures with their counts above 10 in the training data
to perform experimental comparisons among dif-
ferent inference algorithms on LDCRFs, including
BLP, BHP, and existing BMP.

Since the CRF model is one of the success-
ful models in sequential labeling tasks (Lafferty et
al. 2001; Sha & Pereira 2003; McDonald et al.
2005), in this section, we also compare LDCRFs
with CRFs. We tried to make experimental results
more comparable between LDCRF and CRF mod-
els, and have therefore employed the same fea-
tures set, optimizer and fine-tuning strategy be-
tween LDCRF and CRF models.

The experimental results are shown in Table 4.
In the table, Acc. signifies ‘label accuracy’, which
is useful for the significance test in the follow-
ing sub-section. As shown, LDCRF-BLP outper-
forms LDCRF-BHP and LDCRF-BMP, suggesting
that BLP inference 1 is superior. The superiority
of BLP is statistically significant, which will be
shown in next sub-section. On the other side, all
the LDCRF models outperform the CRF model. In
particular, the gap between LDCRF-BLP and CRF
is 1.53 percent.

1In practice, for efficiency, we approximated the BLP on a
few sentences by limiting the number of search steps.

Models: WF Acc. Pre. Rec. F1

LDCRF-BLP 97.01 90.33 88.91 89.61
LDCRF-BHP 96.52 90.26 88.21 89.22
LDCRF-BMP 97.26 89.83 89.06 89.44
CRF 96.11 88.12 88.03 88.08

Table 4: Experimental comparisons among differ-
ent inference algorithms on LDCRFs, and the per-
formance of CRFs using the same feature set on
pure word features. The BLP inference outper-
forms the BHP and BMP inference. LDCRFs out-
perform CRFs.

Models F1 Gap Acc. Gap Sig.
BLP vs. BHP 0.39 0.49 1e-10
BLP vs. CRF 1.53 0.90 5e-13

Table 5: The significance tests. LDCRF-BLP is
significantly more accurate than LDCRF-BHP and
CRFs.

7.2 Labeling Accuracy and Significance Test

As shown in Table 4, the accuracy rate for individ-
ual labeling decisions is over-optimistic as a mea-
sure for shallow parsing. Nevertheless, since test-
ing the significance of shallow parsers’ F-measures
is tricky, individual labeling accuracy provides a
more convenient basis for statistical significance
tests (Sha & Pereira 2003). One such test is the
McNemar test on paired observations (Gillick &
Cox 1989). As shown in Table 5, for the LD-
CRF model, the BLP inference schema is sta-
tistically more accurate than the BHP inference
schema. Also, Evaluations show that the McNe-
mar’s value on labeling disagreement between the
LDCRF-BLP and CRF models is 5e-13, suggest-
ing that LDCRF-BLP is significantly more accu-
rate than CRFs.

On the other hand, the accuracy rate of BMP in-
ference is a special case. Since the BMP inference
is essentially an accuracy-first inference schema,
the accuracy rate and the F-measure have a differ-
ent relation in BMP. As we can see, the individual
labeling accuracy achieved by the LDCRF-BMP
model is as high as 97.26%, but its F-measure is
still lower than LDCRF-BLP.

7.3 Convergence Speed

It would be interesting to compare the convergence
speed between the objective loss function of LD-
CRFs and CRFs. We apply the L-BFGS optimiza-
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Figure 2: The value of the penalized loss based on
the number of iterations: LDCRFs vs. CRFs.
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Figure 3: Training the LDCRF model: L-BFGS
vs. CG.

tion algorithm to optimize the loss function of LD-
CRF and CRF models, making a comparison be-
tween them. We find that the iterations required
for the convergence of LDCRFs is less than for
CRFs (see Figure 2). Normally, the LDCRF model
arrives at the plateau of convergence in 120-150
iterations, while CRFs require 210-240 iterations.
When we replace the L-BFGS optimizer by the CG
optimization algorithm, we observed as well that
LDCRF converges faster on iteration numbers than
CRF does.

On the contrary, however, the time cost of the
LDCRF model in each iteration is higher than the
CRF model, because of the incorporation of hid-
den states. The time cost of the LDCRF model
in each iteration is roughly a quadratic increase
concerning the increase of the number of hidden
states. Therefore, though the LDCRF model re-
quires less passes for the convergence, it is practi-
cally slower than the CRF model. Improving the
scalability of the LDCRF model would be a inter-
esting topic in the future.

Furthermore, we make a comparison between

Models: WF+POS Pre. Rec. F1

LDCRF-BLP 94.65 94.03 94.34
CRF

N/A N/A 93.6
(Vishwanathan et al. 06)

CRF
94.57 94.00 94.29

(McDonald et al. 05)

Voted perceptron
N/A N/A 93.53

(Collins 02)

Generalized Winnow
93.80 93.99 93.89

(Zhang et al. 02)

SVM combination
94.15 94.29 94.22

(Kudo & Matsumoto 01)

Memo. classifier
93.63 92.89 93.26

(Sang 00)

Table 6: Performance of the LDCRF-BLP model,
and the comparison with CRFs and other success-
ful approaches. In this table, all the systems have
employed POS features.

the L-BFGS and the CG optimizer for LDCRFs.
We observe that the L-BFGS optimizer is slightly
faster than CG on LDCRFs (see Figure 3), which
echoes the comparison between the L-BFGS and
the CG optimizing technique on the CRF model
(Sha & Pereira 2003).

7.4 Comparisons to Other Systems with POS
Features

Performance of the LDCRF-BLP model and some
of the best results reported previously are summa-
rized in Table 6. Our LDCRF model achieved
comparable performance to those best reported
systems in terms of the F-measure.

McDonald et al. (2005) achieved an F-measure
of 94.29% by using a CRF model. By employing a
multi-model combination approach, Kudo & Mat-
sumoto (2001) also achieved a good performance.
They use a combination of 8 kernel SVMs with
a heuristic voting strategy. An advantage of LD-
CRFs over max-margin based approaches is that
LDCRFs can output N-best label sequences and
their probabilities using efficient marginalization
operations, which can be used for other compo-
nents in an information extraction system.

8 Conclusions and Future Work

In this paper, we have shown that automatic model-
ing on “latent-dynamics” can be useful in shallow
parsing. By analyzing the automatically learned
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hidden states, we showed how LDCRFs can natu-
rally learn latent-dynamics in shallow parsing.

We proposed an improved inference algorithm,
the BLP, for LDCRFs. We performed experiments
using the CoNLL data, and showed how the BLP
inference outperforms existing inference engines.
When further employing POS features as other
systems did, the performance of the LDCRF-BLP
model is comparable to those best reported results.
The LDCRF model demonstrates a significant ad-
vantage over other models on pure word features
in this paper. We expect it to be particularly useful
in the real-world tasks without rich features.

The latent conditional model handles latent-
dynamics naturally, and can be easily extended to
other labeling tasks. Also, the BLP inference algo-
rithm can be extended to other latent conditional
models for producing optimal label sequences. As
a future work, we plan to further speed up the BLP
algorithm.
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