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ABSTRACT
The construction of robust multimodal interfaces often re-
quires large amounts of labeled training data to account for
cross-user differences and variation in the environment. In
this work, we investigate whether unlabeled training data
can be leveraged to build more reliable audio-visual classi-
fiers through co-training, a multi-view learning algorithm.
Multimodal tasks are good candidates for multi-view learn-
ing, since each modality provides a potentially redundant
view to the learning algorithm. We apply co-training to two
problems: audio-visual speech unit classification, and user
agreement recognition using spoken utterances and head
gestures. We demonstrate that multimodal co-training can
be used to learn from only a few labeled examples in one
or both of the audio-visual modalities. We also propose a
co-adaptation algorithm, which adapts existing audio-visual
classifiers to a particular user or noise condition by leverag-
ing the redundancy in the unlabeled data.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.7 [Artificial
Intelligence]: Natural Language Processing—Speech recog-
nition and synthesis; I.2.10 [Artificial Intelligence]: Vi-
sion and Scene Understanding

General Terms
Algorithms

Keywords
Semi-supervised learning, Adaptation, Audio-visual speech
and gesture, Co-training, Human-computer interfaces
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1. INTRODUCTION
Human interaction relies on multiple redundant modali-

ties to robustly convey information. Similarly, many human-
computer interface (HCI) systems use multiple modes of in-
put and output to increase robustness in the presence of
noise (e.g. by performing audio-visual speech recognition)
and to improve the naturalness of the interaction (e.g. by
allowing gesture input in addition to speech). Such sys-
tems often employ classifiers based on supervised learning
methods which require manually labeled data. However,
obtaining large amounts of labeled data is costly, especially
for systems that must handle multiple users and realistic
(noisy) environments. In this paper, we address the issue of
learning multi-modal classifiers in a semi-supervised man-
ner. We present a method that improves the performance
of existing classifiers on new users and noise conditions with-
out requiring any additional labeled data.

There has been much interest recently in developing semi-
supervised learning algorithms for problems with multiple
views of the data. One such algorithm, co-training [2], im-
proves weak classifiers learned on separate views of the la-
beled data by maximizing their agreement on the unlabeled
data. Co-training has been shown to work for a variety of
multi-view problems in natural language and other domains
[3, 8, 9]. Typically, it works well in settings where only a
small amount of labeled data is available along with a large
amount of unlabeled data. A range of classifiers has been
explored, including naive Bayes [2], mixture models [1], and
support vector machines [12].

In the first part of the paper, we explore co-training for
two audio-visual tasks: speech unit classification and user
agreement detection. The first task is to identify a sequence
of acoustic and lip image features as a particular word or
phoneme. The second task is to determine whether a user
has expressed agreement or disagreement during a conversa-
tion, given a sequence of head gesture and acoustic features.
Although we only deal with isolated sequences, the algo-
rithm can be extended to continuous recognition. As the
core classifier in the co-training paradigm, we use the hid-
den Markov model (HMM), which is common for speech and
gesture sequence classification.

Co-training was originally proposed for the scenario in
which labeled data is scarce but unlabeled data is easy to
collect. In multimodal HCI development, it may be feasi-
ble to collect enough labeled data from a set of users in a
certain environment, but the resulting system may not gen-
eralize well to new users or environments. For example, a



new user may gesture differently, or the room may become
noisy when a fan is turned on. The semi-supervised learn-
ing problem then becomes one of adapting existing models
to the particular condition. To solve this problem, we inves-
tigate a variant of co-training, which we call co-adaptation.
Co-adaptation uses a generic supervised classifier to pro-
duce an initial labeled training set for the new condition,
from which a data-specific classifier is built. The algorithm
then improves the resulting data-specific classifier with co-
training, using the remaining unlabeled samples.

We begin in the following section with a discussion of re-
lated work. Co-training is then described in the context of
audio-visual classification in Section 3. Our co-adaptation
algorithm is presented in Section 4. Experiments and re-
sults are described in Section 5. Finally, a summary and a
discussion of future work are given in Section 6.

