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Abstract—We present a discriminative latent variable model for classification

problems in structured domains where inputs can be represented by a graph of

local observations. A hidden-state Conditional Random Field framework learns a

set of latent variables conditioned on local features. Observations need not be

independent and may overlap in space and time.

Index Terms—Object recognition, model, supervised learning, classification.
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1 INTRODUCTION

IT is well-known that models which include latent or hidden-state

structure may be more expressive than fully observable models,

and can often find relevant substructure in a given domain.

Hidden Markov Models (HMMs) and Dynamic Bayesian Net-

works use hidden state to model observations and have a clear

generative probabilistic formulation.

A limitation of generative models is that observations are

assumed to be independent given the values of the latent variables.

Accurately specifying such a generative model may be challenging,

particularly in cases where we wish to incorporate long range

dependencies in the model and allow hidden variables to depend on

several local features. These observations led to the introduction of

discriminative models for sequence labeling, including MEMM’s

[14], [19] and Conditional Random Fields (CRFs) [12]. CRFs are

powerful discriminative models, which can incorporate essentially

arbitrary feature-vector representations of the observed data points,

and have been widely used in the natural language processing

community.

CRFs are limited in that they cannot capture intermediate

structures using hidden-state variables. In this paper, we propose a

new model for classification based on CRFs augmented with latent

state, which we call Hidden-state Conditional Random Fields

(HCRFs). HCRFs use intermediate hidden variables to model the

latent structure of the input domain; they define a joint distribution

over the class label and hidden state labels conditioned on the

observations, with dependencies between the hidden variables

expressed by an undirected graph. The result is a model where

inference and parameter estimation can be carried out using

standard graphical model algorithms. In this paper, we first describe

the HCRF model, then describe experiments that demonstrate the

ability of HCRFs to outperform generative hidden-state and

discriminative fully-observable models on object and gesture

recognition tasks.

2 RELATED WORK

A complete review of related work is beyond the scope of this

paper; here, we discuss previous related work on object and

gesture recognition using generative and discriminative learning

approaches. There is an extensive literature dedicated to gesture

recognition. Generative models have been used successfully to

recognize arm gestures [2] and a number of sign languages [1],

[21]. Kapoor and Picard presented a HMM-based real-time head-

nod and head-shake detector [8]. Fugie et al. also used HMMs to

perform head-nod recognition [5]. For a comprehensive survey of

hand and arm gesture recognition see Pavlovic et al. [17].

In computer vision, CRFs have been applied to the task of

detecting man-made structures in natural images and have been

shown to outperform Markov Random Fields (MRFs) [11].

Sminchisescu [20] applied CRFs to classify human motion activity

and demonstrated their model was more accurate than MEMMs.

Torralba et al. [22] introduced Boosted Random Fields, a model that

combines local and global image information for object recognition.

Our latent discriminative approach for object recognition is

related to the work of Kumar and Herbert [11], [10], who train a

discriminative model using fully-labeled data where each image

region is assigned a part label from a discrete set of object parts. A

CRF is trained and detection and segmentation are performed by

finding the most likely labeling of the image under the learned

model. The main difference between our approach and Kumar’s is

that we do not assume that the part assignment variables are fully

observed, instead regarding them as latent variables. Incorporating

hidden variables allows use of training data not explicitly labeled

with part (hidden-state) structure.

Another related model is presented in [24], which builds a

discriminative classifier based on a part-based feature representa-

tion. The main difference between their approach and ours is that

we do not perform a preselection of discriminative parts. In

parallel to our work on object recognition [18], [6] developed a

hidden-state CRF model for phone recognition. A similiar model

for natural language parsing is shown in [9].

Our models are related to hidden Markov random fields

(HMRFs) [7]. Both HMRFs and HCRFs employ a layer of latent

variables with an undirected graph specifying dependencies

between those variables. However, there is the important difference

that HMRFs model a joint distribution over latent variables and

observations, whereas HCRFs are a discriminative model.

3 HIDDEN CONDITIONAL RANDOM FIELDS

We assume a task where we wish to predict a label y from an input x.

Each y is a member of a set Y of possible labels and each vector x is a

vector of local observations x ¼ fx1; x2; . . . ; xmg.1

Each local observation xj is represented by a feature vector

�ðxjÞ 2 <d, where d is the dimensionality of the representation.

