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Abstract. Eye gaze and gesture form key conversational grounding cues
that are used extensively in face-to-face interaction among people. To
accurately recognize visual feedback during interaction, people often use
contextual knowledge from previous and current events to anticipate
when feedback is most likely to occur. In this paper, we investigate how
dialog context from an embodied conversational agent (ECA) can im-
prove visual recognition of eye gestures. We propose a new framework
for contextual recognition based on Latent-Dynamic Conditional Ran-
dom Field (LDCRF) models to learn the sub-structure and external dy-
namics of contextual cues. Our experiments show that adding contextual
information improves visual recognition of eye gestures and demonstrate
that the LDCRF model for context-based recognition of gaze aversion
gestures outperforms Support Vector Machines, Hidden Markov Models,
and Conditional Random Fields.

Key words: Contextual information, Conditional Random Fields, Eye
gesture recognition, gaze aversion

1 Introduction

In face to face interaction, eye gaze is known to be an important aspect of
discourse and turn-taking. To create effective conversational human-computer
interfaces, it is desirable to have computers which can sense a user’s gaze and
infer appropriate conversational cues. Embodied conversational agents, either in
robotic form or implemented as virtual avatars, have the ability to demonstrate
conversational gestures through eye gaze and body gesture, and should also be
able to perceive similar displays as expressed by a human user.

Previous work has shown that human participants avert their gaze (i.e. per-
form “look-away” or “thinking” gestures) to hold the conversational floor even
while answering relatively simple questions [1]. A gaze aversion gesture while a
person is thinking may indicate that the person is not finished with their con-
versational turn. If the ECA senses the aversion gesture, it can correctly wait
for mutual gaze to be re-established before taking its turn.

When recognizing visual feedback, people use more than their visual percep-
tion. Knowledge about the current topic and expectations from previous utter-
ances help guide our visual perception in recognizing nonverbal cues. Context
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information can be found from cues like the words and prosody/punctuation
(e.g., word pair “do you” with question mark) of the current sentence but the
real meaning and structure of these cues can sometimes be hidden (e.g., this is
a yes/no question). The dynamic between these contextual cues (e.g., “do you”
before the question mark) is also relevant information. An important challenge
for context-based recognition is to learn these hidden sub-structures and external
dynamics from the contextual cues.

In this paper, we present a framework for context-based recognition that
uses Latent-Dynamic Conditional Random Field (LDCRF) models [2] to learn
the hidden sub-structure and external dynamic of contextual information. The
main two contributions of this paper are that we are the first to (1) show that
dialog context can improve gaze aversion recognition and (2) demonstrate that
LDCRF models are superior to other learning methods (i.e., SVM, CRF, and
HMM) at learning relevant context and integrating it with visual observations
for gaze aversion recognition. The power of LDCRFs comes from the fact that
it learns the extrinsic dynamics by modeling a continuous stream of class labels,
and learns internal sub-structure by utilizing intermediate hidden states.

The remainder of this paper is organized as follows. In Section 2 we review
relevant related work, and in Section 3 we present our LDCRF context-based
recognition framework. The details of our three set of experiments including
information about the dataset, the compared models and the methodology are
described in Section 4. We present and discuss the results of our experiments
in Section 5. Finally, a summary and discussion of future work are provided in
Section 6.

2 Related Work

Eye gaze plays an important role in face-to-face interactions. Kendon proposed
that eye gaze in two-person conversation offers different functions: monitoring
visual feedback, expressing emotion and information, regulating the flow of the
conversation (turn-taking), and improving concentration by restricting visual
input [3]. Many of these functions have been studied to create more realistic
ECAs [4–6], but they have tended to explore only gaze directed towards individ-
ual conversational partners or objects.

A considerable body of work has been carried out regarding eye gaze and eye
motion patterns for perceptive user interfaces. Velichkovsky suggested the use
of eye motion to replace the mouse as a pointing device [7]. Qvarfordt and Zhai
used eye-gaze patterns to sense the user interest with a map-based interactive
system [8]. Li and Selker developed the InVision system which responded to a
user’s eye fixation patterns in a kitchen environment [9].