2. RELATED WORK
Co-training is a multi-view, semi-supervised learning al-

gorithm originally developed by Blum and Mitchell [2]. It
relies on multiple, independent views of the learning problem
to learn a classifier from a small amount of labeled training
data (see the following section for a more detailed discussion
of the co-training algorithm). In the area of natural lan-
guage processing, Collins and Singer [3] demonstrated how
co-training can be used to learn a named entity recognizer
from spelling and context views with little training data.
Similarly, in the field of computer vision, Levin et al. [8]
used co-training to learn a vision-based car detector from
intensity and motion views.

Multimodal classification is well suited for multi-view lear-
ning because each modality provides a potentially redun-
dant view to the learning algorithm. While the concept of
multimodal co-training was mentioned as promising future
work in the seminal Blum and Mitchel paper [2], it appears
that there has been little subsequent work on cross-modal
co-training. Li and Ogihara [9] use a multi-view learning
algorithm applied to gene expression and phylogenetic data
to perform gene function classification. Yan and Naphade
[14] investigate co-training for semantic concept detection in
video.

In this paper, we investigate the use of multimodal co-
training for learning speech and gesture classifiers. To our
knowledge, this is the first paper to use co-training in the
context of audio-visual speech and gesture. We demonstrate
that co-training can be successfully used to learn from noisy
audio-visual speech and gesture data.

The development of user-adaptive multimodal interfaces
is a growing area of research. Adaptation to a user’s mul-
timodal discourse patterns is known to be important, as
users exhibit different interaction styles based on factors
such as age and environment [13]. While we focus on im-
proving the accuracy of low-level appearance, motion, and
acoustic models, we believe our appoach will also be use-
ful in adapting timing and fusion parameters. A different
approach to multimodal adaptation is to design a system
where the user adapts to the system’s recognition capabil-
ities while the system attempts to simultaneously adapt to
the user [11]. In the context of audio-visual HMMs, maxi-
mum likelihood linear regression (MLLR) has been recently
used for speaker adaptation [7]. Semi-supervised recogni-
tion of agreement and disagreement in meeting data using
prosodic and word-based features was proposed in Hillard,
Ostendorf, and Shriberg [6].

Algorithm 1 Co-training Algorithm

Given a small labeled set L, a large unlabeled set U , k
views, and parameters N and T :
Set t = 1
repeat

for i = 1 to k do
Train classifier fi on view i of L
Use fi to label U , move N most confidently labeled
samples to L

end for
Set t = t + 1

until t = T or |U | = 0

3. AUDIO-VISUAL CO-TRAINING
The intuition behind the co-training algorithm is that

classifiers operating on independent views of the data can
help train each other by sharing their most confident labels.
The generic co-training procedure is given as Algorithm 1.
Initially, a small set L of labeled examples is used to train
weak classifiers in each view. We call this the seed set.
Then, the seed classifiers are used to assign labels to the
unlabeled set U , and the N most confidently labeled sam-
ples from each classifier are moved to L. The expanded seed
set is then used to re-train the classifiers. This continues
for several iterations, until either the maximum number of
iterations T is reached, or the set U becomes empty. The
success of the algorithm depends on two assumptions: the
conditional independence of the views, and the sufficiency
of each view to learn the target function.

Although co-training has been applied to natural language
[3] and other single-modality tasks (e.g. [8]), it is unclear
whether the assumptions required for its success will hold in
the case of multi-modal HCI problems. We will now discuss
what makes these problems different and how it may affect
the training algorithm.

Co-training exploits the redundancy in the disjoint sets
of features used to identify categories. Such redundancy is,
in fact, what makes multimodal tasks seem so well-suited
to co-training: The spoken utterance “yes” and a head nod
are redundant indications of user agreement; facial appear-
ance and voice both convey user identity, etc. However, the
assumption that each modality is sufficient for classification
does not always hold. For example, the user can indicate
agreement just by nodding and not providing any spoken
feedback, or by nodding while saying something that does
not explicitly state agreement. Another issue related to suf-
ficiency is that the observations belonging to a particular
category may not be aligned in time across modalities and
may have variable-length segmentations. In this paper, we
make sure that for each segmented time period, each view
in the training data is sufficient to identify the correct class.

The other assumption made by the co-training paradigm
is that of class-conditional independence of views. This
seems like a reasonable assumption in the case of multi-
ple modalities. In fact, the same assumption is made by
many multimodal fusion models which express the class-
conditional likelihood of a multimodal observation as the
product of the observation likelihoods for each modality.

Finally, the original formulation of the co-training algo-
rithm [2] relies on weak classifiers trained on a small quan-
tity of labeled data to provide new labels at each iteration.



