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Abstract

Statistical shape-and-texture appearance models use image morphing to define a rich, compact representation of object appearance.
They are useful in a variety of applications including object recognition, tracking and segmentation. These techniques, however, have
been limited to objects with Lambertian surface reflectance, simple geometry and topology. In this work, we present new shape-and-tex-
ture appearance models that overcome these limitations. In the first part of our work, we develop a 4D shape-and-texture appearance
model, built using light-fields. This model is capable of representing objects with complex surface reflectance and geometry. We demon-
strate our light-field appearance model using 50 light-fields of the human head captured from a real-time camera array. Next, we present
a non-parametric appearance model of the shape and texture of objects whose appearance manifolds exhibit a varying topology, e.g.,
have holes. We demonstrate this model using 2D mouth images of speaking people. In our experiments, we evaluate the performance
of each method and provide a comparison with conventional, linear single- and multi-view deformable models.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Computer vision techniques aim to infer salient seman-
tic information from low-level, visual signals. Object recog-
nition, detection and tracking are common visual tasks that
people perform everyday to navigate and understand the
world. An object’s appearance is governed by many inter-
nal and external factors that can make the object difficult
to recognize/detect. Object appearance models, such as
[1–6], learn the complex appearance of an object from
examples. These models define a knowledge-base of object
appearance and can be used to recognize an object imaged
under an arbitrary configuration or imaging condition.

Statistical shape-and-texture appearance models, also
called deformable models, provide a powerful framework
for learning object appearance [1,7]. These techniques
exploit image morphing to define a rich, compact represen-
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tation of object appearance. With these methods object
appearance is decomposed into its shape and texture com-
ponents. Intuitively, the data variation in the decoupled
shape and texture vector spaces is potentially simpler than
that in the original image space. As a consequence fewer
examples are needed to construct the model. Camera
geometry or 3D structure can be used to further decouple
and simplify the model [8].

In this paper, we describe two complementary extensions
to the shape-and-texture appearance modeling framework.
First, we define a deformable model over light-fields, to mod-
el pose and non-Lambertian effects. Second, we extend the
deformable model to objects whose appearance manifolds
exhibit a varying topology, e.g., have holes. Both of these
techniques have been discussed in previous publications
[9,10]. In this work, we place each technique under a unifying
framework, offer a more detailed description of each tech-
nique, and provide additional results and discussion.

Linear methods such as [2,11] independently model the
shape and texture vector spaces of an object with Principle
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Fig. 1. Light-field appearance manifold of the human face. Provided an image of a previously unseen object with unknown pose, our algorithm matches
the object to a point on the manifold that best approximates the object’s appearance in the input view. A full light-field of the object is recovered.
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Component Analysis (PCA). If object pose is also to be
encoded in the model, these techniques may perform poor-
ly, since the appearance variation of an object imaged
under variable pose is in general nonlinear. Nonlinear
methods can be used to define 2D appearance models that
capture pose variation [3,12,13]. Pose variation, however, is
easily represented in 3D, where object pose is kept as an
external parameter to the model, as was done by Blanz
and Vetter [8]. In their work, objects are represented using
simply textured, detailed polygonal meshes. These meshes
can be expensive to acquire and this approach has difficulty
in representing complex lighting or objects whose surfaces
exhibit a non-Lambertian surface reflectance.

The first contribution we present is a 4D shape-and-
texture appearance model that can easily model objects
with non-Lambertian surface reflectance and complex
geometry. Using our approach, each prototype is imaged
using a light-field and the view-based 2D shape of each
object is computed (see Fig. 1). We pursue a method to
match a light-field deformable model to monocular imag-
es using a rendered Jacobian function. With this method,
a full light-field of an object is recovered from a single 2D
image which can then be used to render the object under
previously unseen views.

There are many objects that, even in the absence of pose
change, can exhibit nonlinear shape and texture variation,
for which the conventional shape and texture mappings
using PCA may poorly approximate the true space, using
a light-field or monocular deformable model. This is espe-
cially true of biological objects that can deform quite dras-
tically, such as a hand or mouth, or whose texture can
drastically vary across different examples (e.g., cats, dogs).
The appearance space of such objects has a varying topol-
ogy; i.e., the object appearance manifold consists of multi-
ple parts or holes. The shape and texture spaces of complex
objects can also have varying dimensionality across differ-
ent parts of the space. For example, an open mouth may
have shape features associated with the teeth that are
absent from a closed mouth.

The second contribution is a non-parametric, example-
based technique for modeling shape-and-texture appear-
ance manifolds with varying topology and dimensionality
applicable to light-field or monocular deformable models
(see Fig. 2). With this method, we compute a morph
between a neighborhood of examples on the manifold
found with nearest-neighbor, using a convex (or bounded)
combination of the neighborhood’s shape and texture to
match the input image. The non-parametric deformable
model generalizes well to complex manifolds and, unlike
a parametric method, it makes no assumptions about the
global structure of the manifold.

We evaluate the above algorithms on two distinct data
sets: a light-field head data set and a monocular mouth
data set. In our first experiment, we construct a linear,
light-field appearance manifold of the human head using
a light-field database of 50 subjects. Each light-field was
captured online using a 6 · 8 camera array [14]. We show
light-fields synthesized from 2D images of subjects outside
of the database, captured with unknown pose. A compari-
son to a complementary approach, the view-based AAM
[13], is also performed. Our second experiment demon-
strates a shape-and-texture appearance manifold of the
mouth represented with the non-parametric deformable
model outlined above. For this experiment we use speaking
person video sequences of five subjects from the AVTIMIT
database [15]. We compare the non-parametric technique
to a conventional linear shape-and-texture model and a
Gaussian mixture deformable model and show that the
non-parametric deformable model outperforms these
methods.



Fig. 2. Non-parametric deformable model of the mouth. The mouth appearance manifold has a varying topology, i.e., it has separate regions and holes,
each region having the same parts of the mouth visible. The non-parametric deformable model analyzes a novel input by morphing between a local
neighborhood of examples computed with nearest-neighbor.
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The remainder of this paper is organized as follows. In
Section 2 we discuss related work. In Section 3 we provide
a formal description of light-field appearance manifolds
and describe our direct search matching algorithm. The
non-parametric shape-and-texture model is outlined in Sec-
tion 4. We outline our experimental setup and discuss
results in Section 5. Finally, in Section 6 we give a conclud-
ing summary and remarks.

2. Related work

Linear models of shape and texture have been widely
applied to the modeling, tracking, and recognition of objects
[7,11,4]. Provided a set of example images, linear shape-and-
texture appearance models decompose each image into a
shape and texture representation and then model the varia-
tion of the data in these spaces using PCA. The shape of an
object describes the object’s geometry and is typically
defined by a set of feature points that outline the object con-
tours. The texture is the ‘‘shape free’’ representation of the
object and is obtained by warping each image to a reference
coordinate frame that is usually defined by the average shape
computed from the training images.