Our training set consists of labeled examples ðxi; yiÞ for i ¼ 1 . . .n,

where each yi 2 Y, and each xi ¼ fxi;1; xi;2; . . . ; xi;mg. For example,

in gesture recognition, xi;j might correspond to the jth frame of the

ith video sequence and in the object recognition case it might

correspond to the jth local feature of the ith image.
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For any example x, we also assume a vector of latent variables

h ¼ fh1; h2; . . . ; hmg, which are not observed on training examples,

and where each hj is a member of a finite set H of possible hidden

labels in the model. Intuitively, each hj corresponds to a labeling of

xj with some member of H, which may correspond to “part” or

“subgesture” structure in an observation. Given these definitions

of labels y, observations x, and latent variables h, we define a

conditional probabilistic model

P ðy;h j x; �Þ ¼ e�ðy;h;x;�ÞP
y0 ;h e

�ðy0 ;h;x;�Þ ; ð1Þ

where � are the parameters of the model, and �ðy;h;x; �Þ 2 < is a

potential function parameterized by �. The model gives the

following form for P ðy j x; �Þ:

P ðy j x; �Þ ¼
X

h

P ðy;h j x; �Þ ¼
P

h e
�ðy;h;x;�ÞP

y0 ;h e
�ðy0 ;h;x;�Þ : ð2Þ

Given a new test example x and parameter values �� induced

from a training set, we will take the label for the example to be

arg maxy2Y P ðy j x; ��Þ. Following previous work on CRFs [12], [11],

we use the following objective function to estimate the parameters:

Lð�Þ ¼
X
i

logP ðyi j xi; �Þ �
1

2�2
k�k2: ð3Þ

The first term in (3) is the log-likelihood of the data. The second

term is the log of a Gaussian prior with variance �2, i.e.,

P ð�Þ � expð� 1
2�2 k�k2Þ. We use gradient ascent to search for the

optimal parameter values, �� ¼ arg max� Lð�Þ, under this criterion.

Note that, in general, Lð�Þwill be nonconvex, having multiple local

minima, so the optimization method will in practice reach a local

optimum of this function.

We encode structural constraints with an undirected graph

structure, where the hidden variables fh1; . . . ; hmg correspond to

vertices in the graph. The set of graph edges ðj; kÞ 2 E correspond

to links between variables hj and hk. The graph E can be defined

arbitrarily; intuitively, it should capture any domain specific

knowledge that we have about the structure of h. In our object

recognition task, it is a local mesh that encodes spatial consistency

between local appearance features, while in our gesture recogni-

tion task it is a chain that captures temporal dynamics.

We define � to take the following form:

�ðy;h;x; �Þ ¼
Xm
j¼1

X
l2L1

f1;lðj; y; hj;xÞ�1;l

þ
X
ðj;kÞ2E

X
l2L2

f2;lðj; k; y; hj; hk;xÞ�2;l;
ð4Þ

where L1 is the set of node features, L2 the set of edge features, f1;l,

f2;l are functions defining the features in the model, and �1;l, �2;l are

the components of �, corresponding to node and edge parameters.

The f1 features depend on single hidden variable values in the

model; the f2 features can depend on pairs of values. Note that � is

linear in the parameters � and the model in (1) is a log-linear

model. Moreover, the features respect the structure of the graph, in

that no feature depends on more than two hidden variables hj, hk,

and if a feature does depend on variables hj and hk there must be

an edge ðj; kÞ in the graph E.

Assuming that the edges in E form a tree, and that � takes the

form in (4), then exact methods exist for inference and parameter

estimation in the model. This follows because belief propagation can

be used to calculate the following quantities in OðjEkYkHj2Þ time:
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Fig. 1. Images show minimum spanning tree, 1-lattice (top), 2-lattice and 3-lattice

(bottom) over detected features. Each circle corresponds to a local feature xi and

an edge between two circles i, j signifies a dependency between the

corresponding hidden variables hi and hj in the model.

Fig. 3. ROC curves of car-side data set for models with different amounts of

connectivity. The dotted line corresponds to a model with no connectivity. The

solid lines correspond to models with minimum spanning tree, 2-lattice, and

3-lattice connectivity (these three models have near identical curves, so the solid

lines are effectively superimposed).

Fig. 2. Viterbi assignments of hidden states to local image patches for (a) minimum spanning tree and (b) unconnected model.