Algorithm 2 Co-Adaptation Algorithm

Given user-independent classifiers fUI
i , i = 1, ...k, a user-

dependent unlabeled set U and parameters N , M and T :
set S = ∅
for i = 1 to k do

Use fUI
i to label the M highest-confidence samples in

U and move them to S
end for
Set t = 1
repeat

for i = 1 to k do
Train user-dependent classifier fi on view i of S
Use fi to label N highest-confidence samples in U
and move them to S

end for
Set t = t + 1

until t = T or |U | = 0

To ensure that the quality of the labeled data does not
deteriorate, the classifiers need to either have a low false
positive rate, or reliable confidence estimates. While this
may be possible for text classification tasks, it is harder to
acheive for noisy multi-modal observations. In our formu-
lation, which uses HMM classifiers, we compute confidence
values as follows. Let xi be an observation in modality i, and
y be one of 1, ..., n labels. Then the posterior probability of
y given xi is

P (y|xi) =
P (xi|y)P (y)

�n
u=1 P (xi|u)P (u)

(1)

where the likelihood of xi given the label is obtained from
the HMM classifier fi for each class. We use the posterior
probability computed in (1) as the confidence value to assess
the reliability of labels assigned to the unlabeled samples
during co-training.

4. CO-ADAPTATION ALGORITHM
Co-training was proposed for the scenario where labeled

data is scarce but unlabeled data is easy to collect. In certain
multimodal HCI applications, it may be feasible to collect
a lot of labeled data to train a model on a particular set of
users and environmental conditions (audio noise level, light-
ing, sensing equipment, etc.) However, such a model may
not generalize well to new users and conditions.

To address this issue, we propose an adaptive version of
the co-training algorithm that bootstraps a data-dependent
model from a data-independent model trained on a large
labeled dataset. Suppose we obtain unlabeled data from
a new condition, such as a new user. We first use the
user-independent model to specify a small seed set of la-
beled examples using its most confident predictions. A user-
dependent model is then trained on this initial seed set and
improved with cross-modal learning on the rest of the unla-
beled data. The resulting co-adaptation algorithm is sum-
marized as Algorithm 2.

The intuition behind the co-adaptation algorithm is that,
while the overall performance of the generic model may be
poor on new users or under new noise conditions, it can still
be used to accurately label a small seed set of examples. The
initial seed classifier can then be improved via co-training.
Since the new classifier is trained using samples from the new

working condition (i.e., new user and environment), it has
the potential to out-perform the original generic classifier in
the new setting, especially when user variation or difference
in environment is large.

Note that, in Algorithm 2, a new user-dependent model
is trained on the unlabeled data instead of adding the new
labels to the user-independent labeled set. The advantage of
this approach is that it is better suited to situations where
there is a large imbalance between the amount of labeled
and unlabeled data. Alternatively, we could use the new
labels to adapt the parameters of the existing model using
an HMM adaptation technique such as maximum likelihood
linear regression (MLLR)[7]. The advantage of training a
separate user-dependent model is that it enables us to use
data-dependent features. For example, we can train a new
model with higher-resolution visual observations, or apply
data-dependent principal component analysis (PCA). We
leave this as a future work direction.

5. EXPERIMENTS
To evaluate our co-training framework, we apply it to two

different multimodal tasks: speech unit classification and
agreement recognition in human-computer dialogue. Both
tasks exploit the audio and the visual modalities, and are
typical examples of HCI applications.

In all experiments, we use correct classification rate (CCR)
as the evaluation metric, defined as

CCR =
# sequences correctly classified

total # of sequences
.

We compare the co-adaptation algorithm to two other semi-
supervised methods [4]. The first method uses the top N
most confidently classified examples from one modality to
train a classifier in the other modality. As we show in our
experiments, this method is only beneficial when the relative
performance of the classifiers on the unlabeled data is known
a priori, so that stronger classifiers can be used to improve
weaker ones. We show that co-adaptation can achieve the
same or better improvements in performance without the
need for such prior knowledge.

The second baseline we consider is single-modality boot-
strapping, which does not use cross-modal learning, but
rather learns a semi-supervised classifier separately in each
modality. It is similar to co-adaptation (Algorithm 2), ex-
cept that each classifier operates on its own copy of U and
S, and classification labels are not shared across modalities.
As we demonstrate in our experiments, cross-modal learn-
ing algorithms are better at improving weak classifiers than
single-modality bootstrapping, especially when one modal-
ity is more reliable than the other.