The Active Appearance Model (AAM) [2] and Multidi-
mensional Morphable Model (MMM) [11] are probably
the most well known linear shape-and-texture appearance
models. By decomposing appearance into separate shape
and texture spaces they achieve a compact, expressive mod-
el of appearance, more powerful than pure intensity models
defined with PCA (e.g., Eigenfaces [6]). In these methods
small amounts of pose change are typically modeled implic-
itly as part of shape variation on the linear manifold. For
representing objects with large amounts of rotation, non-
linear models have been proposed separately for shape
[12] and appearance [3]. An alternative approach to captur-
ing pose variation is to use an explicit multi-view represen-
tation which builds a PCA model at several viewpoints.
This approach has been used for pure intensity models
[16] as well as shape and texture models [13]. A model of
inter-view variation can be recovered using the approach
of Cootes et al. [13], and missing views could be recon-
structed. However, in this approach pose change is encod-
ed as shape and intensity variation, in contrast to 3D
approaches where pose is an external parameter. Addition-
ally, views are relatively sparse, and individual features are
not matched across views.

Deformable models with 3D shape features have the
advantage that viewpoint change can be explicitly opti-
mized while matching or rendering the model. Blanz and
Vetter [8] showed how a morphable model could be created
from 3D range scans of human heads. This approach rep-
resented objects as simply textured 3D shapes, and relied
on high-resolution range scanners to construct a model;
non-Lambertian and dynamic effects are difficult to capture
using this framework. With some manual intervention, 3D
models can be learned directly from monocular video
[17,18]; an automatic method for computing a 3D morph-
able model from video was described by Brand [19]. These
methods all used textured polygonal mesh models for rep-
resenting and rendering shape.

Multi-view 2D [13] and textured polygonal 3D [8,17,18]
appearance models cannot model objects with complex sur-
face reflectance. Image-based models have become popular
in computer graphics recently and can capture these phe-
nomena; with an image-based model, 3D object appear-
ance is captured in a set of sampled views or ray bundles.
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Light-field [20] and lumigraph [21] rendering techniques
create new images by resampling the set of stored rays that
represent an object. Most recently the unstructured lumi-
graph was proposed by Buehler et al. [22], and generalized
the light-field/lumigraph representation to handle arbitrary
camera placement and geometric proxies.

Recently, Gross et al. [23] have proposed eigen light-

fields, a PCA-based appearance model built using light-
fields. They extend the approach of Turk and Pentland
[6] to light-fields and define a robust pose-invariant face
recognition algorithm using the resulting model. A method
to morph two light-fields was presented in [24]; this algo-
rithm extended the classic Beier and Neely algorithm [25]
to work directly on the sampled light-field representation
and to account for self-occlusion across views. Features
were manually defined, and only a morph between two
(synthetically rendered) light-fields was shown in their
work.

In this paper, we first develop the concept of a light-field

appearance manifold, in which 3 or more light-fields are
‘‘vectorized’’ (in the sense of [1]) and placed in correspon-
dence. We construct a light-field appearance manifold of
facial appearance from real images, and show how that
model can be automatically matched to single static inten-
sity images with non-Lambertian effects (e.g., glasses). Our
model differs from the multi-view appearance models of
Cootes et al. [13,26] in that we build a 4D representation
of appearance with light-fields. With our method, model
coefficients between views are explicitly linked and we do
not model any pose variation within the deformable model
at a single view. We are therefore able to model self-occlu-
sion due to pose change, and complex lighting effects better
than a view-based AAM. We support this claim in our
experimental results section. Our model is more similar to
the Coupled-View AAM of Cootes et al. [26]. Like our
model, the Coupled-View AAM explicitly links the coeffi-
cients between views. This model however, has no formal
mechanism for combining the discrete image samples to
synthesize in-between object poses that is provided by the
use of light-fields and light-field rendering [20,21].

As we also show in this paper, conventional shape-and-
texture appearance models, such as the AAM and MMM,
are unable to faithfully represent the appearance of com-
plex objects with nonlinear appearance manifolds, such
as mouths, whose manifolds may have parts or holes.
Many nonlinear models have been defined separately for
shape and appearance [12,27,3]. Romdhani et al. [12] use
Kernel PCA to define a nonlinear shape model for repre-
senting shape across object pose. Cootes et al. [27] show
how a Gaussian mixture model can be used to construct
a nonlinear active shape model that restricts its search to
valid shapes on the object shape manifold, thus avoiding
erroneous matches. In their work, Cootes et al. extend this
idea to define a nonlinear model of shape and appearance
called the view-based AAM [13]. The view-based AAM
defines a piecewise linear representation of the shape-and-
texture appearance manifold in a very similar fashion to
the Gaussian mixture model described in Section 5. The
key differences between the Gaussian mixture model and
the method described in [13] is that the Gaussian mixture
deformable model of Section 5 automatically learns the dif-
ferent regions of the manifold from the data and is not
restricted to learning mixture components that vary across
pose alone.

A nearest-neighbor algorithm is explored by Grauman
et al. [28]. In her work, she defines an active shape model
across body poses. Several authors have developed exam-
ple-based models of object appearance, including the met-
ric mixtures approach of Toyama and Blake [29], however,
these methods do not exploit shape and texture decompo-
sition. Similarly, Murase and Nayar [3] present a manifold
learning algorithm that maps out the space of images of an
object imaged across different poses. To the author’s
knowledge this is the first work that explores example-
based techniques for modeling shape-and-texture appear-
ance manifolds.

In the learning literature a number of manifold learning
methods have been proposed, two of which are Isometric
Feature Mapping (ISOMAP) [30] and Local Linear
Embedding (LLE) [31]. ISOMAP uses geodesic distance,
or distance along the manifold, to compute the coordinates
of each data point on the manifold, while LLE uses local
geometry to compute these coordinates—it finds a map-
ping such that the local geometry of points in the high-di-
mensional input space is preserved on the manifold. Both
ISOMAP and LLE are non-parametric manifold learning
methods that function over k-size neighborhoods in the
original high-dimensional input space. Our non-parametric
deformable model technique can be used to improve the
mappings found with these techniques when used to com-
pute appearance manifolds, i.e., when the input space is
over images. In specific, image morphing can be used to
get a better approximation of the local geometry or dis-
tances used by both of these methods to perform manifold
learning. We believe this to be an interesting application of
our model and leave this for future work.

3. Light-field appearance manifolds

In this section, we discuss how to build an appearance
model that represents object appearance in 4D using
light-fields. With our model, each point on the shape-
and-texture appearance manifold maps to a light-field of
an object (see Fig. 1). Pose is kept as an external parameter
to the model and the resulting appearance manifold for
objects such as the human head, is well approximated using
a linear model. Light-fields are purely image-based and do
not use any scene geometry to model the appearance of an
object. Unlike the view-based 2D models of [13] and the 3D
models of [8], our model easily represents object classes
with complex surfaces and geometry. One of the main ideas
motivating our approach is that pose variation is easily
handled in 4D with light-fields, and thus more efficient
models of appearance can be derived than with 2D



Fig. 3. Example shape and texture of a prototype light-field. Light-field shape is defined by the set of view-based 2D shapes, x(u,v). The texture of a
prototype light-field is its ‘‘shape-free’’ equivalent obtained by warping the input light-field to the reference shape.
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approaches. In Section 4, we discuss nonlinear techniques
for modeling the shape-and-texture appearance manifold
of complex objects. For simplicity, we present a linear
model in this section, however, the nonlinear techniques
of Section 4 are directly applicable.