Context has been previously used in computer vision to disambiguate recog-
nition of individual objects given the current overall scene category [10]. Fujie et
al. also used HMMs to perform head nod recognition [11]. In their paper, they
combined head gesture detection with prosodic low-level features computed from
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Fig. 1. Comparison of the LDCRF model [2] with two related models: CRF [12] and
HCRF [14, 15]. In these graphical models, xj represents the jth observation (corre-
sponding to the jth frame of the video sequence), hj is a hidden state assigned to xj ,
and yj the class label of xj (i.e. head-nod or other-gesture). Gray circles are observed
variables. The LDCRF model combines the strengths of CRFs and HCRFs in that it
captures both extrinsic dynamics and intrinsic structure and can be naturally applied
to predict labels over unsegmented sequences.

Japanese spoken utterances to determine strongly positive, weak positive and
negative responses to yes/no type utterances.

The use of dialogue context for visual gesture recognition was first explored
in [18]. In [18] they propose a late-fusion framework for incorporating dialog con-
text in head gesture recognition. This framework was later extended to include
context from conventional graphical user interfaces [?]. In both papers, the ex-
periments were performed on head gesture recognition. This paper is the first to
extend the idea of context-based recognition to recognize eye gesture. Also, the
approach presented in [18, ?] used multi-class SVMs to train the context-based
recognizer. Unlike LDCRFs, SVMs do not model the external dynamics between
classes and do not explicitly model hidden sub-structure.

LDCRF models offer several advantages over previous discriminative mod-
els (see Figure 1). In contrast to Conditional Random Fields (CRFs) [12], our
method incorporates hidden state variables which model the sub-structure of
gesture sequences. The CRF approach models the transitions between gestures,
thus capturing extrinsic dynamics, but lacks the ability to learn the internal sub-
structure. In contrast to Hidden-state Conditional Random Fields (HCRFs) [13],
our method can learn the dynamics between gesture labels and can be directly
applied to label unsegmented sequences. The results reported in [2] demonstrate
that LDCRF outperforms models based on Support Vector Machines (SVMs),
HMMs, CRFs and HCRFs on visual gesture recognition task. In this paper,
we demonstrate that LDCRF models are superior to other learning methods at
learning relevant context and integrating it with visual observations.

3 Context-based Recognition Framework using LDCRF

For reliable recognition of visual feedback during face-to-face conversational in-
teractions, people use knowledge about the current dialogue to anticipate ges-
tures from their interlocutors.
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Fig. 2. Framework for context-based gesture recognition. The contextual predictor
translates contextual features into a likelihood measure, similar to the visual recog-
nizer output. The multi-modal integrator fuses these visual and contextual likelihood
measures.

We can use a conversational agent’s knowledge about the current dialogue to
improve recognition of visual feedback (i.e., eye gestures). The dialogue manager
merges information from the input devices with the history and the discourse
model [16, 17]. The dialogue manager contains two main sub-components, an
agenda and a history: the agenda keeps a list of all the possible actions the
agent and the user (i.e., human participant) can do next. This list is updated by
the dialogue manager based on its discourse model (prior knowledge) and on the
history. Dialogue managers generally exploit contextual information to produce
output for the speech and gesture synthesizer, and we can use similar cues to
predict when user visual feedback is most likely.

Following [18], we use three types of contextual features easily available from
the dialogue manager: lexical features, prosody and punctuation, and timing.
The contextual information is extracted from the dialogue manager rather than
directly accessing internal ECA states. This strategy makes it possible to extract
dialogue context without any knowledge of the internal representation and there-
fore makes it appliable to most ECA architectures. Figure 2 shows the general
architecture of the context-based recognition framework.

In the following subsections we first give a formal description of the LD-
CRF and then show how LDCRF is integrated in the context-based recognition
framework.

3.1 LDCRF Model

As described in [2], the task of the LDCRF model is to learn a mapping be-
tween a sequence of observations x = {x1, x2, ..., xm} and a sequence of la-
bels y = {y1, y2, ..., ym}. Each yj is a class label for the jth frame of a video
sequence and is a member of a set Y of possible class labels, for example,
Y = {gaze-aversion, other-gesture}. Each frame observation xj is repre-
sented by a feature vector φ(xj) ∈ Rd, for example, the head velocities at each
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frame. For each sequence, we also assume a vector of “sub-structure” variables
h = {h1, h2, ..., hm}. These variables are not observed in the training examples
and will therefore form a set of hidden variables in the model.