8y 2 Y; Zðy j x; �Þ ¼
X

h

expf�ðy;h;x; �Þg

8y 2 Y; j 2 1 . . .m; a 2 H;
P ðhj ¼ a j y;x; �Þ ¼

X
h:hj¼a

P ðh j y;x; �Þ

8y 2 Y; ðj; kÞ 2 E; a; b 2 H;
P ðhj ¼ a; hk ¼ b j y;x; �Þ ¼

X
h:hj¼a;hk¼b

P ðh j y;x; �Þ:

The first term Zðy j x; �Þ is a partition function defined by a

summation over the h variables. Terms of this form can be used to

calculate P ðy j x; �Þ ¼ Zðy j x; �Þ=
P

y0 Zðy0 j x; �Þ. Hence, inference

—calculation of arg maxP ðy j x; �Þ—can be performed efficiently

in the model. The second and third terms are marginal distribu-

tions over individual variables hj or pairs of variables hj, hk

corresponding to edges in the graph. The gradient of Lð�Þ can be

defined in terms of these marginals and can therefore be

calculated efficiently. If E contains cycles then approximate

methods, such as loopy belief-propagation, may be necessary for

inference and parameter estimation.

We estimate parameters �� ¼ arg maxLð�Þ from a training set

using a quasi-Newton gradient ascent method. We now describe

how the gradient of Lð�Þ can be computed. The likelihood term

due to the ith training example is:

Lið�Þ ¼ logP ðyi j xi; �Þ ¼ log

P
h e

�ðyi;h;xi ;�ÞP
y0 ;h e

�ðy0 ;h;xi;�Þ

 !
: ð5Þ

We first consider derivatives with respect to the parameters �1;l

corresponding to features f1;lðj; y; hj;xÞ that depend on single

hidden variables. Taking derivatives gives

@Lið�Þ
@�1;l

¼
X

h

P ðh j yi;xi; �Þ
@�ðyi;h;xi; �Þ

@�1;l

�
X
y0 ;h

P ðy0;h j xi; �Þ
@�ðy0;h;xi; �Þ

@�1;l

¼
X

h

P ðh j yi;xi; �Þ
Xm
j¼1

f1;lðj; yi; hj;xiÞ

�
X
y0 ;h

P ðy0;h j xi; �Þ
Xm
j¼1

f1;lðj; y0; hj;xiÞ

¼
X
j;a

P ðhj ¼ a j yi;xi; �Þf1;lðj; yi; a;xiÞ

�
X
y0 ;j;a

P ðhj ¼ a; y0 j xi; �Þf1;lðj; y0; a;xiÞ:

It follows that @Lið�Þ
@�1;l

can be expressed in terms of components

P ðhj ¼ a j xi; �Þ and P ðy j xi; �Þ, which can be calculated using

belief propagation, provided that the graph E forms a tree

structure.2

A similar calculation gives

@Lið�Þ
@�2;l

¼
X

ðj;kÞ2E;a;b
P ðhj ¼ a; hk ¼ b j yi;xi; �Þf2;lðj; k; yi; a; b;xiÞ

�
X

y0 ;ðj;kÞ2E;a;b
P ðhj ¼ a; hk ¼ b; y0 j xi; �Þf2;lðj; k; y0; a; b;xiÞ;

hence @Lið�Þ=@�2;l can also be expressed in terms of expressions

that can be calculated using belief propagation.

4 EXPERIMENTS

We explored the performance of our HCRF model on both object

and gesture recognition tasks. In the object recognition experi-

ments, we measured the effect of different degrees of connectivity

in the mesh of local observations. In the gesture recognition

experiments, we measured the effect of adding longer range

dependencies in the model.

In our experiments, we use a restricted form of �, where

observations interact only with the hidden states,

�ðy;h;x; �Þ ¼
X
j

�ðxjÞ � �ðhjÞ þ
X
j

�ðy; hjÞ þ
X
ðj;kÞ2E

�ðy; hj; hkÞ; ð6Þ

where �ðhjÞ 2 <d for hj 2 H is a parameter vector corresponding to

the jth latent variable. The inner-product �ðxjÞ � �ðhjÞ can be

interpreted as a measure of the compatibility between observation

xj and hidden-state hj, the parameter �ðy; hjÞ 2 < for hj 2 H, y 2 Y
can be interpreted as a measure of the compatibility between latent

variable hj and category label y, and each parameter �ðy; hi; hjÞ 2 <
for y 2 Y, and hi, hj 2 H measures the compatibility between an

edge with labels hi and hj and the label y.