In the following sub-sections, we define the concepts of
shape and texture in the context of light-fields and show
how to build a generative model of appearance over these
vector spaces. To match the model, we extend the direct
search algorithm of [2] to function over the space of
light-fields. We show how to match a light-field or 2D
image of an object to a point on the manifold. When
matching to an image, we automatically estimate its pose
by searching over the views of the model light-field. In turn,
the model fit can be used to synthesize the object under
unseen views. In Section 3.1 we provide formal definitions
of light-field shape and texture in the context of both
feature-point and optical flow based shape features. We
then describe the light-field appearance manifold in Section
3.2. The direct search algorithm employed to match the
model is explained in Section 3.3.

3.1. Light-field shape and texture

In this section, we provide a formal description of the
shape and texture of a set of light-field prototypes that
define the appearance manifold of an object class. Let
L(u,v,s,t) be a light-field consisting of a set of sample views
of the scene, parameterized by view indices (u,v) and scene
radiance indices (s,t), and let L1, . . .,Ln be a set of proto-
type light-fields with shape X 01, . . .,X 0n. Below we define
light-field shape both in the context of 2D feature-points
and 4D vector fields. We first discuss the feature point
based shape representation and then the vector field based
shape representation that can be computed automatically
with optical flow.

For most image-based rendering techniques (e.g., [14])
X 0i is a set of 3D feature points which outline the shape
of the imaged object. With a light-field, no 3D shape infor-
mation is needed to render a novel view of the object. It is
therefore sufficient to represent the shape of each light-field
as the set of 2D feature points, which are the projections of
the 3D features into each view. More formally, we define
the shape, X, of a light-field L as

X ¼ fxðu;vÞjðu; vÞ 2 Lg; ð1Þ

where x(u,v) is the shape in a view (u,v) of L. If the camera
array is strongly calibrated, it is sufficient to find corre-
spondences in two views and re-project to the remaining
views. With only weak calibration and the assumption of
a densely sampled array, feature points may be specified
in selected views of the light-field and tracked into all other
views using optical flow [32]. An example, shape feature
vector is displayed for a prototype light-field of the human
head in Fig. 3.

Once shape is defined for each prototype light-field, to
increase model efficiency Procrustes analysis [33] is per-
formed to place the shape of each object into a common
coordinate frame. Effectively, Procrustes analysis applies
a rigid body transformation to the shape of each light-field
such that each object is aligned to the same approximate
3D pose. From the set of normalized shapes Xi of each pro-
totype, the reference shape Xref is computed as

X ref ¼Ma
�X ; ð2Þ

where �X is the mean aligned shape and Ma is a matrix
which scales and translates the mean shape such that it is
expressed in pixel coordinates (i.e., with respect to the
height and width of the discrete views of the light-field).
The matrix Ma constrains the shape in each view of the ref-
erence light-field to be within the height and width of the
view.

As in [1], the texture of a prototype light-field is its
‘‘shape free’’ equivalent. It is found by warping each
light-field to the reference shape Xref. As will be shown in
the next section, this allows for the definition of a texture
vector space that is decoupled from shape variation. Specif-
ically, the texture of a light-field L is defined as

G0ðu; v; s; tÞ ¼ LðDðu; v; s; tÞÞ ¼ L � Dðu; v; s; tÞ; ð3Þ
where D is the mapping,

D : R4 ! R4 ð4Þ
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Algorithm 1. Compute Average Light-Field

Let L1, . . .,Ln be a set of prototype light-fields.
Select an arbitrary light-field Li as the reference light-field Lref

repeat

for all Li do

Compute correspondence fields Xi between Lref and Li using optical
flow.

Backwards warp each view of Li onto Lref using Xi.

end for

Compute the average over all Xi and Gi.

Forward warp each view of Gaverage using Xaverage to create Laverage.

Convergence test: is Laverage � Lref<limit ?

Copy Laverage to Lref

until convergence

that specifies for each ray in Lref a corresponding ray in the
prototype light-field L and is computed using the shape of
L and Xref. Note Eq. (3) implements the light-field warping
operation [24]. As in the 2D deformable models of [2], the
texture of each prototype, G 0i, is normalized to be under
the same global illumination. This results in normalized
light-field texture vectors Gi.

Above we presented a feature-point based light-field
shape representation that is acquired using a semi-auto-
matic process. The shape of a light-field can also be com-
puted using optical flow. With this technique, the shape
of a light-field is defined directly as the 4D deformation
field which places the light-field in correspondence with
the model reference light-field:
X i ¼ Diðu; v; s; tÞ; ð5Þ
where Di is defined by the mapping (4) and specifies
for each ray in the reference light-field Lref a corre-
sponding ray in the prototype light-field L. The shape
Xi of each prototype light-field, defined using Eq. (5),
is computed by applying optical flow between the views
of each prototype light-field and that of the reference
light-field. As in the MMM [11] the reference object
is chosen to be the average object, since by definition
its difference in shape and texture is minimal between
each of the light-field prototypes and therefore it is
the preferred reference light-field. Using optical flow,
the average light-field is computed via the bootstrap-
ping algorithm outlined in [34]. This algorithm is pre-
sented as Algorithm 1. For efficiency we applied the
algorithm independently to each view of the prototype
set.

Using definition (5), light-field texture is computed as,
Giðu; v; s; tÞ ¼ L � X iðu; v; s; tÞ: ð6Þ
We will use the above definitions of light-field shape and
texture to define a light-field appearance manifold in the
following section.
3.2. Light-field appearance manifolds

As illustrated in the previous section, once a reference is
defined, each prototype light-field may be described in
terms of its shape and texture. The combination of shape
and texture form an appearance manifold: given a set of
light-fields of the same object class, the combination of
their texture warped by a combination of their shape
describes a new object whose shape and texture are well
approximated by that of the prototype light-fields. Com-
pact and efficient linear models of shape and texture varia-
tion may be obtained using PCA, as shown in [2], [11]; or a
nonlinear method such as the method described in Section
4 can be used. For the remainder of this section we use a
linear PCA model.

Given the set of prototype light-fields L1, . . .,Ln, each
having shape Xi and texture Gi, PCA is applied indepen-
dently to the shape and texture vectors to give

X ¼ �X þ Psbs;

G ¼ �Gþ Pgbg:
ð7Þ

Using Eq. (7), the shape and texture of each model light-
field is described by its corresponding shape and texture
parameters bs and bg. As there may exist a correlation be-
tween shape and texture, a more compact model of shape
and texture variation is obtained by performing PCA on
the concatenated shape and texture parameter vectors of
each prototype light-field. This results in a combined
shape-and-texture PCA space:

X ¼ �X þQsc;

G ¼ �GþQgc;
ð8Þ

where as in [2],

Qs ¼ PsW
�1
s Pcs;

Qg ¼ PgPcg;
ð9Þ

and Ws is a matrix that commensurates the variation in
shape and texture when performing the combined shape-
and-texture PCA. In our experiments, we use Ws = rI

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r2

s=r
2
g

q
. Here, r2

s and r2
g represent the total var-

iance of the normalized shape and texture vectors.
Eq. (8) maps each model light-field to a vector c in the

combined shape-and-texture PCA space. To generalize
the model to allow for arbitrary 3D pose and global illumi-
nation, Eq. (8) may be re-defined as follows,