In the following experiments, we use left-to-right HMMs
with a mixture of Gaussians observation model.

5.1 Audio-Visual Agreement Recognition
In this section, we apply multimodal co-training to the

task of recognizing user agreement during multimodal inter-
action with a conversational agent. In this setting, the user
interacts with an agent using speech and head gestures. The
agent uses recognized head nods (or head shakes) and agree-
ment utterances in the user’s speech to determine when the
user is in agreement (or disagreement). In unconstrained
speech, there are a variety of utterances that can signify
agreement, making recognition of agreement difficult with



Classifier Seed Co-training Oracle
Audio 88.4 ± 9.9 91.7 ± 9.2 (p=0.03) 95.1 ± 5.4 (p<0.01)
Visual 95.5 ± 4.4 96.8 ± 3.6 (p=0.07) 97.5 ± 2.8 (p<0.01)

Table 1: Co-training of multimodal agreement classifiers. Each column shows the mean CCR over 15 test
subjects, ± the standard deviation. The p-value comparing the performance of the seed and co-trained
classifiers, and the seed and oracle classifiers is also displayed.

user-independent classifiers, as agreement utterances may
vary per user. In this paper, we focus on classifying “yes”
and “no” utterances and nod and shake head gestures, and
seek to improve these classifiers using unlabeled data.

5.1.1 Dataset
For our experiments on agreement recognition, we col-

lected a database of 15 subjects interacting with a virtual
avatar. In each interaction, the subject was presented with
a set of 103 yes/no questions and was asked to respond with
simultaneous speech and head gesture, and to use only “yes”
and “no” responses along with head nods and shakes. Each
interaction was recorded with a monocular video camera and
lasted 10-12 minutes. A log file with the start and end times
of each spoken utterance from the avatar was kept. During
each interaction, a remote keyboard was used by the exper-
imenter to trigger the dialogue manager after each subject’s
response. The end times of the subject’s answers were also
logged. The video sequences were then post-processed using
the avatar’s log file to extract the responses of each subject.
The sequences were manually labeled to identify positive and
negative responses and answers where subjects used extra-
neous speech or did not speak and gesture at the same time
were discarded. To keep the responses to roughly the same
length, any responses longer than 6 seconds were also dis-
carded. The resulting data set consisted of 1468 agreement
and disagreement audio-visual sequences.

To extract features for the visual classifiers we used a mod-
ified version of the 6-degree of freedom head tracker in [10]
modified to perform monocular tracking. This tracker was
used to compute 3D head rotation velocities for each subject.
For each answer segment we applied a 2-second, 64-sample,
windowed fast-Fourier transform (FFT) to the x, y and z
head rotation velocities computed at 0.1 second intervals
within the segment. The x, y and z frequency responses at
each time window were then concatenated into a single 99-
dimensional observation vector. For the audio agreement
classifiers, we used 13 dimensional Mel-frequency cepstral
coefficients (MFCCs) computed at 100Hz from the audio of
each answer segment.

5.1.2 Results
In this section we present our experiments on co-training

audio and visual agreement classifiers. We first present re-
sults on co-training and then demonstrate our co-adaptation
technique.

To begin we evaluate co-training for the construction of a
user-dependent agreement classifier from a few labeled ex-
amples. For this experiment, we use Gaussian audio and vi-
sual classifiers (1-state HMMs with 1 mixture component).
We evaluated the co-training algorithm using leave-n out
cross-validation on each subject, where we split the data of
each subject into 90 percent train and 10 percent test for
each round of cross-validation. At each round the train-

ing data is split into an unlabeled training set and a la-
beled seed set of 3 positive and 3 negative examples. To
remove bias due to a particular choice of seed set or unla-
beled train and test set, co-training was evaluated over three
cross-validation trials for each subject where the seed set as
well as unlabeled train and test sets were chosen at random.