4.1 Experiments on Object Recognition

In the object recognition domain, patches xi;j in each image are

obtained using the SIFT detector [13], each patch xi;j is then

represented by a feature vector �ðxi;jÞ that incorporates a combina-

tion of SIFT descriptor and relative location and scale features. We

used a setH of hidden variables of size 10 for all experiments in this

section. We assume that parts conditioned on proximate observa-

tions are likely to be dependent, as expressed in the neighborhood
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Fig. 4. Models used for comparative experiments on the gesture recognition task, Y is the gesture label and S the hidden state labels. (a) This figure shows a “stack of
HMMs” model where a separate HMM is trained for each gesture class, (b) shows a CRF model, and (c) the proposed HCRF model.

2. Note that the terms P ðhj ¼ a; y0 j xi; �Þ can be expressed as a product
of terms P ðhj ¼ a j y0;xi; �Þ � P ðy0 j xi; �Þ; these latter two terms can be
calculated using belief propogation.



graph structure. We normally define proximity in terms of distance

on the image plane but more generally it could include other

attributes.

The graph E encodes the amount of connectivity between the

hidden variables hj. Intuitively, E determines the ability of our

model to capture conditional dependencies between part assign-

ments. Such dependencies can be encoded using n-neighbor

lattices over local observations. Increasing connectivity leads,

however, to an increase in the computational complexity of

performing inference in such models. If E contains no edges the

potential function for our model reduces to

�ðy;h;x; �Þ ¼
X
j

�ðxjÞ � �ðhjÞ þ
X
j

�ðy; hjÞ: ð7Þ

This graph may be too poor to capture important dependencies

between part assignments. Another option for defining E is to use a

minimum spanning tree (MST) where the weights on the edges used

to derive the MST are the distances between the corresponding

image patches. The advantage of using such a graph is that because

E contains no cycles, and � takes the form in (4), we can perform

exact inference on E as described above.

More generally, we can define E to be an n-lattice over the local

observations. We build an n-neighbor lattice by linking every node

to its n closest nodes, (i.e., the nodes that correspond to the n closest

local observations). When E contains cycles computing exact

inference becomes intractable so we need to resort to approximate

methods; we use loopy belief-propagation.

We evaluated the effect of different neighborhood structures on

recognition performance in a simple object category recognition

task. We report results for the UIUC car-side data set. Given a

neighborhood structure for our model, we trained a binary classifier

to distinguish between a category and a background set formed

from the remaining UIUC images.

For the first experiment, we defined E to be an unconnected

graph (i.e., a graph with no edges), for the second a minimum

spanning tree, for the third a 2-lattice, and for the fourth a 3-lattice,

as shown in Fig. 1. For the first and second experiments, gradient

ascent was initialized randomly, while for the third and fourth

experiments, we used the minimum spanning tree solution as initial

parameters. Fig. 3 shows ROC curves and associated equal error

rates for the four variants of the model. From this figure, we observe

a significant improvement in performance when the model

incorporates some degree of dependency between the latent

variables. Fig. 2 shows the most likely assignment of parts to

features for the minimum spanning tree model and the unconnected

model for an example in which the former gives a correct

classification but the latter fails to do so. Both models appear to

rely fairly strongly on the location features of each patch, as opposed

to appearance features. However, the model with the MST structure

shows a smoother assignment of the hidden-variable values:

Nearby nodes in the graph tend to have the same value.

For this type of task, the minimum spanning tree model shows

equivalent recognition performance to the models that use more

densely connected graphs. Thus, it is clear that the minimum

spanning tree can encode sufficient dependency constraints for

certain categories. In [18], we conducted experiments comparing

our model to a standard generative latent variable model [4] and

found the average equal error rate of our model over all classes to be

96 percent and the one of the generative approach to be 92 percent

when evaluated on the Caltech-4 data set.

4.2 Experiments on Gesture Recognition

We also explored our HCRF model on body and head gesture

recognition, using motion features as the input representation. The

task was to map a chain of observed motion features to a label

denoting one of six possible gestures underlying the sequence. We

evaluated HCRFs with varying levels of long range dependencies,

and compared performance to baseline CRF and HMM models.

Fig. 4 shows graphical representations of the HCRF, HMM, and

CRF models used in our experiments.

In a first set of HCRF experiments, we trained HCRF models in

a “one-versus-all” approach. For each gesture class, we first

trained a separate HCRF model to discriminate the gesture class

from other classes. For a given test sequence, we compared the

probabilities given by each of the two-class HCRFs, and the highest

scoring model was selected as the recognized gesture. In a second

set of HCRF experiments, we trained a single joint multiclass

HCRF to recognize all classes. Test sequences were run with this

model and the gesture class with the highest probability was

selected as the recognized gesture.