X m ¼ Stð�X þQscÞ;
Gm ¼ T uð�GþQgcÞ;

ð10Þ

where St is a function that applies a rigid body transforma-
tion to the model shape according to a pose parameter
vector t, Tu is a function which scales and shifts the model
texture using an illumination parameter vector u, and the
parameter vectors t and u are as defined in [2]. Note, the
reference light-field has parameters c = 0, t = a and u = 0,
where a is a pose vector that is equivalent to the matrix
Ma in Eq. (2).
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The set of all light-fields of an object define a manifold
of object appearance in light-field space. With our model,
the light-field appearance manifold of an object class is
modeled as,

Lmodel ¼ Gm � Dm; ð11Þ
where Lmodel is a model light-field that maps to a point on
the appearance manifold and, as in Eq. 4, Dm is a 4D defor-
mation field which maps each ray in the model light-field to
a ray in the reference light-field. Using feature-point based
shape, Dm is computed using the shape of the model light-
field, Xm and the reference light-field, Xref. When Xm is de-
fined using shape derived from optical flow, we set
Dm = Xm and we re-define Eq. (11) as

Lmodel ¼ Gm�f X m; ð12Þ
where �f denotes the forward warping operation.

In the remaining section, we present a direct search algo-
rithm that optimizes the model over the combined shape–
texture space and describe how the light-field appearance
manifold can be automatically optimized over images with
unknown pose.

3.3. model matching

In this section, we show how to generalize the matching
technique of [2] to light-fields. We first illustrate how to
match a light-field and then discuss the more interesting
task of fitting a model light-field to a single 2D image.

A novel light-field, Ls, is matched to a point ~c on the
shape-and-texture appearance manifold by minimizing
the following nonlinear objective function:

EðpÞ ¼ jGm � Gsj2; ð13Þ

where pT = (cTjtTjuT) are the parameters of the model, Gm

is the model texture and Gs is the normalized texture of Ls

assuming it has shape Xm. Gs is computed by warping Ls

from Xm to the reference shape Xref. The model shape
and texture are computed at p using Eq. (10). For simplic-
ity, we assume that the object imaged by Ls has the same
approximate 3D pose as the training light-fields.

The direct search gradient descent algorithm of [2] is
easily extendible to a light-field deformable model. In [2]
a linear relationship for the change in image intensity with
respect to the change in model parameters was derived via
a first order Taylor expansion of the residual function
r(p) = Gm � Gs = dg. In particular, given a point p on the
manifold, the parameter gradient that minimizes the objec-
tive function (13) was computed as, dp = �Rdg, where the
matrix R is the pseudo-inverse of the Jacobian, J ¼ @r

@p
,

derived from the Taylor expansion of the residual function.
In a 2D deformable model, the columns of the Jacobian

are intensity gradient images which model how image
intensity changes with respect to each model parameter.
Analogously, the Jacobian of a light-field deformable mod-
el represents the change in light-field intensity with respect
to the change in model parameters, each of its columns
representing light-field intensity gradients that describe
the intensity change across all the views of a light-field.
As in a 2D AAM, the Jacobian is learned via numerical
differentiation.

A more interesting extension of the AAM framework
arises when performing direct search to match a light-field
deformable model to a single 2D image; with a light-field
the Jacobian matrix is rendered based on pose. A novel
image Is is matched to a point on the light-field appearance
manifold by minimizing the objective,

Eðp; �Þ ¼ jF ðGm; �Þ � gsj
2
; ð14Þ

where � is the camera pose of Is, F is a function that renders
the pose � of the model texture [20,22] and gs is the texture
of Is assuming it has shape xm. gs is computed by warping Is

from xm to the reference shape xref. Both 2D shapes are
obtained by rendering Xm and Xref into view � using,

x ¼ F xðX ; �Þ ð15Þ
where Fx is a variant of the light-field rendering function F:
it renders shape in view � via a linear interpolation of the
2D shape features defined in each view of X.

Overall, the objective function in Eq. (14) compares the
novel 2D image to the corresponding view in Lmodel.
Minimizing this objective function fits a model light-field,
Lmodel, that best approximates I in view �. An efficient way
to optimize Eq. (14) is by defining a two step iteration pro-
cess, in which the pose � is optimized independently of the
model parameters p. We estimate � using the pose estimation
algorithm described below. The pose parameter t can be used
to further refine this pose estimate during matching.

Once � is approximated, direct search may be employed
to match I to a point on the shape-and-texture appearance
manifold. As previously discussed, each column of the
Jacobian, J of a light-field deformable model is a light-field
intensity gradient. To approximate the intensity gradient in
view � of the target image I, light-field rendering is applied
to each column of J. This yields a ‘‘rendered’’ Jacobian
matrix, J�, specified as,

Ji
� ¼ F ðJi; �Þ; i ¼ 1; . . . ; m; ð16Þ

where Ji represents column i of the matrix J and m is the
number of columns in J. Note similar to the model and
image textures of Eq. (13) the columns of J� have shape xref

defined above.
Using J�, we optimize Eq. (14) using the direct search

algorithm presented in Algorithm 2. An important step
of the algorithm, is in the application of the pose parameter
vector t. In this step, the global affine warp St is applied to
the rendered model image and not to the model light-field
(step 3 of the Residual function in Algorithm 2). This is
because rotating, scaling, and/or translating the images of
Lmodel according to St may violate the light-field construc-
tion when matching to an image. To see this, consider
manipulating a single-slab light-field. Applying St to this
light-field effectively rotates or displaces the focal plane
(st-plane) of the light slab (note, scaling the images



Algorithm 2. Direct Search Algorithm for Matching an
Image

Let Is be an input image with estimated pose �, Xm, Gm the model shape
and texture vectors of the light-field appearance manifold, and J the model
Jacobian.

Compute J� using Eq. (16).
Set p = p0

Evaluate dg = Residual(Is,p,�)
repeat

Compute error E0 = jdgj2
Evaluate dp = � Rdg

Update parameters, p1 = p + dp

Evaluate dg = Residual(Is,p1,�)
Compute error at new p value: E = jdgj2
if E � E0 P 0

Try different step sizes: k = 1.5, 0.5, 0.25, . . .
Set p1 = p + kdp

Evaluate dg = Residual(Is,p1,�)
Compute error E = jdgj2

end if

if E � E0 < 0
Set p = p1

end if

until E � E0 P 0

function dg = Residual(Is,p,�)
xref = Fx(Xref,�)
xs = Fx(Xm(C,a),�)
xs = St(xs)
gs = Whiten(Is�W(xs,xref))
gm = Whiten(F(Gm(c))
dg = gm � gs

function gw = Whiten(g)
gw = g � mean(g)
gw = gw/var(gw)
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correlates to widening the gap between the camera and
focal planes of the light slab). Clearly, moving the focal
plane of the light-field will alter where the scene rays will
intersect it. If the imaged object is planar then the scene
rays will follow the motion of the focal plane. For non-pla-
nar objects this is not necessarily the case, however.