Table 1 displays the result of the agreement co-training
experiment with N = 4 and iterating until all the unlabeled
training data is labeled with co-training (see Algorithm 1).
The table displays the average classification accuracy, av-
eraged across all 15 subjects and three trials. In the table
the performance of the co-trained audio and visual Gaussian
classifiers are also compared to oracle performance, obtained
by training the audio and visual agreement classifiers using a
fully supervised paradigm, i.e., with ground truth labels on
all the training data, and evaluating these classifiers on the
test set. The table also gives the p-values of the difference
in classifier performance before and after co-training com-
puted using statistical t-tests. Through co-training we were
able to increase overall performance of the audio classifier
by 3.3 percent with a p-value of p=0.03, meaning that this
increase is statistically significant. Similarly, we were able to
gain a marginally significant increase in the performance of
the visual classifier by 1.3 percent with a p-value of p=0.07.

Next we evaluate our co-adaptation algorithm. For this
experiment, we used 5-state HMMs with 2 mixture compo-
nents, and ran our co-adaptation algorithm with M = 4,
N = 4 and 3 iterations. We performed leave-one out exper-
iments where we trained user-independent audio and visual
classifiers on 14 out of the 15 subjects in our dataset and
ran co-adaption on the left out subject. For each subject
we ran co-adaptation on random splits of the data, 90 per-
cent train and 10 percent test, and averaged the results over
10 trials. Figure 1 displays the classification accuracy of
the user-independent and user-dependent audio and visual
classifiers obtained with co-adaptation. The user-dependent
HMM classifiers obtained with co-adaptation either matched
or improved performance over the user-independent classi-
fiers. As was the case in our previous experiment the main
improvement of co-adaptation is seen in the audio modality
as the user-independent visual classifiers are already per-
forming quite well on each subject.

Table 2 displays the average classification accuracy of the
user-independent and user-dependent classifiers obtained wi-
th co-adaptation, averaged over the 15 subjects. The user-
dependent audio classifiers obtained with co-adaption do sig-
nificantly better than the user-independent models, with an
average improvement of 4.4 percent and a p-value of 0.023.
In Table 2 we also compare our co-adaptation algorithm to
single-modality bootstrapping with M = 10, N = 10 and
3 iterations, and found that unlike our approach the dif-
ference in performance between the user-independent and
user-dependent audio HMM classifiers obtained with single-
modality bootstrapping was not significant (p-value equal to
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Figure 1: Detailed results for co-adaptation of multimodal agreement classifiers (summarized in Table 2). The
CCR rate of the user-dependent and user-independent classifiers are shown for each of the 15 test subjects.
The light bars show the CCR of the user-independent classifiers and the dark bars show the CCR of the
user-dependent classifiers found with co-adaptation.

Classifier User Independent Co-Adaptation Single-Modality Bootstrap
Audio 89.8 ± 8.8 94.2 ± 5.6 (p=0.023) 91.3 ± 8.7 (p=0.414)
Visual 99.0 ± 2.0 98.5 ± 1.8 (p=0.332) 98.5 ± 2.3 (p=0.411)

Table 2: Co-adaptation of multimodal agreement classifiers. Each column shows the mean CCR over the 15
test subjects, ± the standard deviation. The p-value comparing the performance of each method to that of
the user-independent model is also shown.

0.414). This is because co-adaptation, unlike single modality
bootstrapping, was able to leverage the good performance
of the visual classifiers to significantly improve the perfor-
mance of the audio agreement classifier.

5.2 Audio-Visual Speech Classification
Audio-visual speech unit classification uses acoustic fea-

tures extracted from the speech waveform and image fea-
tures extracted from the speaker’s lip region. It has been
widely reported that visual input helps automatic speech
recognition in the presence of acoustic noise (e.g. [5]). How-
ever, while recording audio-visual speech data is becoming
easier, annotating it is still time-consuming. Therefore, we
would like to see whether co-training can help exploit unla-
beled data for this task.

To satisfy the sufficiency assumption, it should be pos-
sible to distinguish between the speech units using only
lipreading. This is possible if, for example, the units are
digits recognized as whole words: “one”, “two”, etc. In this
paper, we evaluate our algorithm on the task of phoneme
unit classification. To ensure sufficiency, we clustered sev-
eral phonemes together so that the resulting “visemes” are
visually distinguishable:

1: b, p, m, f, v

2: w, uw, oy, ao, ow, r

3: sh, zh, ch, jh, s, z

4: ae, aw, ay, ey, aa

5.2.1 Dataset
For evaluation, we used a subset of the multi-speaker

audio-visual database of continuous English speech called
AVTIMIT [5]. The database contains synchronized audio
and video of 235 speakers reading phonetically balanced
TIMIT sentences in a quiet office environment. There are
15 sentences per speaker, so the number of sequences in the
dataset is between 20 and 60 per viseme, per speaker. To
simulate noisy acoustic conditions, speech babble noise was
added to the clean audio to achieve a 0 db signal-to-noise
ratio. The result is similar to a noisy public place, such as
a busy coffee shop. The database contained phonetic tran-
scriptions produced by forced alignment, which we converted
to viseme labels via the mapping shown in the previous sec-
tion. Since the original database was labeled, we simulated
unlabeled data sets omiting the labels.

For each label, the data sample consisted of a sequence of
acoustic observations and a corresponding sequence of visual
observations. The 42-dimensional acoustic feature vector,
sampled at 100 Hz, contained 14 mel-frequency cepstral co-
efficients (MFCCs), their derivatives and double derivatives.
Visual features were extracted from a 32-by-32 region cen-
tered on the lips, and consisted of an 8-by-8 subgrid of the
discrete cosine transform (DCT) followed by a PCA trans-
form to further reduce the dimensionality to 30 coefficients.

5.2.2 Results
In all of the following experiments, the number of HMM

states was set such that the average sequence contained
three frames per state, resulting in 3-4 states for the au-
dio HMM and 1 state for the visual HMM. The number of
Gaussian mixture components was set such that there was
a minimum number of training samples per dimension for
each component, up to a maximum of 20 components.



Classifier Supervised Co-training Single-modality Bootstrap Oracle
Audio 59.1 ± 5.6 67.0 ± 9.1 (p<<.01) 60.9 ± 7.7 (p=.10) 94.0 ± 1.1
Video 56.8 ± 10.5 66.2 ± 10.2 (p<<.01) 54.8 ± 12.2 (p=.10) 73.3 ± 4.5

Table 3: Co-training results on the speech dataset. Each column shows the mean CCR over 39 test speakers,
± the standard deviation. “Supervised” refers to the seed classifier performance. In parentheses, we show
p-values for co-training and the single-modality bootstrap baseline relative to the supervised classifier.
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Figure 2: Learning rate of the co-training algorithm
on the speech dataset. The plot shows the CCR af-
ter each iteration for the audio and video classifiers.
The first iteration corresponds to the CCR of the
seed classifier.

Again, our first goal is to show that we can improve clas-
sifiers that are poorly trained because of the lack of labeled
training data by co-training them on unlabeled data. We
thus look for the case when the amount of labeled data is too
small, i.e., when adding more training data reduces the test
error rate. For the speech dataset, this happens when the
labeled set L contains 4 sample sequences per class. First,
we train the supervised HMM classifiers on a randomly cho-
sen L for each user, and test them on the remaining se-
quences. The results, averaged over all users, are shown in
the first column of Table 3. Next, we co-train these initial
classifiers, using N=4, M=2 and 9 iterations (after which
the unlabeled set became depleted.) The results, in the sec-
ond column of Table 3, show that co-training is able to sig-
nificanly improve the performance in each modality, unlike
single-modality bootstrapping (shown in the third column).
For reference, the last column shows oracle performance, or
what we would get if all of the labels added by co-training
were correct. Note that, while the co-trained video classi-
fier is approaching oracle performance, the audio is still far
below that level. However, this dataset did not contain a
lot of data per speaker. Perhaps, if more unlabeled data
were available, the performance would continue to increase,
following the trend shown in Figure 2.

Our second goal is to use our adaptive CT algorithm to im-
prove existing user-independent (UI) models when new, un-
labeled data becomes available. We train the initial UI audio
and visual HMM classifiers on a large labeled dataset con-
sisting of 50 users and approximately 20K samples. Then,
for each of the users in the unlabeled dataset, we perform

co-adaptation as described in Section 4, using N=25% of all
samples, M=2, and 7 iterations. The UI and the final user-
dependent (UD) co-trained classifiers are then tested on all
of the data for each user.