In the CRF experiments, each training or test sequence

fx1; x2; x3 . . .xmg is associated with a sequence of labels

fy1; y2; y3; . . . ymg. In training data, the label sequences were

taken to be the target label y for the gesture example repeated
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Fig. 5. Graph showing the distribution of the hidden states for each gesture class. The numbers in each pie represent the hidden state label, and the area enclosed by the

number represents the proportion. EH, EV, . . . SV are labels for the six different gesture types, see [23] for details.

TABLE 1
Comparison of Recognition Performance

(Percentage Accuracy) for Body Poses Estimated from
Image Sequences on a 6-Way Classification Task



m times. For test examples, the most likely sequence of labels

was decoded; the final label assigned to the test example was

taken to be the label which appeared most frequently in the

decoded sequence.

In both the HCRF and CRF models, we conducted experiments

that incorporated different long range dependencies. To incorpo-

rate long range dependencies in the CRF and HCRF models, we

add a window parameter ! that defines the amount of past and

future history to be used when predicting the state at time t (! ¼ 0

indicates only the current observation is used).

The HMMs were trained using maximum-likelihood estimation.

We ran experiments with six hidden states for the one-versus-all

HCRFs and 12 for the multiclass HCRFS; which states were shared

among all the classes. For the HMM model, we used four hidden

states for each class: These states were not shared among the different

classes. The choice of four states was found to optimize performance

on the test data (we tested values of 2, 4, 6, 8, 10, and 12 hidden states)

and, the HMM results are therefore an upper bound on possible

performance. We similarly optimized the number of Gaussian

mixture components with respect to test data performance.
We ran experiments in two domains: arm and head gestures. In

the arm gesture domain, we used a data set of gestures defined for

a virtual manipulation task as described in [23].

From each observation of a user interacting with the system, a

3D cylindrical body model, consisting of a head, torso, arms, and

forearms was estimated using a stereo-tracking algorithm [3].

From these body models, both the joint angles and the relative

coordinates of the joints of the arms were used as observations for

our experiments. Thirteen users were asked to perform these six

gestures, an average of 90 gestures per class were collected.

Table 1 summarizes results for the arm gesture recognition

experiments. In these experiments, the CRF performed better than

HMMs at window size 0. At window size 1, however, the CRF

performance was poorer. Both multiclass and one-versus-all

HCRFs perform better than HMMs and CRFs. The most significant

improvement in performance was obtained when we used a

multiclass HCRF, suggesting that it is important to jointly learn the

best discriminative structure.

It is surprising that increasing the window size from 0 to 1

degrades CRF performance since one would not expect that adding

contextual features could harm the predictive power of the model.

This performance drop may be caused by overfitting since adding

contextual features increases the number of parameters of the model.

From the results in Table 1, we can see that incorporating some

degree of long range dependencies is important since the HCRF

performance improved when the window size was increased from

0 to 1. However, we also see that further increasing the window

size did not improve performance.

Fig. 5 shows the distribution of states for different gesture

classes learned by the best performing model (multiclass HCRF).

As we can see, the model has found a unique distribution of

hidden states for each gesture and there is a significant amount of

state sharing among different gesture classes.

We also conducted experiments with a head gesture data set

obtained using the pose tracking system of [15]. A fast Fourier

transform of the 3D angular velocities of users’ head motion was

used as input features. The data consisted of interactions between

human participants and a robotic character [16]. A total of

16 participants interacted with a robot, with each interaction

lasting between 2 to 5 minutes.

Table 2 summarizes the results for the head gesture experi-

ments. The multiclass HCRF model performs better than the HMM

and CRF models at a window size of 0. The HMM and CRF models

have similar performance for the head gesture task. The HCRF

multiclass model made a significant improvement when the

window size was increased, which indicates that incorporating

long range dependencies was useful.

5 SUMMARY AND CONCLUSIONS

We have developed a discriminative hidden-state model and

demonstrated its utility on visual recognition tasks. Our model

combines the ability of CRFs to use complex features of the input

and the ability of HMMs to learn latent structure.

Our results have shown that HCRFs outperform both CRFs and

HMMs for certain gesture recognition tasks. For arm gestures, the

multiclass HCRF model outperforms HMMs and CRFs even when

long range dependencies are not used, demonstrating the

advantages of joint discriminative learning. For the object recogni-

tion data set, our results have shown that incorporating depen-

dencies between latent variables is important and that the

minimum spanning tree formulation can be a good approximation

to more highly connected models.
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