By applying the affine warp on the rendered model
image the model light-field remains in the coordinate frame
of the reference light-field, while still affording the model
affine flexibility in the coordinate frame of the input image.
Another benefit of the above matching algorithm is that it
avoids the need to optimize over z, the depth of the focal
plane of the unstructured lumigraph, during matching.
The scaling performed by St when applied to the model
light-field effectively changes this value and thus z would
need to be optimized over as well when performing the
match. By keeping the model light-field in the coordinate
frame of the reference light-field, this need is eliminated
and we let z = z0, the depth of the average light-field.

Note, when fitting the model to an object light-field, we
can safely apply St to the images of the model light-field.
This is because the set of allowable affine transformations
is constrained by the 3D pose of the input light-field.
Matching an image is more ambiguous, and can result in
transformations St that when applied to the images of the
light-field violate its construction.

To estimate � during matching, we first use gradient des-
cent on the views of the light-field to obtain a coarse esti-
mate of the object’s pose. Provided an input image Is, we
obtain an initial estimate of the object’s pose, �0, by per-
forming cross-correlation between the image and each view
of the average light-field. We then match the image to this
view and each of its eight-connected neighbors. We move
to the neighbor with smallest fit error and iterate until
the central view has the smallest fitting error of its neigh-
bors. To avoid local minima we randomly perturb the fit
upon convergence. Final convergence is declared when
the algorithm converges to the same discrete pose twice.

Once convergence is declared at a discrete pose of the
model light-field, gradient descent can once again be
applied to obtain a refined pose estimate. In our implemen-
tation, we efficiently estimate the object’s pose, �, by fitting
a quadratic to the fit error of the eight-connected neighbor-
hood centered about the computed discrete pose. The pose,
�, is set to the minimum of the fit quadratic.

4. Nonlinear appearance manifolds

In this section, we present a nonlinear technique for
modeling shape-and-texture appearance manifolds. Here,
we focus on 2D appearance models, however, this tech-
nique is directly applicable to the 4D appearance model
of the previous section.

The images of a complex object such as a mouth gener-
ally belong to a nonlinear appearance manifold with parts
or holes as demonstrated by Fig. 4. This figure illustrates
the shape and texture of example mouth images taken from
the AVTIMIT database [15]. The average image and shape
are displayed along with example textures and shapes of
selected prototype images.

Consider modeling the mouth appearance using a linear
model such as an AAM. Fig. 4 demonstrates the difficulty
with modeling the mouth using a linear method. In particu-
lar, notice the stretched region in the texture of a closed
mouth and that the inside of the mouth is lost in the texture
of an open mouth. These artifacts cripple the computed mod-
el; in general, linear methods have difficulty modeling the full
range of mouth appearance. Such artifacts are a result of the
varying topology of the appearance manifold of this object—
some features (or surfaces) are visible in certain mouth imag-
es but not in others (e.g., teeth). Intuitively, this is seen by the
fact that there exist sets of mouth configurations for which
the same parts of the mouth are visible in each set.

In addition to varying topology, the shape-and-texture
spaces of non-rigid object classes can have varying dimen-
sionality across examples when different sets of landmarks
are used. Once again, consider the mouth images of
Fig. 4. The presence of teeth in the open mouth introduc-
es new shape features that are absent from the image of
the closed mouth. Allowing for varying shape dimension-



Fig. 4. Linear models compute a texture space by warping each example to a single reference frame. Note the stretched region present in the closed mouth
textures and that the inside of the mouth is lost in the texture of the open mouth.
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ality results in a more expressive and accurate model of
appearance.

Below we present a non-parametric deformable model
for modeling shape-and-texture appearance manifolds.
Unlike a parametric approach, this model assumes nothing
of the global structure of the appearance manifold. Instead,
it looks at local neighborhoods on the manifold that are
assumed to belong to the same region of the topology com-
puted with nearest-neighbor. As we show below, the near-
est-neighbor model is easily extendible for use with shapes
of variable dimensionality.

4.1. Non-parametric deformable model

The nearest-neighbor model provides an implicit repre-
sentation of the manifold. Specifically, this model focuses
on local neighborhoods of the manifold defined by k
examples. In this region it is assumed that the same parts
of the non-rigid object are visible. Given the local neigh-
borhood, the shape and texture of a new input is found
by taking bounded combinations of the shape and tex-
ture of the k neighborhood examples. Therefore, given
a new image, we wish to find a local neighborhood
observing the above properties, whose shape and texture
best explain the input.

We use nearest-neighbor search to find a set of examples
on the manifold whose appearance most closely approxi-
mate that of the input. Given a novel input, xs, we compare
it to each image, xi, of the prototype set to compute its k

nearest-neighbors. Although we use an exhaustive search
there exist fast methods for computing approximate near-
est-neighbors [35] that we leave for future work. In our
algorithm, we compute proximity using Euclidean distance
in pixel space. We compute the distance,



Fig. 5. First five nearest-neighbors computed with our algorithm on a database of 100 mouth images.
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dðxs; xÞ ¼ kxs � xk2
; ð17Þ

between xs and each prototype image and retain the k

examples having smallest distance. Fig. 5 displays the
results of this nearest-neighbor algorithm on a database
of 100 images of a single subject’s mouth taken from the
AVTIMIT database. The nearest-neighbors of a novel
input appear to form a local neighborhood in image
space.

The shape and texture of an input image are computed
by taking a convex combination of the shape and texture
of its k nearest-neighbors. Let xj and sj, j = 1, . . .,k be the
k nearest-neighbors of the input and their associated
shapes. The texture of each example is computed as

tj ¼ xj � W ðsj; srefÞ; j ¼ 1; . . . ; k; ð18Þ
where � denotes the warping function, W() is a function
that computes the piecewise affine correspondence between
two images given their shape [2], and sref is the reference
shape of the local neighborhood defined to be the mean
of the example shapes,

sref ¼
1

k

X
j

sj: ð19Þ

Given the k nearest-neighbors of the input, we search over
bounded combinations of their shape and texture that
best match the input by minimizing the following error
objective function,

Eðxs; b; c; tÞ ¼ kxs � W ðsmðc; tÞ; srefÞ � tmðbÞk2
; ð20Þ
where

tmðbÞ ¼
X

j

bjtj;

smðc; tÞ ¼Stð
X

j

cjsjÞ;

St is a function that applies a rigid body transformation to
the model shape according to a pose parameter vector t

and bj,cj take values on the closed interval [a,b]. Note that
a and b restrict the search to a bounded region of the man-
ifold containing the k nearest-neighbor examples. If a = 0
and b = 1 then the search is restricted to the convex hull
of the example shape-and-texture vectors. This restriction
results in a compact representation of the manifold and as-
sures that we match an input to a point on the manifold.

We minimize the objective function (20) using gradient
descent. Fig. 6 displays an example match using the above
algorithm. The algorithm is able to generate a convincing
reconstruction of the mouth from the shape and texture
of the nearest-neighbor examples.