Given the above definitions, we define a latent conditional model:

P (y | x, θ) =
∑
h

P (y | h,x, θ)P (h | x, θ). (1)

where θ are the parameters of the model.
To keep training and inference tractable, we restrict the LDCRF model to

have disjoint sets of hidden states associated with each class label. Each hj is a
member of a set Hyj of possible hidden states for the class label yj . We define
H, the set of all possible hidden states, to be the union of all Hy sets. Since
sequences which have any hj /∈ Hyj

will by definition have P (y | h,x, θ) = 0, we
can express the LDCRF model as:

P (y | x, θ) =
∑

h:∀hj∈Hyj

P (h | x, θ). (2)

Given a training set consisting of n labeled sequences (xi,yi) for i = 1...n,
training is done following [19, 12] using this objective function to learn the pa-
rameter θ∗:

L(θ) =
n∑

i=1

log P (yi | xi, θ)−
1

2σ2
||θ||2 (3)

The first term in Eq. 3 is the conditional log-likelihood of the training data.
The second term is the log of a Gaussian prior with variance σ2, i.e., P (θ) ∼
exp

(
1

2σ2 ||θ||2
)
.

For testing, given a new test sequence x, we want to estimate the most
probable sequence labels y∗ that maximizes our conditional model:

y∗ = arg max
y

∑
h:∀hi∈Hyi

P (h | x, θ∗) (4)

For a more detailed discussion of LDCRF training and inference see [2].

3.2 LDCRF Context-based Recognition

The contextual predictor outputs a likelihood measurement at the same frame
rate as the vision-based recognizer so that the multi-modal integrator can merge
both measurements. For this reason, feature vectors xj are computed at every
frame j (even though the contextual features do not directly depend on the input
images).

For the LDCRF model, the likelihood measurement for a specific gesture g
is equal to the marginal probability P (yj = g | x, θ∗). This probability is equal
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to the sum of the marginal probabilities for the hidden states part of the subset
Hg:

P (yj = g | x, θ∗) =
∑

h:∀hj∈Hg

P (h | x, θ∗) (5)

where x is the concatenation of all the feature vectors xj for the entire sequence
and θ∗ are the model parameters learned during training. When testing offline,
the marginal probabilities are computed using a forward-backward belief prop-
agation algorithm. To estimate the marginal probabilities online, it is possible
to define x as the concatenation of all feature vectors up to frame j and use the
forward-only belief propagation algorithm.

Our integration component takes as input the likelihood measurement from
the contextual predictor and the visual observations from the vision-based head
gesture recognizer, and recognizes whether a head gesture has been expressed
by the human participant. The output from the integrator is further sent to the
dialogue manager or the window manager so it can be used to decide the next
action of the ECA.

4 Experiments

We designed our experiments to demonstrate how contextual information can
improve eye gesture recognition and to demonstrate the superior performance of
LDCRF on context-based recognition compared to baseline methods. We per-
formed three series of experiments:

Experiment 1 where we compare the vision-only approach with the context-
based recognition using LDCRF models. The goal of this experiment is to show
that dialog context can improve eye gesture recognition

Experiment 2 where we compare the LDCRF model to SVM, CRF and HMM
models for context-based recognition of gaze aversion. In this set of experiments,
the contextual predictor and the multimodal integrator are both trained using
the same model (either LDRCF, SVM, CRF or HMM). The goal of this experi-
ment is to show the superiority of LDCRF for context-based recognition.

Experiment 3 where we first train the contextual predictor with the LDCRF
model and then train the multimodal integrator with one of the four model.
The goal of this experiment is to analyze the relative importance of LDCRF for
contextual prediction and multimodal integration.

In the following subsections, we first describe our dataset used in our experi-
ments, then present the models used to compare the performance of the LDCRF
model, and finally describe our experimental methodology.

4.1 Eye Gesture Dataset

Our dataset came from a user study that shown that human participants nat-
urally perform gaze aversion gestures when interacting with an avatar [1]. The
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goal of this dataset is to differentiate gaze aversion gestures from all other type
of eye gestures (e.g., eye contact or deictic gestures). Our dataset consist of 6 hu-
man participants interacting with a virtual embodied agent. Each video sequence
lasted approximately 10-12 minutes, and was recorded at 30 frames/sec, for a
total of 105,743 frames. During these interactions, human participants would
rotate their head up to +/-70 degrees around the Y axis and +/-20 degrees
around the X axis, and would also occasionally move their head, mostly along
the Z axis.