First, we evaluate the case where the audio noise level in
the labeled data matches the noise level in the unlabeled
data. In this case, we are mostly adapting to the user. The
results are shown in Table 4. The first observation is that
the UI video classifier does not do much better than the
UD supervised classifier (first column of Table 3.) Our co-
adaptation algorithm improves the visual performance sig-
nificantly, while the audio performance stays the same. One
explanation for this is that audio is helping the video as
the stronger of the two modalities. Therefore, we compare
this to bootstrapping from the stronger audio modality (see
“Audio-Bootstrap” in Table 4), and see that it has simi-
lar results, doing a little better on video, but a little worse
on audio. However, bootstrapping from the video modality
does much worse, actually degrading the audio classifier’s
performance.

Since it is usually not known what level of noise the sys-
tem will encounter during its deployment, the labeled data
collected for training the user-independent models is often
clean. However, the case when the test environment is nois-
ier than the training data is precisely when visual input
helps the most. Therefore, a compelling application of our
algorithm would be to adapt not only to a new user, but to
noise in the audio. We repeat the previous experiment, but
with UI audio models trained on clean data. The results are
shown in Table 5. In this case, it is the audio modality that is
“weaker”, judging from the UI performance in the first col-
umn. This time, co-adaptation improves both modalities:
the visual from 59.8% to 69.0%, and the audio from 52.8%
to 69.9%. On the other hand, bootstrapping from either the
video or the audio modalities does worse, with the latter
significantly degrading UI visual performance. Finally, the
last column shows that single-modality bootstrapping does
worse than co-adaptation. The detailed CCR results ob-
tained before and after co-training for each user are shown
as bars in Figure 3. In most cases, our algorithm either im-
proves the UI model performance (by as much as 134% in
the case of user 8’s visual model), or does not make it worse.

6. CONCLUSIONS
In this paper, we investigated the multi-view semi-super-

vised co-training algorithm as a means of utilizing unlabeled
data in multimodal HCI learning problems. Intuitively, the
method uses single-modality classifiers to help train each
other by iteratively adding high-confidence labels to the
common training set. We extended the confidence-based co-
training method to HMM classifiers, and showed that it not
only learns user-specific speech and gesture classifiers using
just a few labeled examples, but it is more accurate than



Classifier User Independent Co-Adaptation Audio-Bootstrap Video-Bootstrap
Audio 72.6 ± 4.5 72.0 ± 4.4 (p=.36) 70.2 ± 4.2 (p<<.01) 63.3 ± 11.8
Video 59.8 ± 11.3 68.1 ± 9.7 (p<<.01) 70.1 ± 6.2 (p<<.01) 62.4 ± 13.2

Table 4: User-adaptive co-training results on the speech data, matched labeled and unlabeled audio noise
conditions. Each column shows the mean CCR over 39 test speakers, ± the standard deviation. p-values are
relative to the UI classifier.

single-modality baselines. We also proposed an adaptive co-
training algorithm, co-adaptation, and showed that it can
be used to improve upon existing models trained on a large
amount of labeled data when a small amount of unlabeled
data from new users or noise conditions becomes available.
When either the audio or the visual classifier is more accu-
rate, our method performs as well as bootstrapping from
the stronger modality, however, it does not require such
knowledge. When both modalities are weak, such as when
the user-independent audio speech classifiers are trained on
clean audio, but the new condition is noisy, our method
improves significantly over single-modality baselines. Inter-
esting avenues of future work include the investigation of
sufficiency, the use of co-adaptation to perform high-level
adaptation of audio-visual classifiers (e.g., adapting their
langauge model), the use of user-dependent observations and
the use of HMM adaptation techniques (MLLR, MAP) in
our algorithm.
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Classifier User Independent Co-Adaptation Audio-Bootstrap Video-Bootstrap Single-modality Bootstrap
Audio 52.8 ± 4.8 69.9 ± 7.4 (p<<.01) 55.4 ± 4.5 63.3 ± 11.8 58.6 ± 4.4 (p<<.01)
Video 59.8 ± 11.3 69.0 ± 8.6 (p<<.01) 51.5 ± 7.9 62.4 ± 13.2 60.7 ± 12.1 (p=.03)

Table 5: Co-adaptation results on the speech data, mis-matched audio noise conditions. Each column shows
the mean CCR over 39 test speakers, ± the standard deviation. p-values are relative to the UI classifier.
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Figure 3: Detailed co-adaptation results for mismatched audio noise (summarized by column 2 of Table 5)
for each of the 39 test speakers. The light bars show the UI models’ CCR, the dark bars show the CCR after
co-adaptation.