It is straightforward to extend the nearest-neighbor
model to handle varying shape dimensionality. With this
representation a shape vector, sM, is defined as

sM ¼ hx1; x2; . . . ; xM ; y1; y2; . . . ; yMi: ð21Þ

In the above representation, each shape has dimensionality
2M. This shape representation is illustrated by Fig. 7. In
the nearest-neighbor model, we associate each prototype
image with a shape vector that has dimensionality accord-
ing to what is visible in the image. When computing



Fig. 6. A convincing reconstruction of the shape and texture of an input mouth image is computed in a few iterations using the gradient descent algorithm
of the nearest-neighbor model.
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nearest-neighbors, we intersect the shapes of the neighbor-
hood examples and use the shape features common to all
examples to match the novel input. To compute the shape
of the input, we keep the shape features that appear in a
majority of its nearest-neighbor examples. This process is
illustrated by Fig. 8. The use of varying shape dimensionality
results in a more expressive and accurate appearance model.
Fig. 8. Shape intersection algorithm used by the nearest-neighbor model. T
intersected and the shape features that appear in a majority of the examples a

Fig. 7. Variable size shape representation used by the nearest-neighbor model.
parts of the mouth are visible. Three examples are shown: (left) with only lip f
bottom teeth features.
5. Experiments

In this section, we evaluate the light-field deformable
model and the non-parametric deformable model of this
paper. We begin by describing our implementation and
experimental setup. We then demonstrate a light-field head
appearance manifold of the human head. In this experiment
o compute the shape of its input, the shape of its nearest neighbors is
re used.

Each example image is labeled with varying feature sets according to what
eatures, (middle) with lip and top teeth features, (right) with lip, top, and



Fig. 9. (a) Light-field camera array. [14] (b) Example 6 · 8 head light-field taken from our light-field head database.
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we compare the view-based AAM to our method and display
full light-fields synthesized from 2D images of novel subjects
with unknown pose. Next, we demonstrate the non-paramet-
ric shape-and-texture appearance model using speaking
mouth video sequences of five subjects taken from the
AVTIMIT database. We perform a qualitative and quantita-
tive evaluation of the non-parametric model and compare
it against a baseline linear method and a parametric
deformable model.

5.1. Experimental setup

We built a light-field appearance manifold of the human
head by capturing light-fields of 50 subjects using a real-
time light-field camera array [14]. We collected 48 views
(6 · 8) of each individual and manually segmented the head
from each light-field (Fig. 9). Our head database, displayed
in Fig. 10, consists of 37 males and 13 females of various
races. Of these people, 7 are bearded and 17 are wearing
glasses. The images in each view of the prototype light-
fields have resolution 320 · 240. Within each image, the
head spans a region of approximately 80 · 120 pixels.
The field of view captured by the camera array is approxi-
mately 25� horizontally and 20� vertically. To perform
feature tracking, as described in Section 3, we used a
multi-resolution Lucas-Kanade optical flow algorithm
[39], with 4 pyramid levels and Laplacian smoothing.1

When matching our model to an image we assume that
the object’s image location is approximately known. In
the case of a head model, such information can be readily
obtained from a face detector [36].

For comparison, we built a view-based AAM using the
views of the light-field camera array [13]. In both the defi-
nition of the view-based and light-field active appearance
models the parameter perturbations displayed in Table 1
1 We acknowledge Tony Ezzat for the Lucas-Kanade optical flow
implementation.
were used to numerically compute the Jacobian matrix.
To avoid over-fitting to noise, shape-and-texture PCA
vectors having low variance were discarded from each
model, the remaining PCA vectors modeling 90% of the
total model variance.

We implemented the view-based AAM and light-field
appearance models in MATLAB. To perform light-field
rendering we use the unstructured lumigraph algorithm
described in [22]. This algorithm has two parameters: l
for the number of source views used to render the scene
and z0 the approximate depth of the focal plane of the
light-field. In our experiments we used a value of l = 4
when optimizing both the feature based and the optical
flow based models. As discussed in Section 3, the model
light-fields are kept in the coordinate frame of the reference
light-field upon matching, thus we need only note the
approximate depth of the reference light-field to optimize
the model. In our experiments we found values of
11 6 z0 6 12 to work well for the approximate depth of
the reference light-field of both the optical flow and feature
based models. Our matching algorithm typically converged
between 4 and 15 iterations when matching to an image
and between 4 and 10 iterations when matching to a
light-field. Each iteration took a few seconds in un-opti-
mized MATLAB. We believe that using a real-time light-
field renderer [22] would result in matching times similar
to those reported for a 2D AAM [37].

To evaluate the non-parametric algorithm of Section 4,
we used mouth sequences of five subjects taken from the
AVTIMIT database [15] (see Fig. 11). The sequence of each
subject consisted of eight different utterances and contained
on the order of 900 frames. For each subject we randomly
hand selected about 100 frames from their first three utter-
ances and manually labeled them with lip shape features.2

Using the labeled features, we cropped the images of each
2 Subject one’s database contained 122 examples. The databases of
subjects 2 through 5 had 100 examples.



Fig. 10. Head database of 50 subjects. A single, frontal view of the 6 · 8 light-field of each subject is displayed.

Table 1
Perturbation scheme used to train our linear models [37] discussed in
Section 4

Variables Perturbations

x,y ± 5% and ± 10% of the height and width of the
reference shape

h ±5�, ±15�
Scale ±5%, ±15%
c1�k ± 0.25, ± 0.5 standard deviations
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subject to only contain the mouth. Using this training set
we constructed an Active Appearance Model [2] for each
subject. The training images of each subject were also
labeled with teeth features (see Fig. 7) to form shape vec-
tors with variable dimension. These shapes were used by
the nearest-neighbor model discussed in Section 4.

For comparison, we also built a Gaussian mixture
deformable model for each subject using a three dimension-
al subspace of the training image data computed with PCA,
retaining 56% of the total model variance, and with m = 5
mixture components. We found these parameters to work
well in our experiments. Using a three dimensional sub-
space also allowed us to visualize our models. To compute
the Gaussian mixture, we used the NetLab library [38].
With this model, the local shape-and-texture variation at
each mixture component is modeled using a linear deform-
able model. In particular, at each component, we compute
an AAM using the examples that lie under the support of
Fig. 11. Video sequences of five subjects taken from the AVTIMIT database [1
the component’s Gaussian. We consider an example to be
under the support of a Gaussian if it is less than three stan-
dard deviations away from the mean. To analyze a new
example image with this model, we independently fit each
local AAM to the example and retain the fit with the lowest
error.

The local AAMs constructed in the Gaussian mixture
model and the single AAM models were constructed using
the parameters listed in Table 1. In each local AAM, as
well as the single AAM, 95% of the model variance was
retained by the combined shape-and-texture space. In
our experiments we evaluated the nearest-neighbor algo-
rithm for varying values of k. The value used is made
explicit in each experiment. We set a = 0 and b = 1,
restricting the solution to the convex hull of the shape
and texture of the computed neighborhood examples.
We also restricted t such that the model image is rotated
at most ±10�, its size is scaled between [0.75,1.5] and it is
translated by at most ±10 pixels in the horizontal and
vertical directions.