The dataset was labeled with the start and end points of each gaze aver-
sion gestures. Each frame was labeled either as gaze-aversion or as other-gesture
which included sections of video where people were looking at the avatar or
performing deictic gestures. The contextual cues from the dialogue manager
(spoken utterances with start time and duration) were recorded during each
interaction and were later automatically processed to create the contextual fea-
tures necessary for the contextual predictor. The previous section showed how
the contextual features are automatically computed.

For each video sequence, the eye gaze was estimated using the view-based
appearance model described in [1] and for each frame a 2-dimensional eye gaze
estimate was obtained. The eye gaze estimates were logged online with the con-
textual cues. For this dataset, the vision-based recognizer is a LDCRF model
trained and validated offline on the same training and validation sets used for
the contextual predictor and the multi-modal integrator.

4.2 Models

In our experiments, the LDCRF model is compared with three models: Condi-
tional Random Field (CRF), Hidden Markov Model (HMM) and Support Vector
Machine (SVM).

Conditional Random Field As a first baseline, we trained a single CRF chain
model where every gesture class has a corresponding state label. During evalua-
tion, marginal probabilities were computed for each state label and each frame
of the sequence using belief propagation. The optimal label for a specific frame
is typically selected as the label with the highest marginal probability. In our
case, to be able to plot ROC curves of our results, the marginal probability of
the primary label (i.e. gaze-aversion) was thresholded at each frame, and the
frame was given a positive label if the marginal probability was larger than the
threshold. The objective function of the CRF model contains a regularization
term similar to the regularization shown in Equation 3 for the LDCRF model.
During training and validation, this regularization term was validated with val-
ues 10k, k = −3..3.

Support Vector Machine As a second baseline, a multi-class SVM was trained
with one label per gesture using a Radial Basis Function (RBF) kernel. Since
the SVM does not encode the dynamics between frames, the training set was
decomposed into frame-based samples, where the input to the SVM is the head
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velocity or eye gaze at a specific frame. The output of the SVM is a margin for
each class. This SVM margin measures how close a sample is to the SVM decision
boundary [20]. The margin was used to plot the ROC curves. During training
and validation, two parameters were validated: C, the penalty parameter of the
error term in the SVM objective function, and γ, the RBF kernel parameter.
Both parameters were validated with values 10k, k = −3..3.

Hidden Markov Model As a third baseline, an HMM was trained for each
gesture class. We trained each HMM with segmented subsequences where the
frames of each subsequence all belong to the same gesture class. This training
set contained the same number of frames as the one used for training the other
models except frames were grouped into subsequences according to their label.
The HMMs trained on subsequences are concatenated into a single HMM with
the number of hidden states equal to the sum of hidden states from each indi-
vidual HMM. For example, if the recognition problem has two labels and each
individual HMM is trained using 3 hidden states, then the concatenated HMM
will have 6 hidden states. To estimate the transition matrix of the concatenated
HMM, we compute the Viterbi path of each training subsequence, concatenate
the subsequences into their original order, and then count the number of transi-
tions between hidden states. The resulting transition matrix is then normalized
so that its rows sum to one. At testing, we apply the forward-backward algorithm
on the new sequence, and then sum at each frame the hidden states associated
with each class label. The resulting HMM can seen as a generative version of our
LDCRF model. During training and validation, we varied the number of states
from 1 to 6 and the number of Gaussians per mixture from 1 to 3.

Latent-Dynamic Conditional Random Field Our LDCRF model was trained
using the objective function described in [2]. During evaluation, we compute
ROC curves using the maximal marginal probabilities of Equation 4. During
training and validation, we varied the number of hidden states per label (from 2
to 6 states per label) and the regularization term (with values 10k, k = −3..3).

4.3 Methodology

In our experiments, the vision-based recognizer was trained and tested using
LDCRF since this model gave the best performance for the visual recognition
task (see [2] for details). The contextual predictors and multi-modal integrator
(also referred as “Fusion” in the result section) were trained using one of the
four models described in the previous subsection. The contextual features were
computed from the dialog context of the avatar using the technique described in
[18].