The test set of each subject was formed by taking 500
images from the subject’s video sequence that are outside
the training set. In our experiments, we assume that the
location of the mouth is coarsely initialized by an external
mouth detector. Both the Gaussian mixture model and the
AAM optimize for location during model search and
therefore require only approximate initialization of the
mouth location. We refine the mouth location estimate in
5] used to train and test our models. A frame from each sequence is shown.
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the nearest-neighbor model by finding the nearest-neighbor
using the input location and then computing a normalized
cross correlation between the nearest-neighbor and same-
sized patches in the input image centered about locations
in an 11 · 11 search window about the initial center. We
reset the center of the mouth to the location having the
highest correlation score and repeat this process until
convergence or the maximum number of iterations is
reached. In our experiments, we found this algorithm
typically converged in a few iterations.

5.2. Light-field head manifold results

5.2.1. Comparison to view-based linear model
To compare our method to a view-based AAM we built

a single-view 2D AAM and compared it against a feature-
based light-field deformable model. Each model was con-
structed in color using all 50 subjects, and was matched
to two people in the training set, imaged from an unknown
pose. The resulting fits are displayed in Fig. 12. In the
Fig. 12. Comparison of a light-field deformable model to a view-based AAM.
AAM, and the right column the light-field fit. The 2D and light-field appe
approximately smooth and Lambertian. Unlike the light-field deformable mo
second subject.
figure, the first subject without glasses is modeled equally
well using both methods. The second subject is wearing
glasses which self-occlude the subject in extreme views of
the camera array. These self-occlusions are difficult to
model using a view-based AAM, where inter-pose varia-
tion is modeled as shape. Note that the view-dependent
texturing effects in the person’s glasses are preserved by
the light-field deformable model, but are lost by the view-
based AAM even though the person remains in the model.

The difference in performance between each model is
explained by how they model pose variation. The view-
based AAM blends the shape and texture of multiple poses
at a given local-linear model. Thus, one would expect that
inter-pose self-occlusion and view-dependent texture would
not be properly modeled using this technique, unless many
such local linear models are introduced, rendering the mod-
el inefficient. The light-field deformable model represents
appearance in 4D, thus the shape and texture of each pose
are kept separate and pose is an external parameter of the
model. As a result the light-field deformable model can
The left column shows the input, the middle column the best fit with a 2D
arance models both exhibit qualitatively good fits when the surface is

del, the 2D model is unable to model the specularity in the glasses of the



Fig. 13. Feature-point based and optical flow based light-field deformable model optimized over light-fields of two subjects outside of the model database.
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easily handle the view-dependent texture and self-occlu-
sions introduced by the glasses whereas the view-based
AAM cannot.

Note that the blurring in the light-field result is caused
by low image resolution (we are using 80 · 120 image
regions) and calibration error of the light-field dataset.
We believe that the collection of a better dataset would
amplify the difference between the view-based AAM and
light-field model and we leave this as future work. What
is important to note is that the white specular regions in
the glasses are preserved by our model and are lost by
the view-based AAM even though the subject is in the
training dataset.

5.2.2. Light-field model synthesis

To demonstrate the light-field synthesis capabilities of a
light-field deformable model, we match the model to a sin-
gle 2D image or light-field of novel subjects using ‘‘leave-
one-out’’ experimentation. Fig. 13 illustrates light-field
synthesis for two people taken out of the model. To
conserve space, only selected views of each light-field are
displayed. Both fits are shown superimposed onto the
corresponding input light-field. Each light-field is also
provided for ground truth comparison. As seen from the
figure, the input light-fields are well matched and a
convincing reconstruction of each person is generated.
Specifically, the shape and texture of both individuals is
well captured across views.

Fig. 14 illustrates our model’s ability to generate con-
vincing light-field reconstructions from 2D images. This
figure provides two example matches to 2D images with
unknown pose. For each match, the person was removed
from the model and imaged at a randomly selected pose
not present at a discrete view of the light-field model.
The synthesized light-field, rendered at the selected pose
of each person, is displayed below each input image.
The synthesized light-fields are also displayed. Note our
method built a light-field with 48 views from a single
2D image.

Figs. 13 and 14 display results for both the feature-point
based and optical flow based shape features. Comparing
the results of these figures one finds that each model per-
forms quite similarly: the synthesized light-fields resulting
from each model are approximately the same. Such perfor-
mance is expected since each model is trained on the same
training set and each model is designed with the same
framework using PCA. Close inspection of each figure
shows that there are some minor differences between the
fit of each algorithm, due to the use of different shape
features. For example, the optical flow based model has



Fig. 14. Feature-point based and optical flow based light-field deformable models optimized over images of objects with unknown pose. The models were
optimized over two subjects removed from the model database. Our method is able to synthesize convincing light-fields from a single input image.
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difficulty about the edges of the face due to ambiguity in
the optical flow, however, as illustrated by the figures these
errors are minor.

5.3. Non-parametric mouth manifold results

A qualitative comparison of the non-parametric deform-
able model with the AAM and the Gaussian mixture
deformable model is provided in Fig. 15. In the figure,
three images from the 500-image test set of the first four
subjects are displayed along with the synthesized images
generated by each model. To conserve space, only the syn-
thesized shape from the nearest-neighbor model is dis-
played; the main difference in performance is noted in the
synthesized image of each model. The RMS fit error is also
provided below each fit. In this experiment, the nearest-
neighbor models have k = 10. For each subject, the first
test image is modeled well using all three models. Compar-
ing the RMS error of each fit, however, the single AAM
does the worst and the nearest-neighbor deformable mod-
els perform the best. The next two examples of each subject
demonstrate scenarios where the nonlinear methods out-
perform the AAM. This is especially seen in the examples
of the first three subjects. The fourth subject under-articu-
lates when he speaks and therefore his mouth appearance
varies less than the first three subjects and the difference
in performance between the three methods is less drastic
on this subject.

All three methods had difficulty modeling the fifth sub-
ject. Selected test images of this subject are displayed in a
similar fashion to Fig. 15 in Fig. 16. The first test image
is an example of where each method performs similarly
and the second an example where the nonlinear techniques
perform better than the linear AAM. The last two exam-
ples are instances of where the nearest-neighbor and
Gaussian deformable models perform poorly. Note the
AAM also had difficulty modeling these images.

The poor performance of the nearest-neighbor deform-
able model on the third example of Fig. 16 is attributed
to error in the nearest-neighbor computation: we current-



Fig. 15. Qualitative comparison between each nonlinear method and a baseline linear model. The input and synthesized image computed with each model
is shown for each example. To conserve space, only the synthesized shape from the nearest-neighbor model is displayed. The AAM has difficulty modeling
the full range of mouth appearance. The last two examples of each subject illustrate scenarios where the nonlinear methods outperform the AAM.
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ly compute nearest-neighbor using a naive, intensity-
based distance metric that is sensitive to differences in
rotation, translation and scale. The 10 nearest-neighbors
computed for the third test frame are displayed in
Fig. 16. The nearest-neighbors do not match the input
well. In contrast to the other subjects, this subject dis-
played a fair amount of head motion when he spoke. It
is possible that the error in the nearest-neighbor compu-
tation is attributed to the difference in rotation between
the input image and training images, although it may
also be because the input image is not well represented
by the training set. The former case may be corrected
by using more intelligent distance metrics which we dis-
cuss as part of future work.

Note that, while the nearest-neighbor deformable model
degraded gracefully in the presence of error, the Gaussian
mixture deformable model failed much in the same way a
linear AAM would in the fourth example of Fig. 16. This
makes sense since it is possible that one or more of the fit
mixture components of the Gaussian mixture span por-
tions of the space with holes and the model can converge
to non-mouth images. This error in the model may be
due to poor model selection, but can also be because the
mouth appearance manifold is poorly represented as piece-
wise linear. The nearest-neighbor deformable model avoids
the need to perform model selection and generalizes better
to complex manifolds.

A quantitative comparison of each model is provided by
Fig. 17. In the figure, a Root-Mean-Square error box plot
is shown for each approach computed over the 2500-image
test set, combined from all five subjects. This result is also
summarized by Table 2 which gives the average RMS error
rate along with the standard deviation away from the mean
for each technique. A pair-wise comparison of the error
distributions of each technique using statistical t-tests gave
p-values of p << 0.01 for each distribution pair. Both the
Gaussian mixture model and the nearest-neighbor model
do the same or significantly better than the single AAM
throughout the test sequence. The error box plot shows
that with k = 20 the nearest-neighbor algorithm outper-
forms each approach on a whole (different values of k are
considered next). The noteworthy performance of the near-
est-neighbor model is expected since it makes the fewest
assumptions about the underlying structure of the appear-
ance manifold.

The poor performance of the single AAM on the above
mouth dataset is a direct result of the simplicity of the mod-
el. This model assumes a single texture space over the
mouth appearance manifold. Since the appearance mani-
fold has varying topology, a global texture space is ill-de-
fined; the appearance variation of the mouth is not well
represented using a single reference coordinate frame. This
point was demonstrated by Fig. 4 in Section 4. Also, the
single AAM has no knowledge of the local structure of
the manifold and can therefore converge to non-mouth
images. Each of these properties contribute to the AAM’s
poor performance in modeling the appearance of the
mouth. The nearest-neighbor and Gaussian mixture
deformable models provide shape-and-texture mappings
that take into account the varying topology of the mouth



Fig. 16. Qualitative comparison of each method on the fifth subject: (right) input test image displayed along with synthesized image generated from each
model and synthesized shape from nearest-neighbor model and (left) first ten nearest-neighbors computed for the third example. The results for the first
and second input image display cases where the AAM performs similarly and worse than the nonlinear methods, respectively. The last two examples show
cases where the nonlinear techniques perform poorly. Note, that unlike the nearest-neighbor model, the Gaussian mixture model can converge to non-
mouth images much like the linear AAM.

Fig. 17. Quantitative comparison between each method and a baseline
linear model (Summarized in Table 2). A box plot of the RMS error of
each model evaluated over 2500 test mouth images, combined from all five
subjects, is shown. In the plot, the horizontal lines of each box represent
the top quartile, median and bottom quartile values, the whiskers give the
extent of the rest of the data and the red crosses label data outliers. Of the
three methods, the AAM displays the worst performance and the nearest-
neighbor model performs the best.
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appearance manifold and therefore are able to more faith-
fully represent the full range of mouth appearance
variation.
Table 2
Method comparison

Method AAM GMM NPM

Average RMS error 18.7 ± 11.7 14.2 ± 7.3 11.3 ± 5.7

The average RMS error of each technique is displayed ± the standard
deviation. A pair-wise comparison of the error distributions of each
technique using statistical t-tests gave p-values of p << 0.01 for each dis-
tribution pair.
Finally, we evaluate the performance of the nearest-
neighbor algorithm for different k values. Fig. 18 displays
an RMS error box plot for the nearest-neighbor model
evaluated over the 2500 test frames with different k values.
The figure illustrates that the model performs better for
increasing values of k. This verifies our intuition that morp-
hing between examples does better than simply taking the
nearest-neighbor. As the number of examples increases
the model is provided with more degrees of freedom and
can therefore match the input image more closely.
Fig. 18. Quantitative comparison of the nearest-neighbor method for
different k. An RMS error box plot for the nearest-neighbor model
evaluated over the 2500 test frames is displayed for different k values. The
model performs better for increasing values of k. As the number of
examples increases the model is provided with more degrees of freedom
and can therefore match the input more closely. Too large k degrades
model performance. The optimal value of k for this dataset is around
k = 20.
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The model reaches optimal performance around k = 20
for this dataset. For larger values of k (k > 20) the model
begins to degrade in performance. This is expected since
for larger values of k the assumptions made by the model
may no longer hold and its performance becomes more
similar to that of a linear deformable model which per-
forms a global search over the manifold. Note, however,
that even when k is set such that it includes all the examples
in the training set (k = 100), the non-parametric model still
performs better than the AAM. This is because the non-
parametric model restricts its search to the convex hull of
the examples during matching, whereas the AAM does not.

6. Conclusions

This paper addresses some of the important limitations
of contemporary shape-and-texture appearance models.
We introduced a novel deformable modeling method based
on an image-based rendering technique. Light-field
deformable models have the potential to overcome some
of the limitations presented by current 2D and 3D appear-
ance models. They can easily model complex scenes, non-
Lambertian surfaces, and view variation. We demonstrated
the construction of a light-field manifold of the human
head using a light-field dataset of 50 subjects and showed
how to match the model to a light-field or single 2D image
of a novel subject with unknown pose. The experiments
performed on this dataset showed some of the advantages
of the light-field model, however, we believe that the collec-
tion of a more extensive (both in the number of light-field
views and subjects collected) and higher-quality dataset
would better demonstrate the advantages of our approach.

We have presented a non-parametric technique for mod-
eling the shape-and-texture appearance manifolds of com-
plex objects whose appearance manifold has a varying
topology consisting of parts or holes. This model general-
izes well to complex manifolds, offers a compact represen-
tation of the manifold and allows for varying feature sets.
In particular, with this technique a new input is analyzed
by morphing a local set of examples that belong to a con-
vex or bounded region of the manifold.

We evaluated the performance of the non-parametric
deformable model using the AVTIMIT database, where
we built a shape-and-texture appearance model of the
mouth. We compared this approach to a baseline linear
model and Gaussian mixture deformable model. We dem-
onstrated that linear models poorly represent the appear-
ance of complex objects such as mouths and that the
nonlinear techniques of this paper are able to define a more
convincing shape-and-texture mouth appearance model by
taking into account the varying topology of the mouth
appearance manifold. Of the three methods the linear
deformable model performed the worst and the non-para-
metric deformable model performed the best. The notewor-
thy performance of the non-parametric model is expected
since it makes the fewest assumptions about the underlying
structure of the object appearance manifold.
There are many interesting avenues of future work. A
clear next step of this work would be to demonstrate a non-
linear light-field deformable model that benefits from the
strengths of each approach described in this paper. Sepa-
rately, interesting topics of future work include the investi-
gation of other image-based rendering techniques for
constructing deformable models that require less imagery
than light-fields and the use of BRDF models for represent-
ing objects under varying illumination. The development of
a person-independent mouth deformable model would also
be an exciting extension to this work. Possible improve-
ments to the non-parametric deformable model include
the use of Locality Sensitive Hashing [35] as an alternative,
more efficient method for computing nearest-neighbors and
the consideration of different distance metrics that are less
sensitive to lighting, location, orientation, and scale.
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