The experiments were performed using a leave-one-out testing approach. For
validation, we did holdout cross-validation where a subject is randomly picked
from the training set and kept for validation. The optimal validation parameters
were picked based on the equal error rate for the validation set.
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Fig. 3. Results from Experiment 1 comparing vision-only approach with context-based
recognition using LDCRF models. We can see that dialog context significantly improves
(p-value = 0.043) the gaze aversion recognition performance.

The dataset contained an unbalanced number of other-gesture frames. To
have a balanced training set and reduce the training time, the training dataset
was preprocessed to create a smaller training dataset containing an equal num-
ber of other-gesture and transition subsequences. Each transition subsequence
includes frames from one complete gesture subsequence and frames before and
after the gesture labeled as other-gesture. The size of the other-gesture gap
before and after the gesture was randomly picked between 2 and 50 frames. The
number of transition subsequences was equal to the number of ground truth ges-
tures in the original training set. Other-gesture subsequences were randomly
extracted from the original sequences with length varying between 30-60 frames.

5 Results and Discussion

For the ROC curves shown in this section, the true positive rate is computed by
dividing the number of recognized frames by the total number of ground truth
frames. Similarly, the false positive rate is computed by dividing the number of
falsely recognized frames by the total number of other-gesture frames.

Figure 3 shows the results of Experiment 1 where we compare the LDCRF
vision-only approach with the LDRCF context-based approach. We can see in
this figure that context information does improve recognition of eye gesture. The
ROC curve of LDCRF combining both vision and context is higher than that of
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Fig. 4. Results from Experiment 2 comparing the LDCRF model to SVM, CRF and
HMM models for context-based recognition of gaze aversion. Both the contextual pre-
dictor and the multimodal integrator were trained using the same model. The ROC
curves show the performance of each trained multimodal integrator. LDCRF outper-
forms all three other models with statistically significant differences for SVM and HMM
(p-values equal to 0.0329, and 0.0343 respectively).

LDCRF using only vision without context. Using t-test analysis, the difference
between the two curves, calculated based on the equal error rates, is statistically
significant (one-tail p = 0.043).

Figure 4 shows the results from Experiment 2 where we compare the LDCRF
model to SVM, CRF and HMM models for context-based recognition of gaze
aversion. LDCRF outperforms all three other models (SVM, CRF and HMM)
for context-based recognition. A paired t-test analysis over all tested subjects
returns a one-tail p-value of 0.0329, 0.0717 and 0.0343 when comparing the equal
error rate performance of LDCRF with SVM, CRF and HMM respectively. This
analysis shows statistically significant improvement using the LDCRF model
when compared to both SVM and HMM models.

Figure 5 shows the results of Experiment 3 where we analyze the relative
importance of LDCRF for contextual prediction and multimodal integration by
running a new set of experiments where only the multimodal integrator changes.
The ROC curves in this figure show that LDCRF model outperforms all three
other models. This demonstrates the superiority of LDCRF for the multimodal
integration task. Also, by comparing Figures 4 and 5, we can see that both SVM
and HMM curves improve, confirming the utility of LDCRF as a contextual
predictor.
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Fig. 5. Results from Experiment 3 analyzing the relative importance of LDCRF for
contextual prediction and multimodal integration. Note that the contextual predictor
is the same for all four cases and only the multimodal integrator changes in each case.
This result demonstrates the superiority of LDCRF for the multimodal integration
task and by comparing with Figures 4, we can see that both SVM and HMM curves
improve, confirming the utility of LDCRF as a contextual predictor.

6 Conclusion

In this paper, we investigated how dialog context from an embodied conversa-
tional agent (ECA) can improve visual recognition of eye gestures. We proposed
a new framework for contextual recognition based on Latent-Dynamic Condi-
tional Random Field (LDCRF) models to learn the sub-structure and external
dynamic of contextual cues. Our experiments showed that adding contextual
information improves visual recognition of eye gestures and demonstrated that
LDCRF models for context-based recognition outperform Support Vector Ma-
chines, Hidden Markov Models, and Conditional Random Fields for our visual
feedback recognition tasks.
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